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Abstract

A default assumption in many machine learning scenarios is that the training and test
samples are drawn from the same probability distribution. However, such an assumption
is often violated in the real world due to non-stationarity of the environment or bias in
sample selection. In this work, we consider a prevalent setting called covariate shift, where
the input distribution differs between the training and test stages while the conditional
distribution of the output given the input remains unchanged. Most of the existing methods
for covariate shift adaptation are two-step approaches, which first calculate the importance
weights and then conduct importance-weighted empirical risk minimization. In this paper,
we propose a novel one-step approach that jointly learns the predictive model and the
associated weights in one optimization by minimizing an upper bound of the test risk. We
theoretically analyze the proposed method and provide a generalization error bound. We
also empirically demonstrate the effectiveness of the proposed method.

Keywords: covariate shift adaptation, empirical risk minimization, alternating optimiza-
tion

1. Introduction

When developing algorithms of supervised learning, it is commonly assumed that samples
used for training and samples used for testing follow the same probability distribution
(Bishop, 1995; Duda et al., 2012; Hastie et al., 2009; Schölkopf and Smola, 2001; Vapnik,
1998; Wahba, 1990). However, this common assumption may not be fulfilled in many real-
world applications due to sample selection bias or non-stationarity of environments (Huang
et al., 2007; Quionero-Candela et al., 2009; Sugiyama and Kawanabe, 2012; Zadrozny, 2004).

Covariate shift, which was first introduced by Shimodaira (2000), is a prevalent setting
for supervised learning in the wild, where the input distribution is different in the training
and test phases but the conditional distribution of the output variable given the input
variable remains unchanged. Covariate shift is conceivable in many real-world applications
such as brain-computer interfacing (Li et al., 2010), emotion recognition (Jirayucharoensak

c© 2020 T. Zhang, I. Yamane, N. Lu & M. Sugiyama.



Zhang Yamane Lu Sugiyama

et al., 2014), human activity recognition (Hachiya et al., 2012), spam filtering (Bickel and
Scheffer, 2007), or speaker indentification (Yamada et al., 2010).

Due to the difference between the training and test distributions, the model trained
by employing standard machine learning techniques such as empirical risk minimization
(Schölkopf and Smola, 2001; Vapnik, 1998) may not generalize well to the test data. How-
ever, as shown by Shimodaira (2000), Sugiyama and Müller (2005), Sugiyama et al. (2007),
and Zadrozny (2004), this problem can be mitigated by importance sampling (Cochran,
2007; Fishman, 2013; Kahn and Marshall, 1953): weighting the training loss terms ac-
cording to the importance, which is the ratio of the test and training inut densities. As
a consequence, most previous work (Huang et al., 2007; Kanamori et al., 2009; Sugiyama
et al., 2008) mainly focused on accurately estimating the importance. Then the estimated
importance is used to train a predictive model in the training phase. Thus, most of the
existing methods of covariate shift adaptation are two-step approaches.

However, according to Vapnik’s principle (Vapnik, 1998), which advocates that one
should avoid solving a more general problem as an intermediate step when the amount
of information is restricted, directly solving the covariate shift problem may be preferable
to two-step approaches when the amount of covariate shift is substantial and the number
of training data is not large. Moreover, Yamada et al. (2011) argued that density ratio
estimation, the intermediate step for covariate shift adaptation, is indeed rather hard, sug-
gesting that the importance approximation could be unreliable and thus deteriorate the
performance of learning in practice.

In this paper, we propose a novel one-step approach to covariate shift adaptation, with-
out the intermediate step of estimating the ratio of the training and test input densities.
We jointly learn the predictive model and the associated weights by minimizing an upper
bound of the test risk. Furthermore, we establish a generalization error bound based on the
Rademacher complexity to give a theoretical guarantee for the proposed method. Exper-
iments on synthetic and benchmark datasets highlight the advantage of our method over
the existing two-step approaches.

2. Preliminaries

In this section, we briefly introduce the problem setup of covariate shift adaptation and
relevant previous methods.

2.1. Problem Formulation

Let us start from the setup of supervised learning. Let X ⊂ Rd be the input space(d is a
positive integer), Y ⊂ R (regression) or Y = {−1,+1} (binary classification) be the output
space, and

{(
xtr
i , y

tr
i

)}ntr

i=1
be the training samples drawn independently from a training

distribution with density ptr(x, y), which can be decomposed into the marginal distribution
and the conditional probability distribution, i.e., ptr(x, y) = ptr(x)ptr(y|x). Let (xte, yte)
be a test sample drawn from a test distribution with density pte(x, y) = pte(x)pte(y|x).

