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Abstract

We propose, implement, and evaluate a new algo-
rithm for releasing answers to very large numbers
of statistical queries like k-way marginals, sub-
ject to differential privacy. Our algorithm makes
adaptive use of a continuous relaxation of the Pro-
Jection Mechanism, which answers queries on the
private dataset using simple perturbation, and then
attempts to find the synthetic dataset that most
closely matches the noisy answers. We use a con-
tinuous relaxation of the synthetic dataset domain
which makes the projection loss differentiable,
and allows us to use efficient ML optimization
techniques and tooling. Rather than answering all
queries up front, we make judicious use of our
privacy budget by iteratively finding queries for
which our (relaxed) synthetic data has high error,
and then repeating the projection. Randomized
rounding allows us to obtain synthetic data in the
original schema. We perform experimental evalu-
ations across a range of parameters and datasets,
and find that our method outperforms existing
algorithms on large query classes.

1. Introduction

A basic problem in differential privacy is to accurately an-
swer a large number m of statistical queries (also known
as linear and counting queries), which have the form,
“how many people in private dataset D have property P?”
Marginal queries (also known as conjunctions) — which
ask how many people in the dataset have particular com-
binations of feature values — are one of the most useful
and most studied special cases. The simplest technique for
answering such queries is to compute each answer on the
private dataset, and then perturb them with independent
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Gaussian noise. For a dataset of size n, this results in error
scaling as O (@) (Dwork et al., 2006a). This simple tech-

nique is useful for answering small numbers of queries. But
it has been known since (Blum et al., 2008) that in principle,
it is possible to privately and accurately answer very large
classes of queries (of size exponential in ), and that an
attractive way of doing so is to encode the answers in a syn-
thetic dataset. Synthetic datasets have several advantages:
most basically, they are a concise way of representing the an-
swers to large numbers of queries. But they also permit one
to evaluate queries other than those that have been explicitly
answered by the mechanism, and to take advantage of gen-
eralization. Unfortunately, it is also known that improving
on the error of the simple Gaussian perturbation technique
is computationally hard in the worst case (Ullman, 2016).
Moreover, constructing synthetic datasets is hard even when
it would be possible to provide accurate answers with simple
perturbation (Ullman & Vadhan, 2011) for simple classes of
queries such as the set of all (g) marginal queries restricted
to 2 out of d binary features (so-called 2-way marginals). As
a result we cannot hope for a differentially private algorithm
that can provably answer large numbers of statistical queries
or generate interesting synthetic data in polynomial time.

Nevertheless, there has been a resurgence of interest in pri-
vate synthetic data generation and large-scale private queries
due to the importance of the problem. Recent methods offer
provable privacy guarantees, but have run-time and accuracy
properties that must be evaluated empirically.

1.1. Our Contributions

Our starting point is the (computationally inefficient) pro-
Jection mechanism of (Nikolov et al., 2013), which is infor-
mally described as follows. We begin with a dataset D &
X", First, the values of each of the m queries of interest g;
are computed on the private dataset: a = ¢(D) € [0, 1]™.
Next, a privacy preserving vector of noisy answers a € R™
is computed using simple Gaussian perturbation. Finally,
the vector of noisy answers a is projected into the set of an-
swer vectors that are consistent with some dataset to obtain
a final vector of answers a’ — i.e., the projection guarantees
that ' = q(D’) for some D’ € X™. This corresponds to
solving the optimization problem of finding the synthetic
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dataset D’ € X™ that minimizes error ||¢(D’) — @|2. This
is known to be a near optimal mechanism for answering sta-
tistical queries (Nikolov et al., 2013) but for most data and
query classes, the projection step corresponds to a difficult
discrete optimization problem. We remark that the main
purpose of the projection is not (only) to construct a syn-
thetic dataset, but to improve accuracy. This is analogous to
how learning with a restricted model class like linear clas-
sifiers can improve accuracy if the data really is labeled by
some linear function, i.e., the projection improves accuracy
because by projecting into a set that contains the true vector
of answers a, it is imposing constraints that we know to be
satisfied by the true (unknown) vector of answers.

Our core algorithm is based on a continuous relaxation of
this projection step. This allows us to deploy first-order
optimization methods, which empirically work very well de-
spite the non-convexity of the problem. A further feature of
this approach is that we can take advantage of sophisticated
existing tooling for continuous optimization — including
autodifferentiation (to allow us to easily handle many dif-
ferent query classes) and GPU acceleration, which has been
advanced by a decade of research in deep learning. This
is in contrast to related approaches like (Gaboardi et al.,
2014; Vietri et al., 2020) which use integer program solvers
and often require designing custom integer programs for
optimizing over each new class of queries.

