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Abstract

We study the convergence rates of the EM
algorithm for learning two-component mixed
linear regression under all regimes of signal-to-
noise ratio (SNR). We resolve a long-standing
question that many recent results have at-
tempted to tackle: we completely charac-
terize the convergence behavior of EM, and
show that the EM algorithm achieves min-
imax optimal sample complexity under all
SNR regimes. In particular, when the SNR
is sufficiently large, the EM updates converge
to the true parameter 0* at the standard
parametric convergence rate O((d/n)'/?) af-
ter O(log(n/d)) iterations. In the regime
where the SNR is above O((d/n)'/*) and be-
low some constant, the EM iterates converge
to a O(SNR™!(d/n)'/?) neighborhood of the
true parameter, when the number of itera-
tions is of the order O(SNR™2log(n/d)). In
the low SNR regime where the SNR is be-
low O((d/n)'/*), we show that EM converges
to a O((d/n)'/*) neighborhood of the true
parameters, after O((n/d)'/?) iterations. No-
tably, these results are achieved under mild
conditions of either random initialization or
an efficiently computable local initialization.
By providing tight convergence guarantees
of the EM algorithm in middle-to-low SNR
regimes, we fill the remaining gap in the lit-
erature, and significantly, reveal that in low
SNR, EM changes rate, matching the n=1/4
rate of the MLE, a behavior that previous
work had been unable to show.
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1 INTRODUCTION

The expectation-maximization (EM) algorithm is a
general-purpose heuristic to compute a maximum-
likelihood estimator (MLE) for problems with missing
information (Dempster et al., 1997; Wu, 1983; Redner
and Walker, 1984). In general, computing the MLE
is intractable due to the non-concave nature of log-
likelihood functions in the presence of missing data.
The EM algorithm iteratively computes a tighter lower
bound on log-likelihood functions, with each iteration
no more complex than solving a maximum-likelihood
(ML) problem without missing data. Due to its sim-
plicity and broad success in practice, EM is one of the
most popular methods-of-choice in a variety of applica-
tions (Jordan and Xu, 1995; Ma et al., 2000; Li et al.,
2009; Chen and Li, 2009).

Recent years have witnessed remarkable progress in
establishing theory describing the non-asymptotic con-
vergence of EM to the true parameters on canonical
examples such as a mixture of Gaussian distributions
and mixed linear regression (see Prior Art below). In
such models, a key factor in the analysis is the sepa-
ration between components, or the “signal strength”.
Most prior work has studied strongly separated in-
stances (high SNR) and established linear convergence
of the EM algorithm with the standard parametric
statistical rate n~1/2. In contrast, the understanding
of the EM algorithm in the weakly separated settings
(low SNR), especially mixed linear regression, remains
incomplete.

Our contributions: In this paper, we aim to fill
the remaining gap in the literature with the mini-
max optimal sample complexity of the EM algorithm
for learning two-component mixed linear regression
in the weakly separated regime. In so doing, we pro-
vide a complete picture of the EM algorithm under
all signal-to-noise ratio (SNR) regimes for symmet-
ric two-component mixed linear regression, namely,
SN(=XT0%,(0%)%) + N(X 7%, (0*)?) where o* =1
is given and X follows the standard multivariate nor-
mal distribution in d dimensions. We define SNR as
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n = ||6*]] since o* = 1. Notably, our results are
obtained under mild conditions of either random ini-
tialization or an efficiently computable local initializa-
tion. While simplified, the model is complex enough
to capture the most interesting behaviors of the EM
algorithm for learning a mixed linear regression with
two components, and reveals statistical behaviors in the
low-to-middle SNR regimes that previous analysis had
missed. In summary, our contributions are as follows.

1. High-to-middle SNR regimes: when
(d/n)* < ||6*|] (up to some logarithmic
factor), the EM updates converges to 6* within a
neighborhood of O(max{1, ||6*||~'}(d/n)"/?) after
O(max{1, ||6*]| =2} log(n/d)) number of iterations.

2. Low SNR regime: when ||0*| < (d/n)'/* (up to
some logarithmic factor), the EM algorithm con-
verge to #* within a neighborhood of O((d/n)'/*)
when the number of iterations is of the order of

O((n/d)'/?).

3. Global Convergence: We demonstrate that EM
converges from any randomly initialized point with
high probability. Furthermore, we do not require
sample-splitting in our analysis.

