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Abstract

Developments in Reinforcement Learning and the availability of healthcare data sources such as
Electronic Health Records (EHR) provide an opportunity to derive data-driven treatment dose rec-
ommendations for patients and improve clinical outcomes. Recent studies have focused on deriv-
ing discretized dosages using offline historical data extracted from EHR. In this paper, we propose
an Actor-Critic framework to infer continuous dosage for treatment recommendation and demon-
strate its advantage in numerical stability as well as interpretability. In addition, we incorporate a
Bayesian Neural Network as a simulation model and probability-based regularization techniques
to alleviate the distribution shift in off-line learning environments to increase practical safety. Ex-
periments on a real-world EHR data set, MIMIC-III, show that our approach can achieve improved
performance while maintaining similarity to expert clinician treatments in comparison to other
baseline methods.

1. Introduction

Recent developments in Reinforcement Learning (RL) have inspired its applications in complex
and high-risk domains, such as patient treatment recommendations in Intensive Care Units (ICU).
A particularly interesting treatment recommendation problem is the treatment dose prescribed to
the patient. RL algorithms model the treatment process as a temporal sequence of treatment and
observation events. Provided with a reward function based on patients’ survival or response to treat-
ment, these techniques are capable of learning a treatment strategy that recommends the dose of
treatment for patients at each treatment interval to maximize patient outcomes. Recent studies (e.g.
Komorowski et al. (2018); Raghu et al. (2017); Peng et al. (2018)) using historical data such as Elec-
tronic Health Records (EHR) have demonstrated such potential. However, deriving an interpretable
and practically-safe treatment strategy using only historical data remains a challenging task.

An important yet overlooked design aspect of RL for treatment recommendation is the encoding
of treatment options. It is crucial for RL algorithms to derive meaningful strategies that enable
clinicians to interpret intermediate suggestions. Existing methods (e.g. Komorowski et al. (2018);
Raghu et al. (2017)) discretize the dose based on quantile or a fixed range and consider discrete
volume as categorical options. While modeling discrete doses has its benefits such as balanced data
distribution or tractable search space, it can introduce bias in the interpretation of model output
or even produce questionable results. In addition, since RL algorithms model the treatment as
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categorical data, the ordinal relationship between different doses can be lost during the training
process. Deriving continuous treatment doses is a desirable alternative to avoid these problems.

Limiting to historical data for training increases difficulty in deriving effective treatment strate-
gies, though modeling continuous doses may amplify the challenge because the search space of
treatments may become intractable. Due to ethical concerns and technical difficulties, it is not fea-
sible to train RL models for treatment recommendation by using model-recommended treatments in
real-world environments where policy exploration can result in adverse health consequences. Such
restrictions requires RL models to learn off-line instead of in an online, trial-and-error fashion. Past
studies suggest that RL models may capture inaccurate dynamics of patients’ state transitions due
to insufficient exploration and produce ineffective suggestions (Levine et al. (2020)). This may also
cause models to incorrectly identify dangerous treatments as optimal or overlook optimal options
(Gottesman et al. (2018)), leading to severe consequences in the real-world.

There are generally three data-driven approaches to alleviate this problem. Imitation learning
aims to directly mimic clinician treatments in historical data through methods such as Supervised
Learning or RL based on a reward function retrieved by Inverse Reinforcement Learning (IRL)
(Abbeel and Ng (2004)). Its downside is the algorithm cannot identify whether the treatment will
lead to patients’ long-term survival. Another approach applies regularization to RL based on differ-
ent criteria, for example policy entropy (Ziebart (2010)) or difference to the behavior in historical
data (Kumar et al. (2019)). However, insufficient exploration may still prevent such approach from
discovering an effective strategy. Finally, model-based RL learns an environment model to facilitate
exploration (Kaiser et al. (2019)) but RL models may adopt errors in the environment model for
a partially-observable environment like patient’s physiology system. These approaches each has
drawbacks but possesses unique strengths in tackling the challenge of off-line learning.

In this paper, we propose a Model-based Regularized Actor-Critic framework that combines the
aforementioned methods to derive effective continuous treatment doses using historical data only.
Instead of directly producing treatment doses, we design the model to output its distribution for in-
terpretation. To achieve this, we adopt a probabilistic inference approach of RL using an uncertainty
component for regularization. In addition, we incorporate a Bayesian Neural Network (Wen et al.
(2018)) to simulate the partially-observable environment. It allows us to explore the environment
and deploy a sample-based Deep Inverse Reinforcement Learning framework called GAN-GCL (Fu
etal. (2017)). Rather than directly use the derived reward from GAN-GCL, we include it in the aug-
mented regularization to achieve automatic balance between heuristically designed reward and data
driven reward. Our experiments on the MIMIC-III dataset (Johnson et al. (2016)) show that our
approach improves model performance over other baseline models while maintaining similarity to
expert demonstrations.