We then extend our core algorithm by giving an adaptive
variant that is able to make better use of its privacy budget,
by taking advantage of generalization properties. Rather
than answering all of the queries up front, we start by an-
swering a small number of queries, and then project them
onto a vector of answers consistent with a relaxed synthetic
dataset — i.e., a dataset in a larger domain than the original
data — but one that still allows us to evaluate queries. At
the next round, we use a private selection mechanism to find
a small number of additional queries on which our current
synthetic dataset performs poorly; we answer those queries,
find a new synthetic dataset via our continuous projection,
and then repeat. If the queries we have answered are highly
accurate, then we are often able to find synthetic data rep-
resenting the original data well after only having explicitly
answered a very small number of them (i.e., we generalize
well to new queries). This forms a virtuous cycle, because
if we only need to explicitly answer a very small number
of queries, we can answer them highly accurately with our
privacy budget. By taking our relaxed data domain to be
the set of probability distributions over one-hot encodings
of the original data domain, we can finally apply random-
ized rounding to output a synthetic dataset in the original
schema.

We evaluate our algorithm on several datasets, comparing
it to two state-of-the-art algorithms from the literature. A

key advantage of our algorithm is that we can scale to large
query workloads (in our experiments we answer roughly
20 million queries on some datasets and do not hit com-
putational bottlenecks). We outperform the state of the art
algorithm FEM (“Follow-the-Perturbed-Leader with Expo-
nential Mechanism”) from (Vietri et al., 2020), which is
one of the few previous techniques able to scale to large
workloads. We also compare to algorithms that are unable
to scale to large workloads, comparing to one of the state of
the art methods, optimized variants of the HDMM (“High
Dimensional Matrix Mechanism”) from (McKenna et al.,
2019). When run on a workload of roughly 65 thousand
queries provided by the authors of (McKenna et al., 2019),
HDMM outperforms our algorithm. The result is an algo-
rithm that we believe to be state of the art for large query
workloads, albeit one that can be outperformed for smaller
workloads.

1.2. Additional Related Work

Differential privacy offers a formal semantics for data pri-
vacy and was introduced by (Dwork et al., 2006b). The
differential privacy literature is far too large to survey here;
see (Dwork & Roth, 2014) for a textbook introduction.

The problem of answering large numbers of queries on a
private dataset (often via synthetic data generation) dates
back to (Blum et al., 2008). A line of early theoretical work
(Blum et al., 2008; Roth & Roughgarden, 2010; Hardt &
Rothblum, 2010; Gupta et al., 2012; Nikolov et al., 2013) es-
tablished statistical rates for answering very general classes
of queries, showing that it is possible in principle (i.e., ig-
noring computation) to provide answers to exponentially
many queries in the size of the dataset. This line of work
establishes statistically optimal rates for the problem (i.e.,
matching statistical lower bounds), but provides algorithms
that have running time that is generally exponential in the
data dimension, and hence impractical for even moderately
high dimensional data. Moreover, this exponential running
time is known to be necessary in the worst case (Dwork
et al., 2009; Ullman & Vadhan, 2011; Ullman, 2016). As
a result, a line of work has emerged that tries to avoid this
exponential running time in practice. The “Multiplicative
Weights Exponential Mechanism” (Hardt et al., 2012) uses
optimizations to avoid exponentially large representations
when the query class does not require it. Dwork, Nikolov,
and Talwar give a theoretical analysis of a convex relax-
ation of the projection mechanism that can answer k-way
marginals in time polynomial in d* — albeit with accu-
racy that is sub-optimal by a factor of d*/? (Dwork et al.,
2015).“Dual Query” (Gaboardi et al., 2014) used a dual
representation of the optimization problem implicitly solved
by (Roth & Roughgarden, 2010; Hardt & Rothblum, 2010;
Hardt et al., 2012) to trade off the need to manipulate expo-
nentially large state with the need to solve concisely defined
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but NP-hard integer programs. This was an “oracle effi-
cient” algorithm. The theory of oracle efficient synthetic
data release was further developed in (Neel et al., 2019),
and (Vietri et al., 2020) give further improvements on oracle
efficient algorithms in this dual representation, and promis-
ing experimental results. We compare against the algorithm
from (Vietri et al., 2020) in our empirical results. We re-
mark that marginal queries (the focus of our experimental
evaluation) have been considered a canonical special case of
the general query release problem, and the explicit focus of
a long line of work (Barak et al., 2007; Thaler et al., 2012;
Cormode et al., 2018; Chandrasekaran et al., 2014; Gupta
etal., 2013).