Formally, the goal of supervised learning is to obtain a model f : X → R with the
training samples that minimizes the expected loss over the test distribution (which is also
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called the test risk):

R(f) := E(xte,yte)∼pte(x,y)
[
`(f(xte), yte)

]
, (1)

where ` : R× Y → R denotes the loss function that measures the discrepancy between the
true output value y and the predicted value ŷ := f(x). In this paper, we assume that ` is
bounded from above. We will discuss the practical choice of loss function in Section 3.

Since the assumption that the joint distributions are unchanged (i.e., ptr(x, y) = pte(x, y))
does not hold under covariate shift (i.e., ptr(x) 6= pte(x), supp(ptr) = supp(pte), and
ptr(y|x) = pte(y|x)), we utilize unlabeled test samples {xte

i }
nte
i=1 besides the labeled training

samples
{(
xtr
i , y

tr
i

)}ntr

i=1
to compensate the difference of distributions. The goal of covariate

shift adaptation is still to obtain a model that minimizes the test risk (1).

2.2. Previous Work

Empirical risk minimization (ERM) (Schölkopf and Smola, 2001; Vapnik, 1998), a standard
technique in supervised learning, may fail under covariate shift due to the difference between
the training and test distributions.

Importance sampling was used to mitigate the influence of covariate shift (Shimodaira,
2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007; Zadrozny, 2004):

E(xte,yte)∼pte(x,y)
[
`(f(xte), yte)

]
= E(xtr,ytr)∼ptr(x,y)

[
`(f(xtr), ytr)r(xtr)

]
,

where r(x) = pte(x)/ptr(x) is referred to as the importance, and this leads to the importance
weighted ERM (IWERM): minf∈F

1
ntr

∑ntr
i=1 `(f(xtr

i ), ytri )r(xtr
i ), where F is a hypothesis set.

For any fixed f ∈ F , the importance weighted empirical risk is an unbiased estimator of
the test risk.

However, IWERM tends to produce an estimator with high variance making the re-
sulting test risk large (Shimodaira, 2000; Sugiyama and Kawanabe, 2012). Reducing the
variance by slightly flattening the importance weights is practically useful, which results
in exponentially-flattened importance weighted ERM (EIWERM) proposed by Shimodaira
(2000): minf∈F

1
ntr

∑ntr
i=1 `(f(xtr

i ), ytri )r(xtr
i )γ , where γ ∈ [0, 1] is called the flattening pa-

rameter.
Therefore, how to estimate the importance accurately becomes the key to success

of covariate shift adaptation. Unconstrained Least-Squares Importance Fitting (uLSIF)
(Kanamori et al., 2009) is one of the commonly used density ratio estimation methods
which is computationally efficient and comparable to other methods (Huang et al., 2007;
Sugiyama et al., 2008) in terms of performance.

Yamada et al. (2011) argued that estimation of the density ratio is rather hard, which
weakens the effectiveness of EIWERM. Then they proposed a method that directly esti-
mates a flattened version of the importance weights, called relative importance weighted
ERM (RIWERM): minf∈F

1
ntr

∑ntr
i=1 `(f(xtr

i ), ytri )rα(xtr
i ), where rα(x) := pte(x)

(1−α)pte(x)+αptr(x)
is called the α-relative importance (α ∈ [0, 1]). The relative importance rα(x) can be
estimated by relative uLSIF (RuLSIF) as presented by Yamada et al. (2011).

Hyper-parameters such as the flattening parameter γ or α need to be appropriately
chosen in order to obtain a good generalization capability. However, cross validation (CV),
a standard technique for model selection, does not work well under covariate shift. To
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cope with this problem, a variant of CV called importance-weighted CV (IWCV) has been
proposed by Sugiyama et al. (2007), which is based on the importance sampling technique to
give an almost unbiased estimate of the generalization error with finite samples. However,
the importance used in IWCV still needs to be estimated from samples.

3. Proposed Method

In this section, in order to overcome the drawbacks of the existing two-step approaches,
we propose a one-step approach which integrates the importance estimation step and the
importance-weighted empirical risk minimization step by upper-bounding the test risk.
Moreover, we provide a theoretical analysis of the proposed method.

3.1. One-step Approach

First, we derive an upper bound of the test risk, which is the key of our one-step approach.

