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Abstract

This file contains the supplementary material for the article “Geodesically-convex opti-
mization for averaging partially observed covariance matrices” (Yger et al., 2020).

1. Detailed proof on geodesic convexity of Section 3.4

For SPD matrices Ic 4 Σ1,Σ2, we have Ic 4 (Σ1]Σ2). We consider a full column-rank
matrix M̃ ∈ Rc×(c−p), such that M̃>M̃ < I(c−p). On the one hand, we have:

I(c−p) 4 M̃>M̃ = M̃>IcM̃ 4 M̃>(Σ1]Σ2)M̃ , (1)

On the other hand, applying Theorem 2.8 of (Sra and Hosseini, 2015) with M̃>(·)M̃ as a
strictly positive map:

M̃>(Σ1]Σ2)M̃ 4 (M̃>Σ1M̃)](M̃>Σ2M̃) . (2)

Combining Eq. (1) and (2):

I(c−p) 4 M̃>(Σ1]Σ2)M̃ 4 (M̃>Σ1M̃)](M̃>Σ2M̃) , (3)

and because ‖Log(·)‖2F = δ2
R(I, ·) is monotonically increasing above I, we have:

δ2
R

(
I(c−p), M̃

>(Σ1]Σ2)M̃
)
≤ δ2

R

(
I(c−p), (M̃

>Σ1M̃)](M̃>Σ2M̃)
)
. (4)

Using continuity, this midpoint convexity is sufficient to prove the geodesic convexity.
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2. Dataset visualisation of Section 4.1

Figure 1 illustrates the dataset generated in the experiment described in Section 4.1.

Figure 1: Left: visualization of the generated covariance matrices Σi (for σ = 0.25), pro-
jected in the tangent space at Ḡ and keeping the two highest principal com-
ponents, with the groundtruth Ḡ, the masked Riemannian mean R̄M and the
masked Euclidean mean ĒM . Right: visualization of some incomplete covariance
matrices, for p = 2 missing variables.

3. Evaluation of convergence rate and robustness on synthetic dataset

The convergence rate is evaluated on a synthetic dataset: matrices are generated as in
Section 4.1 of the article. The training samples are generated from a distribution that is
defined by a reference Ḡ and a dispersion σ. In this experiment, data are generated with
m = 100 matrices, c = 30 variables, and p = 5 missing variables. The robustness of the
algorithm is evaluated, varying the noise σ = {0.25, 0.5, 1.0}. The solver used to estimate
the masked Riemannian mean is a Riemannian conjugate gradient.

On the Fig. 2, the value of the cost fRM
of the masked Riemannian mean (defined in

Eq. (10)) is represented as a function of the iteration. The estimation of the masked mean
Σ̄ is repeated 50 times, with different initial points. The cost values fRM

are plotted as
green (light gray) lines. The averaged cost per iteration is shown as a strong blue (dark)
line.

The Fig. 2 shows that the algorithm converges after 3 to 4 iterations, depending of
the dispersion σ of the generated matrices. This experimental validation confirms that the
introduced algorithm converges in practice for different levels of noise, and could be applied
on various types of data.

References

S Sra and R Hosseini. Conic geometric optimization on the manifold of positive definite
matrices. SIAM J Optim, 25(1):713–739, 2015.

2



G-convex averaging of partially observed covariance matrices - SuppMat

Figure 2: Evaluation of the convergence rate, for different σ values: cost fRM
is represented

as a function of the iteration.
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