Dual Learning: Theoretical Study and an Algorithmic Extension (Supplementary Document)

Appendix A. Derivation

We leverage the negative logarithmic probability to measure the differences between the original $x^{(2)}$ and the reconstructed one. Let $\mathcal{R}(x^{(2)})$ denote the event that after passing the loop $S_2 \to S_k \to S_k$ $S_1 \rightarrow S_2$, $x^{(2)}$ is reconstructed to $x^{(2)}$. We have that

$$
\ln \Pr(\mathcal{R}(x^{(2)})) = \sum_{x^{(k)} \in S_k} \sum_{x^{(1)} \in S_1} \ln \Pr(x^{(2)}, x^{(1)}, x^{(k)})
$$

starting from $x^{(2)}$, applied by $\theta_{2k}, \theta_{k1}, \theta_{12}$ sequentially)

$$
= \sum_{x^{(k)} \in S_k} \sum_{x^{(1)} \in S_1} \ln \left(\Pr(x^{(1)}, x^{(k)} | x^{(2)}; \theta_{2k}, \theta_{k1}) \cdot \Pr(x^{(2)} | x^{(1)}; \theta_{12}) \right)
$$
(1)
\n
$$
\geq \sum_{x^{(k)} \in S_k} \sum_{x^{(1)} \in S_1} \Pr(x^{(1)}, x^{(k)} | x^{(2)}; \theta_{2k}, \theta_{k1}) \cdot \ln \Pr(x^{(2)} | x^{(1)}; \theta_{12})
$$

\n
$$
= \sum_{x^{(k)} \in S_k} \sum_{x^{(1)} \in S_1} \Pr(x^{(k)} | x^{(2)}; \theta_{2k}, \theta_{k1}) \Pr(x^{(1)} | x^{(k)}, x^{(2)}; \theta_{2k}, \theta_{k1}) \cdot \ln \Pr(x^{(2)} | x^{(1)}; \theta_{12})
$$

\n
$$
= \sum_{x^{(k)} \in S_k} \sum_{x^{(1)} \in S_1} \Pr(x^{(k)} | x^{(2)}; \theta_{2k}) \Pr(x^{(1)} | x^{(k)}; \theta_{k1}) \cdot \ln \Pr(x^{(2)} | x^{(1)}; \theta_{12})
$$

\n
$$
= \mathbb{E}_{x^{(k)} \sim \Pr(\cdot | x^{(2)}; \theta_{2k})} \mathbb{E}_{x^{(1)} \sim \Pr(\cdot | x^{(k)}; \theta_{k1})} \ln \Pr(x^{(2)} | x^{(1)}; \theta_{12}).
$$
(3)

In Eqn.[\(1\)](#page-0-2), the first Pr represents the jointly probability that $x^{(2)}$ can be translated into $x^{(k)}$ with θ_{2k} , and the the obtained $x^{(k)}$ can be translated into $x^{(1)}$ with θ_{k1} ; the second Pr represents the probability that given $x^{(1)}$, it can be translated back to $x^{(2)}$ with θ_{12} .