Theorem 1 Let r(x) be the importance pte(x)/ptr(x) and F ⊆ {f : X → R} be a given
hypothesis set. Suppose that there is a constant m ∈ R such that `(f(x), y) ≤ m holds for
every f ∈ F and every (x, y) ∈ X × Y. Then, for any f ∈ F and any measurable function
g : X → R, the test risk is bounded as

1

2
R2(f) ≤ J(f, g) :=

(
E(xtr,ytr)∼ptr(x,y)

[
`(f(xtr), ytr)g(xtr)

])2
+m2Extr∼ptr(x)

[(
g(xtr)− r(xtr)

)2]
. (2)

Furthermore, if g is non-negative and `UB bounds ` from above, we have

J(f, g) ≤ JUB(f, g) :=
(
E(xtr,ytr)∼ptr(x,y)

[
`UB(f(xtr), ytr)g(xtr)

])2
+m2Extr∼ptr(x)

[(
g(xtr)− r(xtr)

)2]
. (3)

Proof According to the Cauchy-Schwarz inequality, we have

1

2
R2(f) =

1

2

(
E(xtr,ytr)

[
`(f(xtr), ytr)r(xtr)

])2
≤
(
E(xtr,ytr)

[
`(f(xtr), ytr)g(xtr)

])2
+
(
E(xtr,ytr)

[
`(f(xtr), ytr)

(
r(xtr)− g(xtr)

)])2
≤
(
E(xtr,ytr)

[
`(f(xtr), ytr)g(xtr)

])2
+ E(xtr,ytr)

[
`2(f(xtr), ytr)

]
Extr

[(
g(xtr)− r(xtr)

)2]
≤
(
E(xtr,ytr)

[
`(f(xtr), ytr)g(xtr)

])2
+m2Extr

[(
g(xtr)− r(xtr)

)2]
,

where (xtr, ytr) ∼ p(xtr, ytr). This proves (2), and based on this, (3) is obvious.

For classification problems, R(f) is typically defined by the zero-one loss `(ŷ, y) =
I(ŷy ≤ 0), where I is the indicator function, and thus the boundedness assumption of the
loss function in Theorem 1 holds with m = 1. For regression problems, The squared loss
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Figure 1: Tukey’s loss defined as `Tukey(ŷ, y) :=

min
(

1−
[
1− (ŷ − y)2/ρ2

]3
, 1
)
≤ 1. It is widely

used in the context of robust statistics. The hyper-
parameter ρ > 0 is usually set to 4.685 for this
loss function, and it provides an asymptotic effi-
ciency 95% of that of least squares for Gaussian
noise (Andersen, 2008). Here, we scale the stan-
dard Tukey’s bisquare loss for convenience, which
does not change the minimizer of the test risk.

`(ŷ, y) = (ŷ − y)2 is a typical choice, but it violates the boundedness assumption. Instead,
we define R(f) using Tukey’s bisquare loss (Beaton and Tukey, 1974) (see Fig. 1).1

Remark 2 The two-step approach that first applies uLSIF to estimate the importance
weights and then employs IWERM is equivalent to minimizing the second term of the above
upper bounds first and then minimizing the first term, which leads to a sub-optimal solution
to the upper-bound minimization.

Instead of estimating the unknown r(x) for minimizing R(f) as in the previous two-step
approaches, we propose a one-step approach that minimizes the upper bound J(f, g) or
JUB(f, g) based on Theorem 1.

For classification problems, J(f, g) is defined using the zero-one loss, with which training
will not be tractable (Ben-David et al., 2003). Fortunately, the latter part of Theorem 1
allows us to minimize JUB(f, g) instead, with `UB being any (sub-)differentiable approxima-
tion that bounds the zero-one loss from above so that we can apply any gradient method
such as stochastic gradient descent (Robbins and Monro, 1951). Examples of such `UB in-
clude the hinge loss `(ŷ, y) = max(0, 1− ŷy) and the squared loss. For regression problems,
Tukey’s loss is already differentiable, but we can use the squared loss that bounds Tukey’s
loss which makes the optimization problem simpler as described later. This is again justified
by Theorem 1 with the squared loss used for the upper-bound loss `UB.

Although the second expectation in JUB(f, g) contains an unknown term r(x), it can
be estimated from the samples on hand up to addition by a constant due to the fact that

Extr∼ptr(x)

[(
g(xtr)− r(xtr)

)2]
= Extr∼ptr(x)

[
g2(xtr)

]
− 2Exte∼pte(x)

[
g(xte)

]
+ C,

where C is a constant that does not depend on the function f nor g.

1. There is another bounded loss called Welsch loss (Ke et al., 2020) which has a similar shape to that of
Tukey’s bisquare loss. In this paper, we focus on Tukey’s bisquare loss.
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Since we cannot directly evaluate JUB(f, g), we minimize its empirical version ĴUB(f, g;S)
with respect to f and non-negative g in some given hypothesis sets F and G+:

ĴUB(f, g;S) :=

(
1

ntr

ntr∑
i=1

`UB(f(xtr
i ), ytri )g(xtr

i )

)2

+m2

(
1

ntr

ntr∑
i=1

g2(xtr
i )− 2

nte

nte∑
i=1

g(xte
i ) + C

)
, (4)

where S =
{(
xtr
i , y

tr
i

)}ntr

i=1
∪
{
xte
i

}nte

i=1
is the set of sample points. Notice that constant C

can be safely ignored in the minimization.
Below, we present an efficient alternating minimization algorithm described in Algo-

rithm 1 that can be employed when f(x) and g(x) are linear-in-parameter models, i.e.,

f(x) = α>φ(x) and g(x) = β>ψ(x), (5)

where α ∈ Rbf and β ∈ Rbg are parameters, and φ and ψ are bf -dimensional and bg-
dimensional vectors of basis functions.