While we discuss the tightness of our result in a great
detail in Section 2.3, we briefly explain the significance
of our results. We focus primarily on two aspects of
the EM algorithm: (i) statistical rate, and (ii) compu-
tational complexity. In the high SNR regime, we have
linear convergence to true parameters within /d/n rate
as noted previously in the literature. In contrast, in the
low SNR regime when [|0*|| < (d/n)/4, the statistical
rate is (d/n)'/*. We explain this transition in statistical
rate with a convergence property of the population EM
in the middle-to-low SNR regimes. The upper bound
given by EM matches the known lower bound for this
problem in all SNR regimes (Chen et al., 2014). For
the computational complexity, the number of iterations
increases quadratically in the inverse of SNR until SNR
reaches (d/n)'/*. Interestingly, the number of itera-
tions is naturally interpolated at SNR = (d/n)'/* from
16%]| =2 log(n/d) to \/n/d. More in-depth discussions
on the results (e.g., detailed comparison to previous
works, proof techniques we use, etc.) are provided in
Section 2.3.

1.1 Prior Art

While the classical results on the EM algorithm only
guaranteed asymptotic convergence to stationary points
(Wu, 1983), the seminal work (Balakrishnan et al.,
2017) proposed a general framework to study a non-
asymptotic convergence of the EM algorithm to true

parameters. Motivated by this work, there has been
a flurry of work studying the convergence of the EM
algorithm to the true parameters for various kinds of
regular mixture models (see e.g., (Yi et al., 2014, 2016;
Xu et al., 2016; Yan et al., 2017; Daskalakis et al., 2017;
Kwon and Caramanis, 2020b; Dwivedi et al., 2020b;
Kwon and Caramanis, 2020a)). Most of the work in
this line require strong separation compared to the
noise level, i.e., considers the high SNR regime. Using
this condition, it establishes linear convergence of EM
to parameter estimates that lie within (d/n)'/?-radius
around the true location parameters. In contrast, rela-
tively little understanding is available when different
components in a mixture model are weakly separated
(i.e., middle-to-low SNR). In particular, even for simple
settings of two-component mixed linear regression that
we consider in this work, our understanding on the EM
algorithm still remains incomplete, for as we show, not
only the techniques, but also the conclusions of past
analysis no longer hold in the weakly separated regime.

The first convergence guarantees for EM under mixed
linear regression was established in a noise-free set-
ting (Yi et al., 2014, 2016). Subsequent results suc-
ceeded in treating the noisy setting (see (Balakrishnan
et al., 2017)) for a mixture of two linear regressions,
when the the signal strength ||6*|| is significantly larger
than the noise variance o* (high SNR). Work in Kwon
and Caramanis (2020b) extended the results in Bal-
akrishnan et al. (2017) and Yi et al. (2016) to a more
general setting of learning a mixture of k-component
linear regressions when the SNR is Q(k). However, it
has not been obvious how to extend any of these results
to the weakly separated regimes.

Recently, Kwon et al. (2019) has established the global
convergence of the EM algorithm for learning a mixture
of two linear regressions in all SNR regimes. While
their result guarantees convergence of EM in all SNR
regimes, the characterization of this convergence falls
short in two aspects: (i) their analysis relies on the
sample-splitting, (ii) their result is sub-optimal in terms
of SNR in low SNR regime. In order to elaborate more
on the second aspect, the statistical rate in Kwon et al.
(2019) is given as O(n~5n~1/2) given that the sample
size n > 1% is sufficiently large. However, it is known
that in the limit setting of  — 0, the rate of MLE slows
down to n~1/* (Chen, 1995; Ho and Nguyen, 2016; Ho
et al., 2019). The result in Kwon et al. (2019) fails
to capture this important property in relation to EM,
and gives little insight on what happens when there
is a large overlap between components. Our results
tighten the sub-optimal analysis for middle SNR regime
in Kwon et al. (2019) and fill in the remaining gap in the
literature by providing a tight convergence guarantee
of the EM algorithm in low SNR regime.
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In a closely related problem of learning mixtures of
two Gaussians, Dwivedi et al. (2020a, 2018, 2020b)
recently studied an extreme case of the over-specified
mixture models, i.e., there is no separation between
two components. However, their analysis is restricted
to strictly over-specified settings, and it has not been
obvious to extend their result to weakly-separated mod-
els. In another recent work, Wu and Zhou (2019) has
studied the EM algorithm for learning a mixture of
two weakly-separated location Gaussians, establishing
a minimax rate of the EM algorithm after O(1/n/d) it-
erations in middle-to-low SNR regimes. However, their
result requires the initialization to be already within a
small Euclidean ball of (d/n)/4-radius, which is very
restrictive. Our result does not suffer from small initial-
ization issue as in Wu and Zhou (2019). Furthermore,
our proof strategy can be applied to resolve the open
issue with small initialization in Wu and Zhou (2019).