2. Related Work

Previous studies deploying RL in treatment recommendation using EHR focused on categorical or
discretized treatment and heuristically-designed reward functions based on different medical objec-
tives in treatment procedures. Komorowski et al. (2018) modeled discrete sepsis treatment doses
and with a discrete state space using Value Iteration and a terminal reward based on patients’ 90-day
survival. Raghu et al. (2017) extended the approach to continuous state spaces using Double-Deep
Q-Networks and augmented the reward function based on medical knowledge. Prasad et al. (2017)
utilized Q-learning with a neural network as a function approximator to derive discretized sedation
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doses and binary ventilator support. However, several studies (Gottesman et al. (2018); Mihatsch
and Neuneier (2002)) suggest that these systems may recommend dangerous treatments because of
off-line learning using historical data only and a lack of expert guidance.

Additional studies utilized different techniques to alleviate such problem. Yu et al. (2019) im-
itated clinician treatments in a RL paradigm using a reward function derived by IRL. Wang et al.
(2018) introduced supervised cross-entropy loss in the policy update to incorporate expert guidance
from historical data and reduce risky treatment suggestions. Peng et al. (2018) achieved similar ef-
fect by combining kernel methods and Deep RL. Raghu et al. (2018) deployed a neural network as
an environment model to predict patients’ state changes and to facilitate environment exploration.

In this paper, we introduce a framework that combines the benefit of expert guidance and model-
based reinforcement learning. Our work is built on Soft Actor Critic (SAC) framework (Haarnoja
et al. (2018)) that allows us to model a continuous probability distribution of treatment doses by
including an Actor-Critic framework and entropy regularization. We augment the entropy regular-
ization in SAC to incorporate a probabilistic guidance model learned from expert historial data. A
simple expert model can be a supervised learning model that directly minimizes the different be-
tween model output and historical data. However, an IRL model can be more effective. We include
a Bayesian Neural Network (Wen et al. (2018)) as a simulator for the partially-observable environ-
ment to deploy a sample-based Deep IRL model called GAN-GCL (Fu et al. (2017)) and enable
environment exploration. We use the RL model learned from the GAN-GCL-derived reward as the
expert model for regularization and train the base model using pre-defined reward.

3. Background

We formulate the patient treatment procedure as a sequential trajectory 7 = (Sg, ag, 70, S1, 41,71, ---)-
It can be formally described by a Markov Decision Process (MDP) defined as a tuple (S, A, T, 7).
At each time step ¢, the clinician perceives patient’s state s; € .S and selects doses for each modeled
treatment option to form an action a; € [0, 1]*. To account for the maximum dose and and regular
volume of different treatments, we consider action as a k-dimension vector and scale each treat-
ment dose into [0, 1]. Given the state-action pair (s¢, a;), the clinician receives a feedback or reward
r: S x A — R. Patient’s transition into subsequent state s; is implicitly captured by transition
probability density 7 : S x A x A — [0, 00]. The objective of the RL algorithm is to derive an
optimal policy 7* (a¢|s¢), denoting the conditional probability distribution of a;, such that following
it will maximize the expected sum of reward >, E['r(s¢, a;)], where y € [0, 1] is a discount factor.

3.1. Regularized Reinforcement Learning Model

Recent studies (Levine (2018)) suggest that optimizing toward the original objective function alone
may be insufficient in partially-observable environments. A common augmentation is adding a
regularization term to the original objective. While there are many different forms of regularization,
the objective and the result policy can be summarized as:

T = arg maxZE[yt(r(st, at) + aR(st))]. (1)
T t

« is the temperature parameter that balances the relative importance between the reward r and the
regularization term R. When a = 0, the objective function reduces to the original one. Two types
of regularization are of interest. The first one, called Maximum Entropy Reinforcement Learning
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(Ziebart et al. (2008); Haarnoja et al. (2018)), uses the entropy of the policy H (7 (+|s:)) to equiv-
alently minimize the KL-divergence between the trajectory distributions generated by the current
policy 7 and the unknown optimal policy 7*. The second one, for example BEAR (Kumar et al.
(2019)), aims to minimize the difference between the current policy and a guidance such as treat-
ments in the historical data. BEAR used a sample-based approach and achieved this by minimizing
the maximum mean discrepancy between actor policy and unknown guidance. Our approach is
based on KL-divergence and utilizes a learned guidance policy that generalizes the expert guidance.