First, we minimize the objective (4) with respect to g while fixing f . This step has
an analytic solution as shown in Algorithm 1, Line 6, where Φtr = (φ(xtr

1 ), . . . ,φ(xtr
ntr

))>,
Ψtr = (ψ(xtr

1 ), . . . ,ψ(xtr
ntr

))>, Ψte = (ψ(xte
1 ), . . . ,ψ(xte

nte
))>, 1 = (1, . . . , 1)>, and I is the

identity matrix.
Next, we minimize the objective (4) with respect to f while fixing g. In this step, we can

safely ignore the second term and remove the square operation of the first term in the objec-
tive (4) to reduce the problem into weighted empirical risk minimization (cf. Algorithm 1,
Line 12) by forcing g to be non-negative with a rounding up technique (Kanamori et al.,
2009) as shown in Algorithm 1, Line 7. For regression problems, the method of iteratively
reweighted least squares (IRLS) (Beaton and Tukey, 1974) can be used for optimizing the
Tukey’s bisquare loss. In practice, we suggest using the squared loss as a convex approxima-
tion of the Tukey’s loss to obtain a closed-form solution as shown in Algorithm 1, Line 10
for reducing computation time, and we compare their performance in the experiments. For
classification with linear-in-parameter models using the hinge loss, then the weighted sup-
port vector machine (Yang et al., 2007) can be used. After this step, we go back to the step
for updating g and repeat the procedure.

3.2. Theoretical Analysis

In what follows, we establish a generalization error bound for the proposed method in terms
of the Rademacher complexity (Koltchinskii, 2001).

Lemma 3 Assume that (a) there exist some constants M ≥ m and L > 0 such that
`UB(f(x), y) ≤ M holds for every f ∈ F and every (x, y) ∈ X × Y and y 7→ `UB(y, y′) is
L-Lipschitz for every fixed y′ ∈ Y;2 (b) there exists some constant G ≥ 1 such that g(x) ≤ G

2. This assumption is valid when supf∈F ‖f‖∞ and supy∈Y |y| are bounded.
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Algorithm 1 Alternating Minimization

1: α0 ← an arbitrary bf -dimensional vector

2: λg ← a positive `2-regularization parameter

3: λf ← a positive `2-regularization parameter

4: for t = 0, 1, . . . , T − 1 do

5: lt ← (`UB(α>t φ(xtr
1 ), ytr1 ), . . . , `UB(α>t φ(xtr

ntr
), ytrntr

))>

6: βt+1 ←
(

1
ntr

Ψ>trΨtr + 1
m2n2

tr
Ψ>trltl

>
t Ψtr + 1

m2λgI
)−1

1
nte

Ψ>te1

7: βt+1 ← max(βt+1,0)

8: wt+1
i ← β>t+1ψ(xtr

i ), i = 1, . . . , ntr
9: if `UB is the squared loss then

10: αt+1 ←
(
Φ>trW t+1Φtr + λfntrI

)−1
Φ>trW t+1ytr,

where W t+1 = diag(wt+1
1 , . . . , wt+1

ntr
) and ytr = (ytr1 , . . . , y

tr
ntr

)>

11: else

12: αt+1 ← arg minα
1
ntr

∑ntr
i=1w

t+1
i `UB(α>t φ(xtr

i ), ytri ) + λfα
>α

13: end if

14: end for

for every g ∈ G+ and every x ∈ X . Let G = G+ ∪−G+ Then for any δ > 0, with probability
at least 1− δ over the draw of S, the following holds for all f ∈ F , g ∈ G+:

JUB(f, g) ≤ĴUB(f, g;S) + 8MG (M +G)
(
LRtr

ntr
(F) + Rtr

ntr
(G)
)

+ 4M2Rte
nte

(G) + 5M2G2

√
log 1

δ

2

(
1
√
ntr

+
1
√
nte

)
, (6)

where Rtr
ntr

(F) and Rtr
ntr

(G) are the Rademacher complexities of F and G, respectively, for
the sampling of size ntr from ptr(x), and Rte

nte
(G) is the Rademacher complexity of G for

the sampling of size nte from pte(x).

We provide a proof of Lemma 3 in Appendix A. Combining (2), (3) and (6), we obtain
the following theorem.