A parallel line of work on matrix mechanisms focused on
optimizing error within a restricted class of mechanisms.
Informally speaking, this class answers a specially chosen
set of queries explicitly with simple perturbation, and then
deduces the answers to other queries by taking linear com-
binations of those that were explicitly answered. One can
optimize the error of this approach by optimizing over the
set of queries that are explicitly answered (Li et al., 2015).
Doing this exactly is also intractable, because it requires
manipulating matrices that are exponential in the data dimen-
sion. This line of work too has seen heuristic optimizations,
and the “high dimensional matrix mechanism” (McKenna
et al., 2018) together with further optimizations (McKenna
et al., 2019) is able to scale to higher dimensional data and
larger collections of queries — although to date the size of
the query classes that these algorithms can answer is smaller
by several orders of magnitude compared to our algorithm
and others in the oracle efficient line of work.

Finally, there is a line of work that has taken modern tech-
niques for distribution learning (GANs, VAEs, etc.) and has
made them differentially private, generally by training using
private variants of stochastic gradient descent (Beaulieu-
Jones et al., 2019; Jordon et al., 2018; Torkzadehmahani
et al., 2019; Neunhoeffer et al., 2020; Takagi et al., 2020).
This line of work has shown some promise for image data
as measured by visual fidelity, and for limited kinds of
downstream machine learning tasks — but generally has
not shown promising results for enforcing consistency with
simple classes of statistics like marginal queries. As a result
we do not compare to approaches from this line of work.

2. Preliminaries
2.1. Statistical Queries and Synthetic Data

Let X be a data domain. In this paper, we will focus on
data points containing d categorical features: i.e. X =
X x ... x Xy, where each Xj is a set of ¢; categories. A
dataset (which we will denote by D) consists of a multiset
of n points from X: D € A™.

Definition 2.1 (Statistical Query (Kearns, 1998)). A statis-
tical query (also known as a linear query or counting query)
is defined by a function ¢; : X — [0,1]. Given a dataset
D, we will abuse notation and write ¢;(D) to denote the
average value of the function ¢; on D:

(D)=~ 3 ai)

zeD

Given a collection of m statistical queries {g; }™, we write
q(D) € [0,1]™ to denote the vector of values ¢(D) =

(1(D), ..., qm(D)).

An important type of statistical query is a k-way marginal,
which counts the number of data points x € D that have a
particular realization of feature values for some subset of &
features.'

Definition 2.2. A k-way marginal query is defined by a
subset S C [d] of |:S| = k features, together with a particular
value for each of the features y € [[,.g &i. Given such
apair (S,y), let X(S,y) ={xr € X : 2, = y; Vi € S}
denote the set of points that match the feature value y; for
each of the k features in S. The corresponding statistical
query ¢s,y is defined as:

qsy(r) = 1(z € X(5,y))

Observe that for each collection of features (marginal) S,
there are [ [, 4 [X;| many queries.

Given a set of m statistical queries ¢, we will be interested in
vectors of answers a’ € [0, 1] that represent their answers
on D accurately:

Definition 2.3. Given a dataset D, a collection of m statis-
tical queries represented as ¢ : X™ — [0, 1]™, and a vector
of estimated answers o’ € [0, 1]™, we say that a’ has ¢, or
max error « if max;e () [¢:(D) — aj| < .

In this paper we will represent vectors of estimated answers
a’ implicitly using some data structure D’ on which we can
evaluate queries, and will write ¢(D’) for o’. If D' € X*,
then we refer to D’ as a synthetic dataset — but we will also
make use of D’ lying in continuous relaxations of X (and
will define how query evaluation applies to such “relaxed
datasets”).

2.2. Differential Privacy

Two datasets D, D’ € X™ are said to be neighboring if they
differ in at most one data point. We will be interested in
randomized algorithms A : X™ — R (where R can be an
arbitrary range).

"We define marginals for datasets with discrete features. In our
experimental results we encode continuous features as discrete by
standard binning techniques.
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Definition 2.4 (Differential Privacy (Dwork et al., 2006b;a)).
A randomized algorithm A : X™ — Ris (e, ¢) differentially
private if for all pairs of neighboring datasets D, D’ € X"
and for all measurable S C R:

Pr[A(D) € S] < exp(e) Pr[A(D’) € S] +6.
If § = 0 we say that A is e-differentially private.

Differential privacy is not convenient for tightly handling
the degradation of parameters under composition, and so as
a tool for our analysis, we use the related notion of (zero)
Concentrated Differential Privacy:

Definition 2.5 (Zero Concentrated Differential Privacy (Bun
& Steinke, 2016)). An algorithm A : X" — R satisfies
p-zero Concentrated Differential Privacy (zCDP) if for all
pairs of neighboring datasets D, D’ € X™, and for all @ €
(0, 00):

Do (A(D), A(D")) < pa

where D, (A(D), A(D’)) denotes the a-Renyi divergence
between the distributions A(D) and A(D").

zCDP enjoys clean composition and postprocessing proper-
ties:

Lemma 2.6 (Composition (Bun & Steinke, 2016)). Let
A+ X" — Ry be p1-zCDP. Let A5 : X™ X Ry — Rs
be such that As(+, ) is p2-zCDP for every » € R;. Then
the algorithm A(D) that computes 1 = A;(D), ro =
Ao (D, r1) and outputs (r, r2) satisfies (p1 + p2)-zCDP.