To model the probability distribution of continuous treatment doses, we include an Actor-Critic
framework that maintains a parameterized policy 74 (a¢|s;) (“actor”) and a parameterized Q-value
function Qp(s¢, a;) (“critic”) to evaluate the actor using the regularized objective. The training
process alternates between policy evaluation and policy improvement. In policy evaluation, we
update the Q-value function or its approximator:

Qo(st,ar) = r(st,at) + VB, 1 ap 1 ~on(cfsep) [Q0(St41, A1) + AR (st41)] (2)

In policy improvement, the policy is selected or updated according to the regularized Q-value:
Tnew = argmax Esth,atwﬂ(-|st) [Q(St, (It) + OéR(St)]. (3)
s

The temperature parameter « can be treated as a fixed hyperparameter or updated according to the
re-written dual objective (Haarnoja et al. (2018)) to provide automatic balance between regulariza-
tion and accumulated reward:

mT?x]E[Zr(st, ar)] s.t. E[R(s)] > K. 4)

3.2. Inverse Reinforcement Learning and GAN-GCL

RL algorithms require an explicit reward function as the optimization goal. Inverse Reinforcement
Learning (IRL) (Abbeel and Ng (2004); Boularias et al. (2011)) was proposed to derive a data-
driven reward function from expert demonstrations based on the assumption that expert’s actions
are suboptimal or near-optimal in an attempt to maximize an unknown reward function. GAN-
GCL (Fu et al. (2017)) formulates IRL through generative adversarial modeling. In GAN-GCL, a
policy model interacts with the real-world or simulation environment to generate trajectories and a
discriminator is trained to distinguish generated trajectories from expert demonstrations. It assumes
the discriminator takes the form (with 7 (a|s) precomputed):

exp(fy (s, a))
exp(fy(s, a)) + m(als)’

Dw(s,a,w(a|s)) = %)
As a result, discriminator’s output can be interpreted as the probability of a (s¢, a;) pair coming
from expert demonstration. The discriminator can be updated using binary cross entropy loss.

GAN-GCL will then update the policy model with reward function f (s, a;) using any type of
policy optimization for RL. Summation of this reward function over the entire trajectory space is
equivalent to the entropy regularized objective:

fu (s, ar) =log(Dy(st, ar)) —log(1 — Dy (st, ar))
=7y (St, ar) — log m(ag|st). (6)
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Figure 1: Model-Based Regularized Actor Critic Architecture. fr; is the guidance policy and 7735 is
the RAC policy. Only actors are presented here while critics are omitted for clarity.

4. Methodology

In this section, we present our proposed Model-Based Regularized Actor Critic framework to predict
continuous treatment doses. The overall architecture is summarized in Figure 1.

4.1. Continuous Treatment Dose Modeling

We scale the dose of different treatment options into [0, 1] based on their maximum volume. The
action space is a k-dimension vector where k is the number of treatment options. To adapt to multi-
dimensional continuous treatment doses in [0, 1]*, we model the policy as an independent, truncated,
normal distribution with parameters (p, o) that is conditionally dependent on the patient’s state.
We expect the underlying modeling of patients’ states should explain all correlation among modeled
treatments. Therefore, it is safe to assume conditional independence given a patient’s state. We will
explain more in detail about how we generate the distribution parameters later.

Using a truncated distribution allows actions on the closed borders, but it can lead to elevated
probability density and cause exploding gradients during training. To avoid this, we clip the mean
of each dimension according to the corresponding variance to ensure at least 5% of the cumula-
tive density remains within the range. by, and b,pper are the boundaries of the truncated normal
distribution which take values of 0 and 1 respectively:

Mt = max{blower — 2.950¢, min{,ut, bupper + Z.QSUt}} (7)
P(IE < 2.95) == 095,35 ~ ./\/'(07 1)