We note in passing that the problem of solving mixed
linear regressions is an interesting problem by itself.
It arises in a number of applications (De Veaux, 1989;
Griin et al., 2007), and has been extensively studied
with various algorithms proposed (see e.g., (Chaganty
and Liang, 2013; Chen et al., 2014; Sedghi et al., 2016;
Yi et al., 2016; Li and Liang, 2018; Chen et al., 2019;
Karmalkar et al., 2019; Raghavendra and Yau, 2020)).
The special case of a mixture of two-component linear
regressions is by now well understood (Yi et al., 2014;
Chen et al.; 2014; Kwon et al., 2019; Ghosh and Ram-
chandran, 2020). In this work, rather than solving a
mixed linear regression itself, we focus on the rigorous
study of the EM algorithm.

2 CONVERGENCE RATES OF EM

In this section, we first formulate symmetric mixed
linear regression with two components and EM updates
for this model in Section 2.1. Then, we state our main
results with the convergence behaviors of EM algorithm
under all regimes of SNR in Section 2.2. Then, we
provide a detailed discussion with the tightness of the
results in Section 2.3, and possible extensions to more
unknowns in Section 2.4.

2.1 Problem setup

We assume that the data (Xi,Y7),...,(X,,Y,) are
generated from a symmetric two-component mixed lin-
ear regression, whose density function has the following
form:

(0)"z,0%)

SFWl0) T w,0")) f(x), (1)

gtrue(xa y) :(%f(y| -

where ¢* = 1 is given and 6* is an unknown parame-
ter. Furthermore, we assume that f(z) is the density
of standard multivariate Gaussian distribution, i.e.,
X ~ N(0,1;). In order to estimate 6*, we fit the
data by using symmetric two-component mixed linear
regression, which is given by:

(2, :0) = (31| ~ 0" ,07)
510 0 F@) (@)

It is clear that gat(z,y;60%) = gtrue(z,y). A common
approach to obtain an estimator for 8* is by using max-
imum likelihood esimation (MLE). However, given that
the log-likelihood function of symmetric two-component
mixed linear regression is highly non-concave, the MLE
does not have a closed-form expression. EM is a popu-
lar iterative algorithm to approximate the MLE. Given
fitted model (2), simple algebra shows that the EM
update for # can be written as follows:

1 n
t+1 _ [ = x T
0., _<TLZX1XZ>

( Zt n(* XTot)nXi) )

where the hyperbolic function tanh(z) := (exp(z) —
exp(—x))/(exp(z) + exp(—z)) for all z € R. In order
to facilitate the ensuing argument, let us the denote
population and finite-sample EM operators by Eqns. 4
and 5, respectively, as given below:

-1

Mo (0) :=E[XY tanh(Y X ' 0)], (4)
(i)
X (711 > XY tanh(YiXiT9)> . (5

Mn,mlr(a)

Motivation from experiments: In Figure 1, we
present the statistical rate and optimization complexity
of EM algorithm under different regimes of SNR. We set
d = 5 and initialized the estimator in the neighborhood
of the true parameters such that 6° = 6*+ru, where r =
max{1,||#*]|} - 0.1 and w is a random unit vector. For
measuring the statistical rate, the EM algorithm runs
with different size of samples n € {128,180, 256, ...}
(approximately v/2 times increased) and the final error
is averaged over 5,000 independent runs. The stopping
criterion is the change in estimators being less than
0.0001 in I3 norm. In Figure 1 (a), we observe the
standard n~'/2 rate in the high SNR regime, and n~/*
rate in the low SNR regime. Interestingly, we can see a
clear transition in the statistical rate when SNR = 0.3
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as n increases. This explains how the low SNR regime
is defined ||6*|] < (d/n)'/*: the meaning of low SNR
depends on how many samples we have, not on the
absolute value that can be computed from a problem
instance.

We also look at the optimization complexity in Figure 1
(b, ¢). We run the EM algorithm with fixed sample size
n = 32768. Estimation error ||0! — 6*| in all iteration
steps are averaged over 5,000 independent runs. In the
high SNR regime, note that the y-axis is in log-scale
and we can see the linear convergence. In contrast, in
the middle-to-low SNR regimes, we can observe that
the convergence of the EM algorithm is no longer linear,
and significantly slowed down.