Lemma 2.7 (Post Processing (Bun & Steinke, 2016)). Let
A: X" — Ry be p-zCDP, and let f : Ry — R5 be an
arbitrary randomized mapping. Then f o A is also p-zCDP.

Together, these lemmas mean that we can construct zCDP
mechanisms by modularly combining zCDP sub-routines.
Finally, we can relate differential privacy with zCDP:

Lemma 2.8 (Conversions (Bun & Steinke, 2016)).

1. If A s e-differentially private, it satisfies (5€*)-zCDP.

2. If A is p-zCDP, then for any § > 0, it satisfies (p +

24/plog(1/9), d)-differential privacy.

We will make use of two basic primitives from differential
privacy, which we introduce here in the context of statistical
queries. The first is the Gaussian mechanism.

Definition 2.9 (Gaussian Mechanism). The Gaussian mech-
anism G(D, q;, p) takes as input a dataset D € X", a
statistical query ¢;, and a zCDP parameter p. It outputs
a; = q;(D) + Z, where Z ~ N(0,0?), where N(0,0?%)

is the Gaussian distribution with mean 0 and variance
o2 = 1
— 2n2p-°

Lemma 2.10 (Bun & Steinke, 2016)). For any statistical
query ¢; and parameter p > 0, the Gaussian mechanism
G(-, g, p) satisfies p-zCDP.

The second is a simple private “selection” mechanism called
report noisy max — we define a special case here, tailored
to our use of it.

Definition 2.11 (Report Noisy Max With Gumbel Noise).
The “Report Noisy Max” mechanism RNM (D, q,a, p)
takes as input a dataset D € A", a vector of m statis-
tical queries g, a vector of m conjectured query answers
a, and a zCDP parameter p. It outputs the index of the
query with highest noisy error estimate. Specifically, it out-
puts i* = argmax;cpn,)(|¢:(D) — a;| + Z;) where each
Z; ~ Gumbel (1/y/2pn).

Lemma 2.12. For any vector of statistical queries ¢, vec-

tor of conjectured answers a, and zCDP parameter p,
RNM(-,q,a, p) satisfies p-zCDP.

Proof. The report noisy max mechanism with Gumbel noise
is equivalent to the exponential mechanism for sensitivity
1/n queries, and hence satisfies the bounded range property
as defined in (Durfee & Rogers, 2019). Lemma 3.2 of
(Cesar & Rogers, 2021) converts bounded range guarantees
to zCDP guarantees, from which the claim follows. O

3. Relaxing the Projection Mechanism

The projection mechanism of (Nikolov et al., 2013) can be
described simply in our language. Given a collection of m
statistical queries ¢ and zCDP parameter p, it consists of
two steps:

1. For each 7, evaluate ¢; on D using the Gaussian mech-
anism: a; = G(D, q;, p/m).

2. Find the synthetic dataset’ D’ whose query val-
ues are closest to @ in ¢, norm — i.e., let D/ =
argminp e x ||g(D’) — dll2.

The output of the mechanism is the synthetic dataset D’,
which implicitly encodes the answer vector ' = ¢(D’).
Because the perturbation in Step 1 is Gaussian, and the
projection is with respect to the ¢ norm, D’ is the maxi-
mum likelihood estimator for the dataset D given the noisy
statistics a. The projection also serves to enforce consis-
tency constraints across all query answers, which perhaps
counter-intuitively, is accuracy-improving. For intuition, the

*In fact, in (Nikolov et al., 2013), the projection is onto a set of
datasets that allows datapoints to have positive or negative weights
— but their analysis also applies to projections onto the set of
synthetic datasets in our sense. A statement of this can be found
as Lemma 5.3 in (Btasiok et al., 2019).
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reader can consider the case in which all queries g; are iden-
tical: in this case, the scale of the initial Gaussian noise is
Q(y/m/n), which is sub-optimal, because the single query
of interest could have been privately answered with noise
scaling only as O(1/n). But the effect of the projection
will be similar to averaging all of the perturbed answers
a;, because ¢;(D’) will be constrained to take a fixed value
across all ¢ (since the queries are identical), and the mean
of a vector of noisy estimates minimizes the Euclidean dis-
tance to those estimates. This has the effect of averaging
out much of the noise, recovering error O(1/n). The pro-
jection mechanism is easily seen to be p-zCDP — the m
applications of (p/m)-zCDP instantiations of the Gaussian
mechanism in Step 1 compose to satisfy p-zCDP by the
composition guarantee of zZCDP (Lemma 2.6), and Step 2 is
a post-processing operation, and so by Lemma 2.7 does not
increase the privacy cost. This mechanism is nearly optimal
amongst the class of all differentially private mechanisms,
as measured by /5 error, in the worst case over the choice of
statistical queries (Nikolov et al., 2013). Unfortunately, Step
2 is in general an intractable computation, since it is a mini-
mization of a non-convex and non-differentiable objective
over an exponentially large discrete space. The first idea that
goes into our algorithm (Algorithm 1) is to relax the space
of datasets X" to be a continuous space, and to generalize
the statistical queries g; to be differentiable over this space.
Doing so allows us to apply powerful GPU-accelerated tools
for differentiable optimization to the projection step 2.