Theorem 4 Suppose that the assumptions in Lemma 3 hold. Then, for any δ > 0, with
probability at least 1− δ over the draw of S, the test risk can be bounded as follows for all
f ∈ F uniformly:

1

2
R2(f) ≤ min

g∈G+
ĴUB(f, g;S) + 8MG (M +G)

(
LRtr

ntr
(F) + Rtr

ntr
(G)
)

+ 4M2Rte
nte

(G) + 5M2G2

√
log 1

δ

2

(
1
√
ntr

+
1
√
nte

)
. (7)

Theorem 4 implies that minimizing ĴUB(f, g;S), as the proposed method does, amounts
to minimizing an upper bound of the test risk. Furthermore, the following theorem shows
a generalization error bound for the minimizer obtained by the proposed method.

71



Zhang Yamane Lu Sugiyama

Theorem 5 Let (f̂ , ĝ) = arg min(f,g)∈F×G+ ĴUB(f, g;S). Then, under the assumptions of
Lemma 3, for any δ > 0, it holds with probability at least 1− δ over the draw of S that

1

2
R2(f̂) ≤ min

f∈F ,g∈G+
JUB(f, g) + 8MG (M +G)

(
LRtr

ntr
(F) + Rtr

ntr
(G)
)

+ 4M2Rte
nte

(G)

+ 10M2G2

√
log 1

δ

2

(
1
√
ntr

+
1
√
nte

)
+M2G2 1

ntr
. (8)

A proof of Theorem 5 is presented in Appendix B. If we use linear-in-parameter models
with bounded norms, then Rtr

ntr
(F) = O(1/

√
ntr), Rtr

ntr
(G) = O(1/

√
ntr), and Rte

nte
(G) =

O(1/
√
nte). Furthermore, if we assume that the approximation error of G+ is zero, i.e.,

r ∈ G+, then minf∈F ,g∈G+ JUB(f, g) ≤ JUB(f∗, r) = R2
UB(f∗), where RUB is the test risk

defined with `UB and f∗ = arg minf∈F RUB(f). Thus,

R(f̂) ≤
√

2RUB(f∗) +Op(1/ 4
√
ntr + 1/ 4

√
nte).

When the best-in-class test risk RUB(f∗) is small, this bound would theoretically guarantee
a good performance of the proposed method.

4. Experiments

In this section, we examine the effectiveness of the proposed method via experiments on
toy and benchmark datasets.

4.1. Illustration with Toy Datasets

First, we conduct experiments on a toy regression dataset.
Let us consider a one-dimensional regression problem. Let the training and test input

densities be
ptr(x) = N(x; 1, (0.5)2) and pte(x) = N(x; 2, (0.25)2),

where N(x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. Consider the
output labels of examples are generated by

y = f∗(x) + ε with f∗(x) = sinc(x),

and the noise ε following N
(
0, (0.1)2

)
is independent of x. As illustrated in Fig. 2, the

training input points are distributed on the left-hand side of the input domain and the
test input points are distributed on the right-hand side. We sample ntr = 150 labeled
i.i.d. training samples

{(
xtri , y

tr
i

)}ntr

i=1
with each xtri following ptr(x) and nte = 150 unlabeled

i.i.d. test samples {xtei }
nte
i=1 following pte(x) for learning the target function f∗(x) in the

experiment. In addition, we sample 10000 labeled i.i.d. test samples
{

(xevali , yevali )
}neval

i=1
with

each (xevali , yevali ) following pte(x, y) for evaluating the performance of the learned function.
We compare our one-step approach with three baseline methods, which are the ordinary

ERM, EIWERM with uLSIF, and RIWERM. We use the linear-in-parameter models (5)
with the following Gaussian kernels as basis functions for learning the input-output relation
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f * (x) Figure 2: A toy regression example. The

training input points (blue) are distributed
on the left-hand side of the input domain
and the test input points (orange) are
distributed on the right-hand side. The
two distributions share the same regression
function f∗ (the red curve).

and the importance (or the relative importance) in all the experiments including those in
Section 4.2:

φi(x) = exp

{
−
‖x− cfi ‖2

2σ2f

}
and ψi(x) = exp

{
−
‖x− cgi ‖2

2σ2g

}
,

where σf and σg are the bandwidths of the Gaussian kernels, and cfi and cgi are the kernel
centers randomly chosen from {xte

i }
nte
i=1 (Kanamori et al., 2009; Sugiyama et al., 2008).

We set bf = bg = 50 in all the experiments. Moreover, we use `2 regularization in all the
experiments, which introduces two more hyperparameters λf and λg associated with models
f and g respectively.