2.2 Main results

In this section, we state our main results with the con-
vergence behaviors of the EM algorithm under different
regimes of SNR. Our first result assumes a good initial-
ization and focuses on the statistical optimality of the
EM algorithm in the last iterations. We can use the
standard spectral method to get such a good initial-
ization (see Appendix F.1 for guarantees given by the
spectral initialization). Then, with a mild condition
on SNR and permission to use a simple variant of EM,
our second result shows that EM converges globally to
the true parameter with the same optimal statistical
rates.

Throughout the paper, we assume that n > Cd for
sufficiently large constant C' > 0. Our analysis is
divided into two cases when we are in the middle-high
SNR regimes and low SNR regime. We state our first
main theorem:

Theorem 1. (a) (Middle-High SNR regimes) Suppose
16%]] > Co(dlog®(n/d)/n)/* for some large universal
constant Cy > 0. In this regime, suppose we run the
EM algorithm starting from well-initialized 0° such that
162 > 0.9]16*|] and cos Z(6*,6%) > 0.95. Then, for
any 0 > 0 there exist universal constants C1,Coy > 0
such that the EM wupdates (3) give 6! for 0* which
satisfies

167, — 6% < Oy max{1, [|6"[| " }(dlog*(n]|6"(|/5) /n)" /2,
with probability at least 1 — & after t >
Comax{1, ||60*|| 72} log(n||0*||/d) iterations.

(b) (Low SNR regime) When |6 <

Co(dlog?(n/8)/n)Y/*, there exist wuniversal con-

stants C3,Cqy > 0 such that the EM updates (3)

initialized with |02 < 0.2 return 0! which satisfies
167, = 67| < Cs(dlog*(n/5)/n)"/*,

with probability at least 1 — & after t >

Cylog(log(n/d))y/n/(dlog®(n/d)) iterations.

The proof sketch of Theorem 1 is in Section 3 while
the full proof is in Appendix B. Interestingly, the up-
per bound given by Theorem 1 matches the known
lower bounds given for all SNR regimes in Chen et al.
(2014), and explains detailed behavior that interpolates
between different separation regimes. Note that, the
additional requirement [|%] > 0.9]|6*| under middle-
high SNR regimes is to prevent the analysis to become
over-complicated (see Appendix C.3 for the arguments
for starting from well-aligned small estimators). Fur-
thermore, the initialization condition [|%]| < 0.2 in the
low SNR regime is not restrictive. In Appendix C.1, we
demonstrate that when we initialize with large norm
such that [|#%] > 0.2, in a finite number of steps the
norm of EM updates becomes smaller than 0.2.

Next, we present our second result that does not rely
on the warm start, but requires slightly more involved
mechanisms. We call the following variant of EM as
“Easy-EM" operator (Kwon et al., 2019):

1 n
Measy(0) =~ > XiYitanh(Y;X,'0).  (6)
i=1

Note that the only difference is the absence of the
inverse of the sample covariance matrix. Our second
theorem guarantees the global convergence of the EM
algorithm with minimax optimality:

Theorem 2. Given C' > 0, suppose that ||0*| < C.
Let 60 be a randomly initialized vector in R? space such
that the direction of 0° is randomly sampled from a
uniform distribution on the unit sphere. The norm of
initial estimator can be any non-zero constant such that
1621 > c(dlog®(n/8)/n)'/* for some universal constant
c>0.

(a) In the middle-to-high SNR regimes, there exist
universal constants C1,Co,C3s > 0 such that when
Ci(dlog?®(n/8)/n)'/* < ||6*|| < C, with probability at
least 1 — &, we have

167, — 6"[| < Co max{1, [|6"[| " }(dlog*(n/6)/n)"/2,

after we first run the Fasy-EM algorithm (6)
for  Csmax{l,||0*|| 72} log(d) iterations, and
then run the standard EM algorithm (4) for
Csmax{1, ||60*|| 72} log(n/d) iterations.

(b) In the low SNR regime when |0%] <
C1(dlog?(n/8)/n)Y/*, there exist universal constants
Cy,C5 > 0 such that with probability at least 1 — 8, we
have

167, — 6°|| < Ca(dlog®(n/8)/n)'/*,

after we run either Easy-EM or standard EM for t >
Cs log(log(n/d))y/n/(dlog®(n/d)) iterations.
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Figure 1. Convergence behavior of the EM algorithm for the fitted model (1) when d = 5: (a) statistical rates of
EM iterates (||0, — 0*|| at the last iteration) in various SNRs (b) linear convergence in high SNR regime (c) slow

convergence in low SNR regime.