From Categorical to Real Valued Features Our first
step is to embed categorical features into binary features
using a one-hot encoding. This corresponds to replac-
ing each categorical feature X; with ¢; binary features
Xl x ... x Xl = {0,1}%, for each + € X. Exactly
one of these new ¢; binary features corresponding to cat-
egorical feature 7 is set to 1 for any particular data point
z € X: If z; = v; for some v; € X;, then we set X/ =1
and X7 = 0 forall j/ # j. Letd = ", t; be the di-
mension of a feature vector that has been encoded using
this one-hot encoding. Under this encoding, the datapoints
x are embedded in the binary feature space {0,1}%. We
will aim to construct synthetic data that lies in a continu-
ous relaxation of this binary feature space. For example,
choosing X" = |0, l}d/ is natural. In our experiments, we
choose X" = [—1,1]%, which empirically leads to an eas-
ier optimization problem. In Section 4, we discuss a more
structured projection mechanism that preserves the original
dataset schema.

Let h : X — {0,1}% represent the function that maps a
x € X to its one-hot encoding. We abuse notation and
for a dataset D € X", write h(D) to denote the one-hot
encoding of every x € D.

From Discrete to Differentiable Queries Consider a
marginal query gg, : X — {0, 1} defined by some S C [d]
andy € [[,.g Ai. Suchaquery can be evaluated on a vector
of categorical features x € X in our original domain. Our
goal is to construct an equivalent extended differentiable
query 4s : X" — R that has two properties:

Definition 3.1 (Equivalent Extended Differentiable Query).
Given a statistical query ¢; : X — [0,1], we say that
g; + X" — R is an extended differentiable query that is
equivalent to g; if it satisfies the following two properties:

1. g; is differentiable over X" — i.e. for every x € A",
Vg;(x) is defined, and

2. §; agrees with g; on every feature vector that results
from a one-hot encoding. In other words, for every

x € X: qi(x) = ¢i(h(x)).

We will want to give equivalent extended differentiable
queries for the class of k-way marginal queries. Towards
this end, we define a product query:

Definition 3.2. Given a subset of features T' C [d'], the
product query gr : X" — R is defined as: qp(z) =

[Lier i

By construction, product queries satisfy the first require-
ment for being extended differentiable queries: they are
defined over the entire relaxed feature space A", and are
differentiable (since they are monomials over a real valued
vector space). It remains to observe that for every marginal
query ¢s,,, there is an equivalent product query gg,, that
takes value gg,, () on the one-hot encoding h(x) of « for
every x.

Lemma 3.3. Every k-way marginal query has an equiva-
lent extended differentiable query in the class of product
queries. In other words, for every k-way marginal query
gs,y : X" — {0, 1}, there is a corresponding product query
ds,y = qr(y) : X" — R with |T| = k such that for every
x € X: qs,y(z) = qgr(h(z)).

Proof. We construct 7" in the straightforward way: for every
1 € S, we include in T the coordinate corresponding to
y; € X;. Now consider any « such that ¢g,(z) = 1. It
must be that for every i € S, z; = y;. By construction, the
product g7 (h(z)) = [[ ;e h(z); = 1 because all terms in
the product evaluate to 1. Similarly, if g, (x) = 0, then it
must be that for at least one coordinate j € T', h(x); = 0,
and so gr(h(z)) = [[;er M(z); = 0. O

4. The Relaxed Adaptive Projection (RAP)
Mechanism

We here introduce the ‘“Relaxed Adaptive Projection”
(RAP) mechanism (Algorithm 2), which has three hyper-
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parameters: the number of adaptive rounds T', the number
of queries per round K, and the size of the (relaxed) syn-
thetic dataset n’. In the simplest case, when T' = 1 and
K = m, we recover the natural relaxation of the projection
mechanism:

1. We evaluate each query ¢; € () on D using the Gaus-
sian mechanism to obtain a noisy answer a;, and

2. Find a relaxed synthetic dataset D’ € X" whose equiv-
alent extended differentiable query values are closest to
ain € norm: D' = argminp, ¢ xrynr [[G(D") — a2