4.2. Environment Modeling

We simulate patients’ state transitions using a pre-trained Bayesian Neural Network (BNN) to ac-
count for the partially-observable environment. We design the BNN as a multitask model that pre-
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dicts state value changes and trajectory termination for the next time step. The environment model
uses a shared Bayesian model B,, with Flipout estimator (Wen et al. (2018)) to extract shared fea-
tures and produce noise. The state change estimation .S, and trajectory termination prediction 7,
are connected to B,,. These two models contain fully-connected layers only since the environmental
noise should be accounted for in both tasks. B,,, Sy, and T}, are combined together to form the
environment model Env and are updated by simultaneously minimizing three loss functions: MSE
loss from state change prediction As;, categorical cross entropy loss from trajectory termination
prediction g;, and KL-Divergence loss as the regularizer from the Bayesian layer weights’ posterior
distribution g(w|#,,) to the prior standard normal distribution p(w):

Ji(w, wy) =E[(Asy — Asy)?] (8)
Ja(w,ws) =E[~ ) " P(0r)log P(4)] ©)
J3(w) =D (q(w]fw)||p(w)). (10)

An actor policy will interact with Env to generate the simulated trajectory. We first sample a seed
state from the initial states in historical data. The seed state will be sent to the actor policy to
produce the action for the initial seed state. Env receives the initial state and the produced action
to predict the state change As; and trajectory termination. If the trajectory does not terminate, As;
will be added to s; to compute s;11. Such interaction will continue until the maximum trajectory
length t,;,44 1S met.

4.3. Regularized Actor Critic

As mentioned above, we incorporate an Actor-Critic framework to model the distribution of contin-
uous treatment doses. To encode continuous state and action values, we use a deep neural network
as a function approximator for both the critic and the actor. The neural network in our study has
two hidden layers and the tanh activation function for hidden layers. The critic Qg(s¢, a;) receives
the continuous value of patient state and corresponding action to produce an estimation of the reg-
ularized objective as the Q-function. The actor 7g(ay|s;) receives patient state and produces the
parameters of the policy distribution as output, in this case (1, 0¢).

To update the parameters of the function approximators for the critic and the actor, we modify
the objective functions for Qg (s¢, a;) and 7y (a¢|s;) in Equation 2 and 3 into loss functions that can
be updated using gradient methods. For the critic Qg(s¢, a;), we use MSE loss to directly minimize
the difference between the current estimation (Jy and target value y. We maintain a target Q network
Qg with exponential moving average of (Qy’s weights (Van Hasselt et al. (2016)) to stabilize the
update of Q-values.

1 .
JQ(0) =E(s,.a0)~pl5 (Qolst, ar) = 1)°] (11)
Je =r(st,at) + VEBayy o (fsen) [Ra(St415 arr1) — R (s141)]- (12)

The function approximator of Qy(s¢, a;) can be updated using semi-gradient descent with the gra-
dient computed for estimation only (Sutton and Barto (2018)).

Vodg(0) = (Qa(st, ar) — 1) VoQo(st, ar). (13)
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For the actor 74 (at|s;), we use the new Q-value to guide its update. Because the action is sampled
from the policy, the gradient will backpropagate through the estimated Q-value to update the actor’s
parameters. If « equals 0, such a loss function is equivalent to DDPG (Lillicrap et al. (2015)), which
is a deterministic actor critic algorithm.

Ir (@) = EsinD,ammy [—Qo(st, ar) + aR(s1)]. (14)

In practice, the policy function approximator produces the parameters that define the conditional dis-
tribution of a. Action sampling from the policy required in J;(¢) can be achieved by a reparameteri-
zation trick. Hence, we apply the following gradient to minimize J(¢), where fy(€;, 5¢) = (f14, 0¢)
is the function to reparameterize noise €; sampled from A(0, 1) with policy parameters:

Vodr(9) = VeaR(st) + Vi, (—Qo(st, ar) + aR(5¢)) Ve foer, st). (15)
During the model training process, if a dynamic o parameter is needed, we transform the dual
optimization problem in Equation 4 into the Lagrangian

minmax Eg, ~r[r(s¢, ar) + aR(s¢) — aK]. (16)

« ™

Based on the previous equation, the temperature parameter is optimized through dual gradient de-
scent (Boyd and Vandenberghe (2004)) with loss function

J(a) =Egor[aR(st) — ak]. 17)

We consider two types of regularization based on probability theory. The first is the entropy of
the actor policy; otherwise, we observed that the variance of distribution would never be updated.
In this case,

R (s) = —log(m(ag|si)), as ~ m(-|s¢) (18)

To include expert knowledge, we consider a guidance policy 7 and we augment the actor policy’s
entropy regularization with cross entropy of the guidance policy relative to the actor policy. The
resulting regularization is the KL-divergence from the guidance to the actor:

R2(s;) = — log(m(a¢lst)) + log(7(at|st)), ar ~ m(+|s¢) (19)

The guidance policy 7 is another trained model with the same model architecture as the actor.
It generalizes the expert knowledge in historical data. Combining with KL-divergence, it also pro-
vides an opportunity to combine benefits from different signal sources or learning algorithms. A
straightforward approach is to use a supervised model trained using negative log likelihood loss as
guidance. We examine the effect of using the policy model learned based on the derived reward
function from GAN-GCL. Under this formulation, the heuristically-designed reward and GAN-
GCL derived reward are indirectly combined together. The relative importance between these two
are balanced by the temperature parameter « that is either fixed or automatically adjusted.