The proof sketch of Theorem 2 is in Section 3 while
the full proof is in Appendix C. A few comments are
in order. First, comparing to Theorem 1, we have an
additional assumption for ||8*|| being bounded. This is
required for a technical reason that arises from giving an
uniform control on the deviation of Easy-EM operator
in one direction when [|§*|| can be arbitrarily large (see
Remark 2 in Appendix C.2 for details). Second, in order
to correctly estimate how many iterations we must
run Easy-EM, we can check the value of % Z?zl Y2 —
1, since the expectation of this value is ||0*||?. We
note that Easy-EM is only introduced for a theoretical
justification, and in practice we can just run the EM
algorithm from a randomly initialized point. Finally,
our condition on the norm of initial estimator is to
ensure that the initial point is sufficiently far from
zero. In practice, we use any constant (1) for the
norm of initial estimator. This is in stark contrast to
the initialization of Wu and Zhou (2019) in which only
very small initialization of order ©((d/n)'/*) is allowed,
which goes to 0 as n — oo.

2.3 Tightness of the results

In this section, we discuss in detail the tightness of our
results in Theorem 1 and Theorem 2.

Tightness of the result in the high SNR regime:
In the high SNR regime, a minimax rate should guar-
antee exact recovery when the noise variance goes
to_zero. Our results obtain a statistical rate of

\/d log?(n||0*||/8)/n. Note that, since we have rescaled

to o* = 1, we should interpret the statistical rate of
EM algorithm in the original scale where it is trans-

lated to (o* log(l/a*))\/dlogz(nHQ*H/S)/n. Therefore,
we still guarantee the exact recovery as o* — 0. We
conjecture that a more careful and thorough analysis
can also resolve even the logarithmic dependency on
|16*]|, and leave it as future work. As mentioned earlier,

there has been much recent interest in establishing the
linear convergence and tight finite-sample error in high
SNR regime (Yi et al., 2014, 2016; Kwon et al., 2019;
Kwon and Caramanis, 2020b). While all previous re-
sults are also minimax optimal in all parameters (up
to logarithmic factors), as an artifact of their analysis,
their results rely on sample-splitting, and thus do not
in fact analyze the algorithm that is used in practice.
Our results remove this artifact.

A recent work in Ghosh and Ramchandran (2020) has
established a super-linear convergence of the EM algo-
rithm in the noiseless setting (a.k.a. Alternating Min-
imization). We conjecture that their result can be
extended to the noisy setting when SNR is high enough
(i.e., [|0*|| > 1). The following lemma on the popu-
lation EM operator (5) gives a hint for a super-linear
convergence in the high SNR regime:

Lemma 1. If Cy/log ||6*] < ||6 — 6*|| < ||6%||/10 for
sufficiently large constant C' > 0, then there exists a
constant ¢ < 10 such that

[ Mot (6) = 67 < |6 — 0712 /]]67 -

The proof of Lemma 1 is in Appendix F.2. This lemma
implies that until ||§ — 6*|| drops from O(]|6*|) to
O(y/log||6*]]), the population EM updates converge
in a super-linear rate. While interesting, we do not
pursue a further extension of super-linear convergence
to the noisy setting in this paper.

Tightness of the result in the middle-low SNR
regimes: As discussed in the introduction, Kwon
et al. (2019) has recently established a convergence of
the EM algorithm in SNR regimes for model (2). In
particular, according to the result in Kwon et al. (2019),
the EM algorithm can achieve arbitrary e accuracy if
the sample size n is large enough to compensate a
low SNR 7 := ||6*|/o*, i.e., n7%/e? < n. This sub-
optimal result is an artifact of the technical approach
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used to relate the population and finite-sample EM
operators. Specifically, the convergence rate of the
population EM operator is given by 1 — 2. The finite-
sample analysis then follows by analyzing the uniform
deviation of finite-sample operators from population
operators, which is in order of magnitude /d/n. In
order to guarantee the progress toward 6* in each step
as well as to control the accumulation of statistical
errors in all iterations, Kwon et al. (2019) required
the sample size n > =% per iteration. The sample-
splitting results in even worse total n > n~% sample
complexity in terms of SNR. Furthermore, nothing can
be explained when the sample size is less than the
threshold ~8. This calls for a more refined analysis of
the EM algorithm in middle-to-low SNR regimes.