Because step 2 is now optimizing a continuous, differen-
tiable function over a continuous space (of dimension d’ - n’,
we can use existing tool kits for performing the optimization
— for example, we can use auto-differentiation tools, and
optimizers like Adam (Kingma & Ba, 2015). (Recall that
the projection is a post-processing of the Gaussian mech-
anism, and so the privacy properties of the algorithm are
independent of our choice of optimizer). Here n’ is a hyper-
parameter that we can choose to trade off the expressivity of
the synthetic data with the running-time of the optimization:
If we choose n’ = n, then we are assured that it is possible
to express D exactly in our relaxed domain: as we choose
smaller values of n’, we introduce a source of representation
error, but decrease the dimensionality of the optimization
problem in our projection step, and hence improve the run-
time of the algorithm. In this simple case, we can recover
an accuracy theorem by leveraging the results of (Nikolov
etal., 2013):

Theorem 4.1. Fix privacy parameters €, > 0, a synthetic
dataset size v/, and any set of m k-way product queries q.
If the minimization in the projection step is solved exactly,
then the average error for the RAP mechanism when T' = 1
and K = m can be bounded as:

VS a0) — a0 <

(d'(logk +logn’) 4+ log(1/8) In(1/8))/*  /logk
0] +
VEN vn!
with probability 1 — 3 over the realization of the Gaussian
noise.

See Appendix A for proof.

This is an “oracle efficient” accuracy theorem in the style of
(Gaboardi et al., 2014; Vietri et al., 2020; Neel et al., 2020)
in the sense that it assumes that our heuristic optimization
succeeds (note that this assumption is not needed for the pri-
vacy of our algorithm, which we establish in Theorem 4.2).
Compared to the accuracy theorem for the FEM algorithm
proven in (Vietri et al., 2020), our theorem improves by a
factor of V/d'.

In the general case, our algorithm runs in 7" rounds: After
each round ¢, we have answered some subset of the queries
Qs C @, and perform a projection only with respect to the
queries in Qg for which we have estimates, obtaining an
intermediate relaxed synthetic dataset D;. At the next round,
we augment Qg with K additional queries ¢; from Q \ Qg
chosen (using report noisy max) to maximize the disparity
lgi(D}) — q:(D)]. We then repeat the projection. In total,
this algorithm only explicitly answers 7" - K queries, which
might be < m. But by selectively answering queries for
which the consistency constraints imposed by the projection
with respect to previous queries have not correctly fixed, we
aim to expend our privacy budget more wisely. Adaptively
answering a small number of “hard” queries has its roots in
a long theoretical line of work (Roth & Roughgarden, 2010;
Hardt & Rothblum, 2010; Gupta et al., 2012).

Algorithm 1 Relaxed Projection (RP)

Input: A vector of differentiable queries ¢ : X" — R™,
a vector of target answers a € Rm/, and an initial dataset
D/ c (Xr)n'.

Use any differentiable optimization technique (Stochastic
Gradient Descent, Adam, etc.) to attempt to find:

min_|lg(D") - all3

Dg = arg
D/E(Xr)n’

Output Dg.

Theorem 4.2. For any query class @), any set of param-
eters K, T,n/, and any privacy parameters ¢,5 > 0, the
RAP mechanism RAP(-,Q, K, T,n’,¢,0) (Algorithm 2) is
(¢, 0)-differentially private.

See Appendix B for proof.

Randomized Rounding to Output a Synthetic Dataset
We use the SparseMax (Martins & Astudillo, 2016) trans-
formation to generate relaxed synthetic data in which each
set of one-hot columns, corresponding to the original fea-
tures, is normalized to a (sparse) probability distribution.
More specifically, after each step of the optimization tech-
nique in Algorithm. 1, we apply SparseMax independently
to each set of encoded columns in the synthetic dataset Dg.
Randomized rounding (i.e. for each feature independently,
selecting a one-hot encoding with probability proportional
to its probability in the relaxed synthetic data) can then
be applied to produce a synthetic dataset consistent with
the original schema. This preserves the expected value of
marginal queries, and can preserve their values exactly in
the limit as we take multiple samples. As we show in our
experiments, preserving the worst case error over many
marginals requires only moderate oversampling in practice
(5 samples per data point).
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Algorithm 2 Relaxed Adaptive Projection (RAP)

Input: A dataset D, a collection of m statistical queries
@, a “queries per round” parameter K < m, a “number
of iterations” parameter T' < m/K, a synthetic dataset
size n’, and differential privacy parameters ¢, 0.

Let p be such that:

e =p+2+/plog(1/))

if T' = 1 then
fori = 1tomdo
Leta; = G(D, qi, p/m).
end for
Randomly initialize D’ € (X")" .
Output D' = RP(q,a,D’).
else
Let Qs = () and D}, € (X")" be an arbitrary initial-
ization.
fort=1to T do
for k = 1to K do
Define ¢2\95 (z) = (¢;(x) : ¢; € Q\ Qs) where
g; 1s an equivalent extended differentiable query
for ¢;.