We update the guidance policy 7 using the Regularized Actor Critic framework with entropy
as regularization (R') and the reward derived from GAN-GCL. To avoid undue influence from the
entropy term in the regularized objective function used for policy optimization, we remove it from
the retrieved GAN-GCL reward function (Eq. 6):

Dy (s, a)

m) —i—logw(a\s). (20)

Ty (s, a) = log(
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4.4. Model-Based Regularized Actor Critic with GAN-GCL as Guidance

The learning process of our algorithm is visualized in Fig 1 and summarized in Algorithm 1. We
maintain two RL models in the training process. The first is the guidance model and it is trained
using GAN-GCL reward with R! regularization. The second is the base model that produces the
final policy and it is trained using heuristic reward with R? regularization calculated using a guid-
ance policy. In each training iteration, the algorithm starts with generating simulated treatment
trajectories. One major difference here with GAN-GCL is we use the base model to interact with
the environment instead of the guidance policy learned using the GAN-GCL reward. The reason is
that GAN-GCL seeks to imitate expert demonstration and the trajectory will appear to be similar to
expert demonstration if we use the guidance policy to interact. This prevents the base policy from
exploring the environment. After generating simulated trajectories, we sample a batch of simulated
trajectories and a batch of trajectories from historical data. They are labeled correspondingly and
used to update the discriminator model in GAN-GCL. Then, we combine these two batches and
label each time step of using GAN-GCL reward and heuristic reward respectively. The combined
batch is used to update the base model and the guidance model. Mixing real data and simulation
data can help reduce the potential incorrect dynamic in the BNN model.

5. Experiments

Here we present the experiment setting and results of different treatment modeling methods.

5.1. Data

The data source for our experiments is the MIMIC-III database (Johnson et al. (2016)). It is a
freely-accessible database containing de-identified ICU patient data for 53,423 distinct hospital ad-
missions from 2001 to 2012. Following established procedures (Raghu et al. (2017)), we extracted
19443 trajectories that satisfy the sepsis-3 criteria (Singer et al. (2016)). Each trajectory contains
sequential data for a patient’s treatment from 24 hours before diagnosis to 48 hours after at 4-hour
intervals. Patient state is represented by a vector with 48 normalized features that describe the pa-
tient’s demographic and physiologic status. Treatment actions are the dose of medical intervention
on the scale of [0, 1], specifically intravenous (IV) fluid and vasopressor. Trajectory terminals are
labeled success or failure depending on whether the patient survived 90 days after admission.

5.2. Algorithm Comparison

We compare several treatment policies to examine their quantitative performance and difference
in dose distribution under different sepsis severity levels. Each parameterized policy is trained,
validated, and tested using a 70 : 10 : 20 data split. Unless otherwise specified, the reward function
is +100 for survival, —100 for deceased and O for other states. In addition, the default training data
is the historical data extracted from MIMIC-IIL. We first include the following baseline policies:

e supervised: It is learned by directly minimizing the negative log likelihood of the expert

treatment dose.
e DDQN(Raghu et al. (2017)): DDQN models discretized treatment doses and is trained using

the same setting as in the original paper.
e DDPG(Lillicrap et al. (2015)): It is a deterministic policy framework. The probability density

function is computed with the output action as the mean value and 5e~2 as variance.
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Algorithm 1: Model Based Regularized Actor Critic with GAN-GCL as guidance

Data: Environment models Env, Historical Data D 4emo, Heuristic designed reward r
Initialize R* regularized ﬁ; and Qé, R? regularized ﬂi and Q3, discriminator D,

Dgim 0 // Initialize empty pool for simulation
fori < 1to N do
for j + 1to M do // generate simulated trajectories
t<«<0
(s%,a@) — (Sé»aé) ~ Dgemo // Sample initial state
7 < {(st,ai)}
repeat