Let us clarify the hyperparameter tuning procedure for each method. For the ordinary
ERM, the standard cross validation is applied for tuning σf and λf . For the EIWERM with
uLSIF, the hyperparameter tuning of σg and λg in the importance estimation step uses the
cross validation naturally based on its learning objective (cf. Kanamori et al. (2009)), and
we apply IWCV in the training step for selecting σf , λf and flattening parameter γ. For
RIWERM, the built-in cross validation with its learning objective is used for tuning σg
and λg (cf. Yamada et al. (2011)), and the selection of σf , λf and parameter α in the
training step is achieved by IWCV (the importance is obtained by uLSIF). Finally, for our
one-step approach, we can naturally do cross validation based on the proposed learning
objective (4). To reduce computation time in the one-step approach, we set the bandwidths
to the median distances between samples and kernel centers, which is a popular heuristic in
practice (Schölkopf and Smola, 2001), but we tune the regularization parameters by cross
validation. For a fair comparison, we also report the results of the baseline methods using
the median heuristic.

As suggested in Section 3.1, we use the squared loss in the one-step approach for obtain-
ing a more efficient solution. We also employ the IRLS algorithm for optimizing Tukey’s
bisquare loss in the one-step approach. For better comparison, we report the results of the
baseline methods using both the squared loss and Tukey’s bisquare loss.

The experimental results of the toy regression problem are summarized in Table 1. Note
that when the target function f∗ is perfectly learned, the mean squared error is the variance
of ε, i.e., 0.01. Therefore, our method significantly mitigates the influence of covariate shift.
Since the IRLS algorithm is needed when using Tukey’s bisquare loss, the training should
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Table 1: Mean squared errors averaged over 100 trails on the toy dataset. The numbers in
the brackets are the standard deviations. The best method and comparable ones based on
the Wilcoxon signed-rank test (Wilcoxon, 1945) at the significance level 5% are described
in bold face. “Unweighted” denotes the ordinary ERM, “squared” denotes the squared
loss, “Tukey” denotes Tukey’s bisquare loss, and “median” means that the bandwidths of
the kernel models are determined by the median heuristic (other hyperparameters are still
chosen by cross validation).

Methods MSE(SD) Computation time (sec)

unweighted (squared) 0.0517 (0.0300) 18.15
unweighted (squared, median) 0.1453 (0.1812) 3.22
unweighted (Tukey) 0.0511 (0.0455) 59.36
unweighted (Tukey, median) 0.0760 (0.0733) 8.45
uLSIF (squared) 0.0259 (0.0345) 70.67
uLSIF (squared, median) 0.0198 (0.0151) 12.92
uLSIF (Tukey) 0.0253 (0.0433) 586.54
uLSIF (Tukey, median) 0.0161 (0.0106) 71.99
RuLSIF (squared) 0.0226 (0.0261) 115.00
RuLSIF (squared, median) 0.0142 (0.0071) 27.65
RuLSIF (Tukey) 0.0205 (0.0167) 594.11
RuLSIF (Tukey, median) 0.0140 (0.0064) 83.04
one-step (squared) 0.0140 (0.0058) 89.05
one-step (Tukey) 0.0125 (0.0021) 157.55

take longer time than that when using the squared loss, and we confirm it according to the
results in Table 1.

4.2. Experiments on Benchmark Datasets

Finally, we conduct experiments on classification benchmark datasets from LIBSVM.3

We introduce covariate shift in the following way similarly to Cortes et al. (2008). First,
we use Z-score normalization to preprocess all the input samples. Then, an example (x, y)
is assigned to the training dataset with probability exp(v)/(1 + exp(v)) and to the test
dataset with probability 1/(1 + exp(v)), where v = 16w>x/σ, σ is the standard deviation
of w>x, and w ∈ Rd is some given projection vector. To ensure that the methods are
tested in challenging covariate shift situations, we randomly sample projection directions
and choose one such that the classifier trained on the training dataset generalizes worst to
the test dataset.

By following the procedure, we obtain one projection vector for each benchmark dataset,
which is used to separate the dataset into a training dataset and a test dataset with some
randomness. Then we sample a certain number (depending on the size of the dataset) of
training samples and test input samples for training. We use the rest of test samples for
evaluating the performance. We run 100 trails for each dataset.

3. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2: Mean misclassification rates averaged over 100 trails on benchmark datasets. The
numbers in the brackets are the standard deviations. For each dataset, the best method
and comparable ones based on the Wilcoxon signed-rank test at the significance level 5%
are described in bold face.