In the paper, we adopt the localization argument used
in the recent works (Dwivedi et al., 2020a,b) where
the authors of these works established the convergence
behaviors of the EM algorithm under over-specified
Gaussian mixtures, namely, when there is no separation
of the true parameters. Unlike these previous studies,
our analysis is not restricted to strictly over-specified
instances, but spans all possible configurations of pa-
rameters. The core of our analysis has three parts: (i)
refined convergence rate of the population EM operator,
namely, the contraction coefficient of the population
EM operator is shown to be 1 —max{||6]|*> —n?,n?}, (ii)
multi-level application of uniform deviation of finite-
sample EM operators from the population EM opera-
tors that is proportional to ||6]|1/d/n, and (iii) localiza-
tion arguments applied to different levels of ||#]|. The
threshold that separates the middle-SNR and low-SNR
regimes can be naturally found at n? = \/d/n.

Global Convergence of (Easy) EM: Global con-
vergence of the EM algorithm for model (1) has been
established in Kwon et al. (2019) using the idea of
two-phase analysis where EM first converges in angle,
and then converges in I, norm. In the initial stage of
the EM iterations with a random initialization, Kwon
et al. (2019) proposed a simple variant of the EM
update (6) to encourage the boosting of angle from
cos Z(0%,6*) = O(1/V/d). Importantly, our result re-
moves the usage of sample-splitting in Kwon et al.
(2019) and tightens the sub-optimal statistical rate of
the EM algorithm in middle-to-low SNR regimes as in
Theorem 1.

In Wu and Zhou (2019), the authors employed a similar
idea of analyzing the growth of the signal strength in
the 6* direction for learning a two symmetric mixture of
Gaussian distributions. However, in general the value
itself in #* direction can indeed decrease if EM starts
from large initialization. Therefore, they restricted the
initialization to be within a very small radius of |69 || ~

(d/n)*/* in all SNR (separation) regimes. While it does
not degrade the overall computational complexity of the
finite-sample EM algorithm, the convergence guarantee
with such small initialization is not global in a true
sense. Theorem 2 resolves the open issue of small
initialization in Wu and Zhou (2019) by analyzing the
convergence in angle.

2.4 Towards unknown variance and weight

In this section, we discuss the statistical behavior of
the EM algorithm when either the variance ¢* =1 or
the mixing weight of the true density gy is unknown.

Unknown noise variance: We first discuss the case
when the variance o* of regression noise is unknown.
In this case, the EM updates for 6 and o are as follows:

-1

it = (1 ijxm;)
n “—
( Zta h < YiX/ 0, > Y-X-)
— 2
(G52 = = ZW (S IP O (7)

The EM update 6!+! in the unknown variance case
depends on ¢!, which is updated at each iteration of
the EM algorlthm. It is different from the update for
# in the known variance case in equation (3). There-
fore, the overall analysis of the EM algorithm in the
unknown variance case should be re-derived in the pop-
ulation level to get right contraction coefficients of the
population EM updates.

We would like to remark that the challenge with more
unknowns arises from the convergence analysis in the
population level, and the sample complexity analysis is
irrelevant to whether we have more unknowns or not.
In this section, we provide the statistical behavior of
the EM algorithm under the low SNR regime and leave
the complete analysis of the EM algorithm for future
work. The localization technique used in the low SNR
regime of known variance setting remains to be useful
for obtaining the convergence and statistical rates of
EM in the low SNR regime of unknown variance setting.
It leads to the following result with the EM iterates in
the low SNR regime.

Theorem 3. (Low SNR regime of unknown variance
case) There exist universal constants Cy, Cq,C2,C3 > 0
such that when ||6*|| < Co(dlog®(n/d)/n)/*, starting
from ||| < 0.2 and |(52)%—1| < 0.04, the EM updates
(7) return (6%, Gt) which satisfies

n

167, — 67|l < C1(dlog?(n/8)/n)"/*,
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(57,) = (0%)°] < Ca(dlog®(n/8)/n)"/?,

with probability at least 1 — & after t >

Cslog(log(n/d))y/n/(dlog?(n/8)) iterations.

Unlike in the case of Gaussian mixtures with unknown
variances (Dwivedi et al., 2020b), the statistical rate
of EM updates for 0 is (d/n)*/* for all d > 1. When
0* = 0, this coincides with the previous result on
the rate of maximum likelihood estimation for over-
specified Gaussian mixture of experts (Ho et al., 2019),
where it is shown that the MLE rate of estimating 6*
is n=1/* as long as the link functions are algebraically
independent, which is the case for the unknown variance
setting, and the number of components of Gaussian
mixtures of experts is over-specified. The proof of
Theorem 3 is given in Appendix F.3.