Letq; = RNM(D,§\?%,G9\95(D}_y), o ).

Let Qs = Qs U {qi}.
Leta; = G(D, i, 577 )-
end for
Define ¢95 (z) = (¢;(z) : ¢ € Qs) and a = {a; :
q; € Qs} where ¢; is an equivalent extended differ-
entiable query for ¢;. Let D} = RP(q%s,a,D,_,).
end for
Output D..
end if

5. Empirical Evaluation
5.1. Implementation and Hyperparameters

We implement® Algorithm 2 in Python (Van Rossum &
Drake, 2009), using the JAX library (Bradbury et al.,
2018) for auto-differentiation of queries and the Adam op-
timizer (Kingma & Ba, 2015) (with learning rate 0.001)
for the call to RP (Algorithm 1). For each call to RP, we
do early stopping if the relative improvement on the loss
function between consecutive Adam steps is less than 107,
The number of maximum Adam steps per RP round is set to
5000. Fig. 1 contains a Jax code snippet, which computes
3-way product queries on a dataset D. A benefit of using
JAX (or other packages with autodifferentiation capabilities)
is that to instantiate the algorithm for a new query class, all
that is required is to write a new python function which
computes queries in the class — we do not need to perform

3 github.com/amazon-research/relaxed-adaptive-projection

import jax.numpy as np
def threeway_marginals(D):
return np.einsum( ’ij ,ik ,il —>jkl’,
D)/D.shape[0]

D, D,

Figure 1. Python function used to compute 3-way product queries

any other reasoning about the class. In contrast, approaches
like (Gaboardi et al., 2014; Vietri et al., 2020) require de-
riving an integer program to optimize over each new class
of interest, and approaches like (McKenna et al., 2019) re-
quire performing an expensive optimization over each new
workload of interest. This makes our method more easily
extensible.

JAX also has the advantages of being open source and able
to take advantage of GPU acceleration. We run our ex-
periments for Algorithm 2 on an EC2 p2.xlarge instance
(1 GPU, 4 CPUs, 61 GB RAM). For FEM we use the
code from the authors of (Vietri et al., 2020) available
athttps://github.com/giusevtr/fem, using the
hyperparameters given in their tables 2 and 3 for the exper-
imental results we report in Figures 2 and 3, respectively.
Their code requires the Gurobi integer program solver; we
were able to obtain a license to Gurobi for a personal com-
puter, but not for EC2 instances, and so we run FEM on
a 2019 16” MacBook Pro (6 CPUs, 16GB RAM) (Gurobi
does not support GPU acceleration) — as a result we do not
report timing comparisons. We remark that an advantage of
our approach is that it can leverage the robust open-source
tooling (like JAX and Adam) that has been developed for
deep learning, to allow us to easily take advantage of large-
scale distributed GPU accelerated computation.

For HDMM+LSS and HDMM+PGM implementations, we
used code provided by the authors of (McKenna et al., 2019)
which was hard-coded with a query strategy for a particular
set of 62876 marginal queries on the Adult dataset, which
we also run on a MacBook Pro.

For most experiments, we set the size of the synthetic data
n' = 1000 — significantly smaller than n for both of our
datasets (see Table 1). See Appendix C for an investiga-
tion of performance as a function of n’. For the remaining
hyperparameters K and 7', we optimize over a small grid
of values (see Table 2) and report the combination with
the smallest error. This is also how error is reported for
FEM. For all experiments we optimize over X" = [—1,1]%,
which empirically had better convergence rates compared
to using X” = [0, 1] — likely because gradients of our
queries vanish at 0.


https://www.github.com/amazon-research/relaxed-adaptive-projection
https://github.com/giusevtr/fem

Differentially Private Query Release Through Adaptive Projection

ADULT: 64 3-way marginals LOANS: 64 3-way marginals

Dataset Records Features Transformed Binary Featurec
ADULT 48842 15 588
LOANS 42535 48 4427

Table 1. Datasets. Each dataset starts with the given number of
original (categorical and real valued) features. After our transfor-
mation, it is encoded as a dataset with a larger number of binary
features.

Parameter Description Values
K Queries perround 510 25 50 100
T Number of iterations 25 10 25 50

Table 2. RAP hyperparameters tested in our experiments

5.2. Selecting Marginals

For our main set of experiments comparing to the FEM
algorithm of (Vietri et al., 2020), we mirror their experimen-
tal design in (Vietri et al., 2020), and given k, we select a
number of marginals S (i.e., subsets of categorical features),
referred to as the workload, at random, and then enumerate
all queries consistent with the selected marginals (i.e., we
enumerate all y € [] scs Xi). For each experiment, we fix
the query selection process and random seed so that both
algorithms in our comparisons are evaluated on exactly the
same set of queries. See Fig. 7 in Appendix C for the total
number of selected queries across different workloads on
both of our datasets, which vary in a range between 10°
and 108. For our comparison to the HDMM variants of
(McKenna et al., 2019), we compare on the particular set of
62876 3-way marginal queries on Adult for which the hard-
coded query strategy in their provided code is optimized
on.