Asy, o1 < Env(sy,ay)
Sip1 < 8t + Asy
Ay~ W?ﬁ('|3;+1)
7j 75 U{(8t41,at41)}
t+—t+1

until o; V t > tmax

Dgim < Dgim U {Tj}

end

Daim ~ Dsim, Daemo ~ Daemo // Sample training data

for j < 1t K do // update discriminator model
| ¥ < ¥ — Vb ®; Daemo, Dsim)

end

Dtrain — Dsim U Ddemo
label Dyrqin With 7 using equation 20
label Dyrain with 7 using heuristic reward function

for j < 1t P do // update base RL model and guidance RL model
¢ < & — V331 (¢ Dirain, T) // R' regularized
6+ 06—V, JQl(A Dirain, 7) // R' regularized
¢ ¢ — Vod2(¢; Dmm, r) // R? regularized with 7?; as guidance
0 <0 —VaJg2(0; tmm,r) // R? regularized with 7%; as guidance
end

end

e SAC(Haarnoja et al. (2018)): It is equivalent to the regularized Actor-Critic described in

Section 4.3 with R regularization.
e GAN-GCL(Fu et al. (2017)): It is learned using GAN-GCL with BNN as simulator.

We also conduct an ablation study on our approach to examine each component’s individual effect:

e RAC-GCL: Policy learned using regularized Actor-Critic described in Algorithm 1 with
GAN-GCL as guidance 7.

e RAC-sup: It is learned using regularized Actor-Critic described in Section 4.3 and R? regu-
larization with a supervised policy 7 as guidance. It shows the effect of simple guidance in
training using historical data.

e SAC-model: It is trained using the same setting as SAC but with mixed historical and simu-
lated data from BNN. It demonstrates the effect of training on simulation data.

e GAN-GCL+TR: It is learned using GAN-GCL with the addition of a terminal reward +100
for success and —100 for failure.

o RAC-GCL+Det: It is the same as RAC-GCL except with a deterministic environment model.
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5.3. Continuous Modeling of Treatment Doses

We first compare discretized and continuous treatment dose modeling. Figure 2 illustrates an exam-
ple output of treatment dose likelihood in the discrete setting for one single treatment interval from
a supervised policy and DQN policy. Each cell is associated with a likelihood value and the policy
will select the highest one. We use the predicted Q-value as the likelihood for DQN. As shown in
Figure 2, both the supervised policy and DQN policy have high variance in likelihood that violates
the ordinal relationship of modeled doses. It is hard for a clinician to interpret why a treatment dose
distant from the maximum one has a high likelihood value.

Supervised Policy Distribution DQN policy distribution
- .. . - ...
i} 1 2 3 4 i} 1 2 3 4

IV fluid dose IV fluid dose

3

vasopressor dose
2

vasopressor dose
2

1

Figure 2: Likelihood distribution of discretized treatment dose modeling for a single state.

Continuous dose modeling with a multivariate truncated normal distribution produces a more
explainable result. The output is the mean and standard deviation of a predicted dose distribution.
Figure 3 contains a visualization of an example of a predicted dose distribution for the same treat-
ment interval through kernel density estimation. It is more stable compared to the discrete setting.
Clinicians can use mean value as suggested dose and standard deviation as the confidence of the
model’s recommendation.
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Figure 3: Likelihood distribution of continuous treatment dose modeling for a single state.

5.4. Treatment Dose Distribution Analysis

We plot the kernel density estimation for different continuous policy distributions for all treatment
intervals in the test data to analyze the suggested dose pattern under different sepsis severity levels.
We divide cases into Low/Medium (LM) and High (H) groups (Singer et al. (2016)) based on SOFA
score. The x-axis and y-axis correspond to the advised dose of IV fluid and vasopressor respectively.
Figure 4 shows the supervised policy distribution as a generalization of expert demonstrations.
In LM cases (left), the policy would recommend almost no vasopressor. Meanwhile, the dose of
vasopressor increases as symptoms deteriorate (H cases, right) but the variance also increases.
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Low & Medium SOFA High SOFA

vaso, mean: 0.0535; std: 0.1385
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Figure 4: Supervised policy distribution across all states.

Low & Medium SOFA High SOFA

vaso, mean: 0.2626; std: 0.2179

vaso, mean: 0.2680; std: 0.1881
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Figure 5: SAC policy distribution across all states.