Dataset Dim unweighted
unweighted
(median)

uLSIF
uLSIF

(median)
RuLSIF

RuLSIF
(median)

one-step

australian 14
32.02

(16.88)
31.62

(17.88)
30.65

(16.37)
31.00

(17.47)
30.33

(15.06)
32.54

(18.05)
25.57

(12.74)

breast-cancer 10
21.65

(13.48)
23.03

(12.84)
20.03

(12.44)
20.90

(11.95)
21.31

(12.96)
20.65

(11.57)
12.57

(10.17)

diabetes 8
45.78
(8.88)

43.35
(9.56)

42.42
(7.66)

41.67
(8.66)

44.26
(8.63)

46.72
(10.03)

38.57
(6.36)

heart 13
34.72
(9.91)

36.31
(12.19)

35.86
(11.43)

35.22
(11.89)

36.80
(11.70)

36.53
(13.49)

33.84
(10.94)

sonar 60
38.06

(12.96)
34.41

(11.90)
35.36

(13.24)
33.06

(11.80)
36.27

(13.50)
32.72

(11.76)
32.35

(12.45)

The models and the hyperparameter tuning procedure follow what we discussed in Sec-
tion 4.1. In addition, as discussed in Section 3.1, we use the squared loss as the surrogate
loss function for all the methods including the one-step approach in the experiments.

The experimental results on benchmark datasets are summarized in Table 2. The table
shows the proposed one-step approach outperforms or is comparable to the baseline methods
with the best performance, which suggests that it is a promising method for covariate shift
adaptation.

5. Conclusion

In this work, we studied the problem of covariate shift adaptation. Unlike the dominat-
ing two-step approaches in the literature, we proposed a one-step approach that learns
the predictive model and the associated weights simultaneously by following Vapnik’s prin-
ciple. Our experiments highlighted the advantage of our method over previous two-step
approaches, suggesting that the proposed one-step approach is a promising method for
covariate shift adaptation.
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Appendix A. Proof of Lemma 3

Proof Let Φ(S) = supf∈F ,g∈G+

(
JUB(f, g)− ĴUB(f, g;S)

)
and S′ be a set differing from

S on exactly one sample point. Then, since the difference of suprema does not exceed the
supremum of the difference, we have

Φ(S′)− Φ(S) ≤ sup
f∈F ,g∈G+

(
ĴUB(f, g;S)− ĴUB(f, g;S′)

)
.

If the differing sample point is a training sample, then

Φ(S′)− Φ(S) ≤ 2MG · 2

ntr
MG+M2 · 1

ntr
G2 =

5

ntr
M2G2.

On the other hand, if the differing sample point is a test sample, then

Φ(S′)− Φ(S) ≤M2 · 2

nte
· 2G ≤ 5

nte
M2G2.

Similarly, we can obtain the same result for bounding Φ(S)−Φ(S′). Then, by McDiarmid’s
inequality, for any δ > 0, with probability at least 1− δ, the following holds:

Φ(S) ≤ ES [Φ(S)] + 5M2G2

√
log 1

δ

2

(
1
√
ntr

+
1
√
nte

)
.

Let Str =
{(
xtr
i , y

tr
i

)}ntr

i=1
and Ste =

{
xte
i

}nte

i=1
. We next bound the expectation in the

right-hand side:

ES [Φ(S)] = ES

[
sup

f∈F ,g∈G+

(
JUB(f, g)− ĴUB(f, g;S)

)]
≤ (I) +M2(II) + 2M2(III),

where

(I) = EStr

[
sup

f∈F ,g∈G+

((
E(xtr,ytr)

[
`UB(f(xtr), ytr)g(xtr)

])2
−

(
1

ntr

ntr∑
i=1

`UB(f(xtr
i ), ytri )g(xtr

i )

)2)]
,

(II) = EStr

[
sup
g∈G+

(
Extr

[
g2(xtr)

]
− 1

ntr

ntr∑
i=1

g2(xtr
i )

)]
,

(III) = ESte

[
sup
g∈G+

(
1

nte

nte∑
i=1

g(xte
i )− Exte∼pte(x)

[
g(xte)

])]
.
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Then we bound the above three terms as follows:

(I) ≤ EStr

[
sup

f∈F ,g∈G+

(
ES̃tr

(
1

ntr

ntr∑
i=1

`UB(f(x̃tr
i ), ỹtri )g(x̃tr

i )

)2

−

(
1

ntr

ntr∑
i=1

`UB(f(xtr
i ), ytri )g(xtr

i )

)2)]

(points in S̃tr are sampled in an i.i.d. fashion from ptr(x, y))

≤ EStr,S̃tr

[
sup

f∈F ,g∈G+

((
1

ntr

ntr∑
i=1

`UB(f(x̃tr
i ), ỹtri )g(x̃tr

i )

)2

−

(
1

ntr

ntr∑
i=1

`UB(f(xtr
i ), ytri )g(xtr

i )

)2)]