5.3. Experimental Results

We evaluate both our algorithm and FEM on the two datasets
used by (Vietri et al., 2020) in their evaluation: ADULT and
LOANS (Dua & Graff, 2017).

Just as in (Vietri et al., 2020), both datasets are transformed
so that all features are categorical — real valued features
are first bucketed into a finite number of categories. The al-
gorithms are then run on a one-hot encoding of the discrete
features, as we described in Section 3. To ensure consis-
tency, we use the pre-processed data exactly as it appears
in their repository for (Vietri et al., 2020). See Table 1 for a
summary of the datasets.

‘We mirror the evaluation in (Vietri et al., 2020) and focus
our experiments comparing to FEM on answering 3-way
and 5-way marginals.

We also compare to the High Dimensional Matrix Mecha-
nism (HDMM) with Local Least Squares (HDMM+LLS)
and Probabilistic Graphical Model (HDMM+PGM) infer-
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Figure 2. Max-error for 3 and 5-way marginal queries on different
privacy levels. The number of marginals is fixed at 64.

ence from (McKenna et al., 2019), but these mechanisms
do not scale to large workloads, and the existing implemen-
tations are hard-coded with optimizations for a fixed set of
queries on Adult. Hence in our comparison to HDMM+LSS
and HDMM+PGM, we can only run these algorithms on
the fixed set of 62876 3-way marginals defined on the Adult
dataset that the code supports.

We use the maximum error between answers to queries on
the synthetic data and the correct answers on the real data
across queries (max; |q;(D’) — ¢;(D)|) as a performance
measure. For calibration, we also report a naive baseline cor-
responding to the error obtained by answering every query
with “0”. Error above this naive baseline is uninteresting.
For all experiments, we fix the privacy parameter § to #,
where n is the number of records in the dataset, and vary ¢
as reported.

In Figs. 2-5(a) we show how our performance scales with the
privacy budget € for a fixed number of marginals. Figs. 3, 4
show our performance for a fixed privacy budget as we
increase the number of marginals being preserved.

We significantly outperform FEM in all comparisons con-
sidered, and performance is particularly strong in the im-
portant high-privacy and high workload regimes (i.e., when
€ is small and m is large). However, both HDMM+PGM
and HDMM+LLS outperform RAP in the small workload
regime in the comparison we are able to run.

Figure 5 (b) shows how randomized rounding, when applied
on the synthetic dataset generated by RAP and SparseMax,
affects the error on the marginals for different levels of over-
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Figure 3. Max error for increasing number of 3 and 5-way marginal
queries with e = 0.1
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Figure 4. Max error for increasing number of 3 and 5-way marginal
queries with e = 0.05

sampling. The error after randomly rounding each data point
5 times (obtaining a synthetic dataset of size n’ = 5, 000)
approaches the error before applying randomized rounding
and slowly converges for larger oversampling rates.

We also investigate the run-time and accuracy of our algo-
rithm as a function of the synthetic dataset size n’ — see
Figure 6, and Appendix C for more details. Here we note
two things: (i) We can take n’ quite small as a function of the
true dataset size n, until a certain point (below n’ = 1000)

ADULT: 15 3-way marginals ADULT: 64 3-way marginals (¢=0.1)

0.6 —— After rand. rounding
Before rand. rounding (\=1000)

5 N sseine 5 03
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Figure 5. (a):Max-error of HDMM variants and RAP for the set
of 15 3-way marginal queries on ADULT provided by (McKenna
et al., 2019) at different privacy levels. (b) Max Error of RAP
before and after randomized rounding with different levels of
oversampling.
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Figure 6. (a) Error and (b) run-time as a function of the synthetic
dataset size n/.

at which point error starts increasing, (ii) Run time also de-
creases with n/, until we take n’ quite small, at which point
the optimization problem appears to become more difficult.

Finally, as we have noted already, an advantage of our ap-
proach is its easy extensibility: to operate on a new query
class, it is sufficient to write the code to evaluate queries
in that class. To demonstrate this, in the Appendix we plot
results for a different query class: linear threshold functions.

6. Conclusion

We have presented a new, extensible method for privately
answering large numbers of statistical queries, and produc-
ing synthetic data consistent with those queries. Our method
relies on a continuous, differentiable relaxation of the pro-
jection mechanism, which allows us to use existing powerful
tooling developed for deep learning. We demonstrate on a
series of experiments that our method out-performs existing
techniques across a wide range of parameters in the large
workload regime.
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