Figure 5 shows plots for the SAC policy. Comparing to the supervised policy, while the majority
of suggested vasopressor is still close to 0 in LM cases, the mean and standard deviation are danger-
ously higher. In addition, the amount of IV fluid suggested for LM patients is greatly reduced. In H
cases, the SAC policy tends to suggest a high volume of IV fluid but lower volume of vasopressor.

Low & Medium SOFA High SOFA

=

vaso, mean: 0.0506; std: 0.0918

vaso, mean: 0.2105; std: 0.1546

00 02 04 06 08 10
IV, mean: 0.4444; std: 0.3224 IV, mean: 0.8145; std: 0.1687

00 02 04 06 08 10

Figure 6: RAC-sup policy distribution across all states.

In the RAC-sup policy (Figure 6), usage of the supervised policy as the guidance policy reduces
the amount of vasopressor suggested in LM cases and lowers the variance as well. But the policy
still fails to consistently suggest high vasopressor volume needed in H cases.

Combining historical and simulation data for training (Figure 7), SAC is able to suggest a high
volume of vasopressor in H cases. However, the dangerous treatment pattern in LM cases remains.

GAN-GCL (Figure 8) illustrates a similar policy distribution compared to the supervised model
but with lower variance. This confirms GAN-GCL’s ability to imitate expert demonstrations.

Figure 9 shows the RAC-GCL policy. Similar to RAC-sup, using a guidance policy reduces the
mean and variance of the suggested vasopressor dose in LM cases. However, RAC-GCL produces
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Figure 7: SAC-model policy distribution across all states.
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Figure 8: GAN-GCL policy distribution across all states.

a spread distribution of IV fluid in LM cases, instead of concentrating in the low IV fluid region.
Furthermore, the distribution of vasopressor in H cases shifts toward the higher volume region.
RAC-GCL+Det has a intermediate policy distribution between RAC-sup and RAC-GCL.

We omit the plot for DDPG and GAN-GCL+TR. DDPG is only capable of recommending ex-
treme doses, either 0 or 1. GAN-GCL+TR shows significant similarity with GAN-GCL, suggesting
a simple addition to combine two reward functions may not be sufficient.

5.5. Quantitative Analysis

To quantify performance, we compute an evaluative Q-value Qg (s, a) and V-value Vg(s) for each
policy v = 1, terminal reward /. = 1 if the patient survived and r; = 0 for all other time steps.
To avoid error from the BNN influencing the results, we only use historical data for evaluation. We
include an importance sampling ratio p; = % (Sutton and Barto (2018)) to learn accurate
policy values for a reward sparser than the one in the policy training.

Qe(st,ar) = ry +YVE(st41), 21
Vi(st) =71, + pt * Ve(si41). (22)

mp, is the behavior policy that generated treatment trajectories in the historical data. We use a super-
vised model to estimate 7. Q5 and Vg allows us to compute performance measures excluding the
entropy or cross entropy component in the regularized Q-value.

We design such a setting for Qg and Vg computation to account for patients’ survival only
and satisfy the condition of applying Off-Policy Classification (OPC) and Soft OPC (SOPC) scores
(Irpan et al. (2019)). Both of them measure the difference of a decision function between success
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Figure 9: RAC-GCL policy distribution across all states.

trajectories (survival) and overall trajectories. We label all time steps of successful trajectories as
positive y = 1 and compute these scores using the Qg (s, a) of each policy.

OPC(QE) = p(y = 1)Ey=1[]]-QE(s,a)>b] - E[]]-QE(s,a)>b]v (23)
SOPC(QE) =p(y = 1)Ey=1[Qr(s,a)] — E[Qr(s, a)]. (24)

1g(s,a)>b 18 the indicator function. Found by line search, b is the threshold that maximizes OPC.
We also compute the Weighted Doubly Robust (WDR) estimator (Thomas and Brunskill (2016))
as the main performance measurement

WDR(D) => > ~wir =Y > " (wiQp(s}, a}) — w}_,Vi(s}), (25)
7 t 1 t

where ¢ is the index for the trajectory and ¢ is the index of the timestep in each trajectory. wi =
oS j p} is the weighted importance sampling ratio.

Finally, we calculate the RMSE to characterize similarity with expert demonstrations and show
the effect of using a guidance policy. We also report the Pearson correlation coefficient of each
treatment dose with the Sequential Organ Failure Assessment (SOFA) score (Singer et al. (2016))
to show the statistical correlation between treatment and the severity of the sepsis symptoms. We
report the means of selected metrics over 20 trials.

Table 1: Quantitative results of different models.