Unknown mixing weights: The extension to the
unknown mixing weight can be more challenging, since
the unbalanced mixing weight induces asymmetry in
the landscape of the log-likelihood function. The asym-
metry completely changes the population landscape
of two-component mixed linear regression (e.g., there
is a local maxima in the population log-likelihood for
a mixture of two Gaussian distributions, which is ab-
sent in the symmetric setting (Xu et al., 2018)). It
makes the analysis of the EM algorithm challenging
even in the two-component settings of mixed linear
regression. In high SNR regimes, we can avoid direct
analysis of the optimization landscape and still can
show the linear convergence of the EM iterates toward
true parameters (Kwon and Caramanis, 2020b). How-
ever, in middle-to-low SNR regimes, we cannot avoid
the analysis of complicated landscape. The extension
to unknown mixing weights is an interesting future
direction.

3 PROOF SKETCH

In this section, we provide proof sketches of key theo-
rems in the paper.

3.1 Proof Sketch of Theorem 1

We first give a proof sketch of Theorem 1. The full
proof of Theorem 1 is in Appendix B. We need the
following uniform deviation bound between sample and
population EM operators:

Lemma 2. Given the population and finite-sample EM
operators My,ir, My, mir in equations (5) and (4), for
any given r > 0, there exists a universal constant ¢ > 0
such that we have

P(sup | Mo, mir(8) — M (0)]] < cr dlogQ(n/é)/n>

[ol<r

>1-6. (8)

While the lemma is a straight-forward consequence
of Lemma 11 given in Appendix E, this is the first
key result to get a tight statistical rate. The proof of
Lemma 2 can be found in Appendix D.3.

High SNR regime: [|§*|| > C. The high-level proof
in the high SNR regime follows a specialized proof strat-
egy exploited in Kwon and Caramanis (2020b). The
core idea is that for high SNR, most “good" samples are
assigned correct (soft but almost hard) labels in E-step,
and the portion of “bad" samples is negligibly small.
Such an argument first appeared informally in Balakr-
ishnan et al. (2017), and then was formally organized
in Kwon and Caramanis (2020b,a) to establish a linear
convergence and tight statistical rate. The full proof
for the high SNR regime is given in Appendix B.1.

Middle SNR regime: Cy(dlog®(n/d)/n)'/* <
|16*]] < C. We consider two cases, when [|6*|| > 1
and ||6*|| < 1.

Case (i) 1 < ||¢*|| < C: Given the initialization
conditions in Theorem 1, we can show that

| Mo (6) — 67 < 0.9]16 — 6°].

Furthermore, from the uniform concentration bound
(cf. Lemma 11 in Appendix E), we have

| M, i (8) = Moty (0)| < \/ dlogQ(n/(S)/n

with probability at least 1 —§. Collecting these results,
we can check that

167, — 6"[1 S (0.9)" 16 — 6| + 1/ dlog®(n/5) /n.

Case (ii) Co(dlog®(n/d)/n)'/* < ||0*| < 1: In this
case, the result of Lemma 3 in Appendix B shows that

1Mt (0) = 0%[| < (1= O(07[*)) 10 = 07| (9)

As Lemma 2 and Corollary 2 in the Appendix make
precise, we can infer that in order for the EM algorithm
to make progress toward 6*, we need

1612116 = 671l 2 16l/d/n.

Intuitively, EM converges to 8* as long as such a re-
lation holds, and until 6 gets close enough to 6* such
that the above equation does not hold. In other words,
in the last iterations when ||8]| = ||0*||, we have

167112116 — 61l = 116%[1v/d/n,

which implies the statistical rate should be on the
order of [|0*||~ty/d/n. The full proof is given in Ap-
pendix B.2.
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Low SNR Regime: |[|0*| < Cy(dlog?®(n/s)/n)/4.
In this case, even the standard spectral methods would
not give a good initialization since the eigenspace is per-
turbed too much to be aligned with 6* (see Lemma 13
in Appendix F.1 for the guarantees given by spectral
methods). Instead, we assume the initial estimator to
be [|62]] < 0.2.