≤ EStr,S̃tr

[
sup

f∈F ,g∈G+

2MG

ntr

∣∣∣∣∣
ntr∑
i=1

(
`UB(f(x̃tr

i ), ỹtri )g(x̃tr
i )− `UB(f(xtr

i ), ytri )g(xtr
i )
)∣∣∣∣∣
]

= Eσ,Str,S̃tr

[
sup

f∈F ,g∈G+

2MG

ntr

∣∣∣∣∣
ntr∑
i=1

σi
(
`UB(f(x̃tr

i ), ỹtri )g(x̃tr
i )− `UB(f(xtr

i ), ytri )g(xtr
i )
)∣∣∣∣∣
]

({σi}ntr
i=1 is a Rademacher sequence)

≤ 4MGEσ,Str

[
sup

f∈F ,g∈G+

∣∣∣∣∣ 1

ntr

ntr∑
i=1

σi`UB(f(xtr
i ), ytri )g(xtr

i )

∣∣∣∣∣
]

≤ 4MGEσ,Str

[
sup

f∈F ,g∈G

1

ntr

ntr∑
i=1

σi`UB(f(xtr
i ), ytri )g(xtr

i )

]

≤ 2MG

(
Eσ,Str

[
sup

f∈F ,g∈G

1

ntr

ntr∑
i=1

σi
(
`UB(f(xtr

i ), ytri ) + g(xtr
i )
)2]

+ Eσ,Str

[
sup
f∈F

1

ntr

ntr∑
i=1

σi`
2
UB(f(xtr

i ), ytri )

]
+ Eσ,Str

[
sup
g∈G

1

ntr

ntr∑
i=1

σig
2(xtr

i )

])

≤ 2MG

(
2 (M +G)Eσ,Str

[
sup

f∈F ,g∈G

1

ntr
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i=1

σi
(
`UB(f(xtr

i ), ytri ) + g(xtr
i )
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+ 2MEσ,Str

[
sup
f∈F

1
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i=1

σi`UB(f(xtr
i ), ytri )

]
+ 2GEσ,Str

[
sup
g∈G

1

ntr

ntr∑
i=1

σig(xtr
i )

])
(Ledoux-Talagrand contraction lemma (Ledoux and Talagrand, 2013))

≤ 4MG (2M +G)LRntr(F) + 4MG (M + 2G)Rntr(G), (Ledoux-Talagrand contraction lemma)

(II) = EStr

[
sup
g∈G+

(
ES̃tr

[
1

ntr

ntr∑
i=1

g2(x̃tr
i )

]
− 1

ntr

ntr∑
i=1

g2(xtr
i )

)]

≤ EStr,S̃tr

[
sup
g∈G+

1

ntr

ntr∑
i=1

(
g2(x̃tr

i )− g2(xtr
i )
)]

= Eσ,Str,S̃tr

[
sup
g∈G+

1

ntr

ntr∑
i=1

σi
(
g2(x̃tr

i )− g2(xtr
i )
)]

≤ 2Eσ,Str

[
sup
g∈G+

1

ntr

ntr∑
i=1

σig
2(xtr

i )

]
≤ 4GRntr(G), (Ledoux-Talagrand contraction lemma)
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(III) = ESte

[
sup
g∈G+

(
1

nte

nte∑
i=1

g(xte
i )− ES̃te

[
1

nte

nte∑
i=1

g(x̃te
i )

])]

≤ ESte,S̃te

[
sup
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1

nte
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(
g(xte

i )− g(x̃te
i )
)]
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[
sup
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1
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≤ 2Eσ,Ste

[
sup
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1
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σig(xte
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]
≤ 2Rnte(G).

By summarizing all the results above, we complete the proof.4

Appendix B. Proof of Theorem 5

Proof Let (f∗J , g
∗
J) = arg min(f,g)∈F×G JUB(f, g). Then for any δ > 0, by McDiarmid’s

inequality, with probability at least 1− δ, we have

ĴUB(f∗J , g
∗
J ;S) ≤ ES [ĴUB(f∗J , g

∗
J ;S)] + 5M2G2

√
log 1

δ

2

(
1
√
ntr

+
1
√
nte

)
.

Since E
[
X2
]

= (E[X])2 + Var[X], we have

ES [ĴUB(f∗J , g
∗
J ;S)] = JUB(f∗J , g

∗
J)+

1

ntr
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[
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1 )
]
≤ JUB(f∗J , g

∗
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and thus,
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log 1
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+
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)
+M2G2 1

ntr
.

Therefore, according to (2), (3) and (6), we have

1

2
R2(f̂)− JUB(f∗J , g

∗
J)

≤
(
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)
+
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log 1
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)
+M2G2 1
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)
.

Rearranging the equation above, we obtain Eq. (8).

4. In fact, the bound presented in Lemma 3 is looser than the result that we obtained here. We did this
for saving the space and making the bound more readable.
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