WDR  OPCx10 SOPCx10 | SOFA-IV SOFA-Vaso | RMSE
supervised 0.6778 1.2459 0.5064 0.0610 0.4361 0.2337
DDQN 0.6424 1.0770 0.4557 0.0227 0.2187 0.3778
DDPG 0.6727 1.2394 0.4921 0.0129 0.1023 0.4395
SAC 0.7207 1.189%4 0.4895 0.3568 0.1536 0.3873
GAN-GCL 0.8491 1.1730 0.4796 0.0604 0.4359 0.2383
SAC-model 0.8286 1.1816 0.5043 0.3718 0.2771 0.3738
RAC-sup 0.7911 1.2758 0.5134 0.3092 0.4162 0.2710
GAN-GCL+TR 0.7366 1.1869 0.4924 0.1349 0.4458 0.2495
RAC-GCL+Det 0.8674 1.2452 0.5233 0.2258 0.4406 0.2570
RAC-GCL 0.8912 1.2746 0.5352 0.3202 0.4529 0.2652

Table 1 shows selected metrics for different policies. An ideal treatment policy should have
higher WDR, OPC and SOPC while maintaining a low RMSE. We observe that the difference in

445



WANG ROBERTS ENQUOBAHRIE

terms of OPC and SOPC are not significant across different policies. Because OPC and SOPC are
studied for deterministic environments, a stochastic and partially-observable environment may limit
their capability in performance measure.

Comparing continuous probablistic modeling to other baselines, SAC achieves improved per-
formance but notably higher RMSE than supervised policy. GAN-GCL results in a further improved
WDR and reduced RMSE. This could be the combined effect of GAN-GCL reward and training on
simulation data since SAC-model also improves performance, though its RMSE remains high. How-
ever, simply adding GAN-GCL reward to designed terminal reward reduces the performance. Con-
sidering R? regularization, both RAC-sup and RAC-GCL increases performance measures while
moderate the high RMSE of SAC. This suggests the effectiveness of guidance regularization. GAN-
GCL can be more desirable as guidance because of RAC-GCL’s better performance. Finally, higher
scores of RAC-GCL than RAC-GCL+Det suggests that a stochastic simulation can be more realistic
to the environment and reduce the effect of model overfitting.

An distinguishing property of learnt policies is the correlation of doses with SOFA score. For
supervised and GAN-GCL policy, SOFA score has a negligible correlation with IV fluid doses but a
significant one with vasopressor. This is medically explainable since IV fluid can be applied under
diverse situations that may not relate to SOFA condition. On the other hand, vasopressor is usually
only prescribed to patients with severely low blood pressure that is common in high SOFA situation.
However, SAC, RAC-sup and RAC-GCL all produce a considerable correlation between suggested
IV fluid and SOFA score. Whether such phenomenon is desirable requires further investigation.

Overall, RAC with R? regularization using a guidance policy demonstrates improved perfor-
mance with reduced RMSE. This suggests that including the guidance policy as a constraint can
regularize the policy to pick treatments closer to expert demonstrations, and dynamically adjusting
the temperature parameter controls the extent of the regularization to ensure the policy is optimized
towards the maximum entropy objective. RAC-GCL produces a effective combination of terminal
reward and GAN-GCL reward, leading to a stronger guidance effect. It is likely the result of implicit
balance between these two in RAC-GCL. Updated by regularized Actor-Critic, the guidance policy
contains the retrieved GAN-GCL reward in its probability density. A dynamic temperature param-
eter that automatically balances the influence of guidance can consequently produce an indirect
balance between terminal reward and IRL reward.

6. Conclusion

In this paper, we utilize a regularized Actor-Critic framework to recommend continuous treatment
doses. By modeling doses with a truncated, multivariate normal distribution, our approach can per-
form continuous treatment dose recommendation with a confidence level. It is more suitable for
interpretation and thus facilitates clinicians’ decision making. We explore different techniques to
alleviate the challenge of off-line learning for RL to derive an effective treatment strategy. Combin-
ing these methods, we propose a model-based regularized actor critic framework with GAN-GCL as
a guidance policy. Our framework utilizes a simulation model to assist in exploring the environment
while using KL-divergence to incorporate the influence of a guidance policy. Experimental results
suggest that such a combination can significantly improve model performance while retaining a
safe similarity to clinician treatments. In addition, a RL policy learned from an IRL derived reward
(e.g. GAN-GCL) is shown to be more effective as guidance. Future work includes a more detailed
analysis of learned policy distributions for medical explanation and exploration of other guidance.
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