The core of idea of the low SNR regime is that EM
essentially cannot distinguish the cases between 8* = 0
and 0* # 0. Therefore, we aim to investigate 6|
instead of the estimation error ||§ —0*||. If we can show
that [|0%]| < ¢; - (d/n)*/*, then given the condition of
low SNR regime, we have ||0f, — 0*|| < ¢y - (d/n)'/*
where cq, co are some positive constants.

In the low SNR regime, there exist universal constants
¢, ¢y > 0 such that for ||0| < 0.2, we have

10111 — 41011 = cull6*[1*) < 1| M (0)
< (10111 = (161> + cullo™[1%).

The statistical fluctuation of the finite-sample EM op-
erator given in Lemma 2 shows that ||M, mi(6) —

M (9)|] < ¢ - |0]ly/dlog*(n/d)/n, for some univer-
sal constant c. It is now more clear to see that since
0%]|> < +\/d/n, the above statistical error will sub-
sume an extra O(]|0*]|?) term in the contraction rate
of the population EM operator. Therefore, the conver-
gence behaviors of the finite-sample EM operator are
essentially the same when 6* = 0 and 6* # 0.

The EM iterations stop improving the estimator when
the statistical error becomes larger than the amount
that the population EM can proceed:
10]|2 =~ 1/ dlog*(n/8)/n.

Therefore, the statistical rate of the EM algorithm is
achieved at ||0]| < (d/n)'/*. The rest of the proof in
the low SNR regime is a reminiscent of the localization
arguments used in Dwivedi et al. (2018, 2020b), and
can be found in Appendix B.3.

3.2 Proof Sketch of Theorem 2

The global convergence statement is subsumed into
Theorem 1 when the estimator 6 enters in the initial-
ization region that Theorem 1 requires. Therefore we
can focus on the iterations that 6 stays outside of the
initialization region. The key idea is to adopt the angle
convergence argument presented in Kwon et al. (2019).
Note that in low SNR regime, we do not need such an
involved argument since the initialization only requires
162]] < 0.2 (see Appendix C.1 for an argument why
this initialization is easy to satisfied). In middle SNR,
regime where (d/n)'/* < ||6*|| < 1, the key property is

the following angle inequality:
08 Z( My (0),0%) > (1 + ¢[|6*[|) cos £(6,0%),

for some universal constant ¢ > 0. We again see that
the increase rate is 1+ O(]|0*||?); however, the cosine
value is very small ©(1/+/d) at the initial stage. Then,
the second key step is to show that

€08 Z(Mequy(0) — My, (), 0%) < e5/Vd,

for sufficiently small e; < +/d/n. At a high level,
if it holds that c||6*||? cos Z(0,0*) > 2¢;/v/d, then
we can guarantee that cos Z(Meqsy(0),0%) > (1 +
c||0*]]?/2) cos £(6,6%). We can conclude that this is
true in the middle-SNR regime since ||6*||2 > (d/n)'/2.
The argument in high-SNR regime is similar to middle-
SNR regime. The formal proof is a bit more involved
since we need to ensure that the statistical error in
orthogonal directions does not dominate the angle (see
Appendix C.2 for more detail).

4 CONCLUSION

In the paper, we completely characterize the conver-
gence behavior of EM under all SNR regimes of symmet-
ric two-component mixed linear regression. We view
our results for this model as the first step towards a
comprehensive understanding of the EM algorithm for
learning weakly separated latent variable models. We
now discuss a few future directions naturally arise from
our work. First, in more general settings of weakly sep-
arated mixture models with & components, it is known
that the rate of MLE can be n=9(/%) in the worst
case (Heinrich and Kahn, 2018). Furthermore, EM is
known to suffer from very slow convergence in practice
for instances with large overlaps. It is an important
future direction to characterize the convergence behav-
ior of the EM algorithm in such settings. Second, our
results demonstrate that the EM algorithm has sub-
linear convergence to §* under middle and low SNR
regimes. It respectively leads to ||6*| =2 log(n/d) and
\/n/d number of iterations under middle-to-low SNR
regimes, which result in high computational complexity.
An important direction is to develop an alternative to
EM algorithm that can achieve much cheaper compu-
tational complexity and also obtain minimax optimal
sample complexity under all SNR regimes of mixed
linear regression. Finally, while we prove that the EM
algorithm achieves minimax optimal statistical conver-
gence rates for learning two-component mixed linear
regression, it is important to further develop uncer-
tainty quantification for the EM iteratates, such as
confidence intervals. It necessitates the future study on
the central limit theorem of the EM algorithm under
all regimes of SNR, which has remained a major open
problem in the literature.
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