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Abstract

This file contains the supplementary material for the article “Geodesically-convex opti-
mization for averaging partially observed covariance matrices” (Yger et al., 2020).

1. Detailed proof on geodesic convexity of Section 3.4

For SPD~ matrices . < X1, o, we hNave I, < (£14X2). We consider a full column-rank
matrix M € R*(P) such that MM = I(c—p)- On the one hand, we have:

]I(C,p) < MTM = MTHCM < MT(21ﬁ22>M , (1)

On the other hand, applying Theorem 2.8 of (Sra and Hosseini, 2015) with M " (-)M as a
strictly positive map:

MT(S1450)M < (M TS, M)3(M TS5M) . (2)
Combining Eq. (1) and (2):
Le—p) < MT(S1850)M < (M TS M)§(MTS5M) | (3)
and because ||Log(-)||% = 6%(L, -) is monotonically increasing above I, we have:
5% (ﬂ(c_p),MT(zlﬁzg)M) <62 <H(C_p),(MT21M)ﬂ(MTZQM)) . (4)

Using continuity, this midpoint convexity is sufficient to prove the geodesic convexity.
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2. Dataset visualisation of Section 4.1

Figure 1 illustrates the dataset generated in the experiment described in Section 4.1.

Figure 1: Left: visualization of the generated covariance matrices ¥; (for ¢ = 0.25), pro-
jected in the tangent space at G and keeping the two highest principal com-
ponents, with the groundtruth G, the masked Riemannian mean Rj; and the
masked Euclidean mean E);. Right: visualization of some incomplete covariance
matrices, for p = 2 missing variables.

3. Evaluation of convergence rate and robustness on synthetic dataset

The convergence rate is evaluated on a synthetic dataset: matrices are generated as in
Section 4.1 of the article. The training samples are generated from a distribution that is
defined by a reference G and a dispersion o. In this experiment, data are generated with
m = 100 matrices, ¢ = 30 variables, and p = 5 missing variables. The robustness of the
algorithm is evaluated, varying the noise o = {0.25,0.5,1.0}. The solver used to estimate
the masked Riemannian mean is a Riemannian conjugate gradient.

On the Fig. 2, the value of the cost fr,, of the masked Riemannian mean (defined in
Eq. (10)) is represented as a function of the iteration. The estimation of the masked mean
3 is repeated 50 times, with different initial points. The cost values fg,, are plotted as
green (light gray) lines. The averaged cost per iteration is shown as a strong blue (dark)
line.

The Fig. 2 shows that the algorithm converges after 3 to 4 iterations, depending of
the dispersion ¢ of the generated matrices. This experimental validation confirms that the
introduced algorithm converges in practice for different levels of noise, and could be applied
on various types of data.
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Figure 2: Evaluation of the convergence rate, for different o values: cost fg,, is represented
as a function of the iteration.
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