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Abstract
Thompson Sampling has generated significant interest due to its better empirical performance
than upper confidence bound based algorithms. In this paper, we study Thompson Sampling
based algorithm for Unsupervised Sequential Selection (USS) problem. The USS problem is
a variant of the stochastic multi-armed bandits problem, where the loss of an arm can not
be inferred from the observed feedback. In the USS setup, arms are associated with fixed
costs and are ordered, forming a cascade. In each round, the learner selects an arm and
observes the feedback from arms up to the selected arm. The learner’s goal is to find the
arm that minimizes the expected total loss. The total loss is the sum of the cost incurred for
selecting the arm and the stochastic loss associated with the selected arm. The problem is
challenging because, without knowing the mean loss, one cannot compute the total loss for
the selected arm. Clearly, learning is feasible only if the optimal arm can be inferred from
the problem structure. As shown in the prior work, learning is possible when the problem
instance satisfies the so-called ‘Weak Dominance’ (WD) property. Under WD, we show that
our Thompson Sampling based algorithm for the USS problem achieves near-optimal regret
and has better numerical performance than existing algorithms.
Keywords: Sequential Decision Making, Partial Monitoring System, Thompson Sampling

1. Introduction

Many variants of sequential decision-making problems are considered in the literature
depending on the type of feedback and the amount of information they reveal about the
rewards. The multi-armed bandits and the expert setting (Auer et al., 2002; Bubeck et al.,
2012) are well-studied problems where feedback provides direct information about the rewards.
In the multi-armed bandit setting, feedback observed from an action reveals only the reward
associated with that action. However, in the expert setting, the feedback observed from an
action reveals reward associated with the action played as well as all other actions. The
settings that span in between these two extreme cases are also studied, namely, bandits with
side-information (Mannor and Shamir, 2011; Alon et al., 2013, 2015; Wu et al., 2015). In
many problems, the actions can be indirectly tied to the rewards. Such setting is referred as
partial monitoring setting (Cesa-Bianchi et al., 2006; Bartók and Szepesvári, 2012; Bartók
et al., 2014). It includes all the previously described setups as special cases.

Most of the previous work on partial monitoring is restricted to cases where feedback from
the actions allows the learner to identify the rewards of the actions. However, in many areas
like crowd-sourcing (Bonald and Combes, 2017; Kleindessner and Awasthi, 2018), medical
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diagnosis (Hanawal et al., 2017), resource allocation (Verma et al., 2019a), and many others,
feedback from actions may not even be sufficient to identify their rewards.

Such reward structures can be found in many prediction problems, where one may have
to predict labels for instances whose associated ground-truth cannot be obtained. Such
problems arise naturally in medical diagnosis, crowd-sourcing, security system (Hanawal
et al., 2017), and unsupervised features selection (Verma et al., 2020). In the medical
diagnosis problem, the true state of the patients may not be known; hence, the test’s
effectiveness cannot be known. Whereas in the crowd-sourcing systems, the expertise level of
self-listed-agents (workers) is unknown; therefore, the quality of their work cannot be known.
In these prediction problems, we can observe prediction from test/worker, but we cannot
ascertain their reliability due to the absence of ground truth.

In many of the real-world situations like those found in medical diagnosis, airport security,
and manufacturing, a set of tests or classifiers is used to monitor patients, people, and
products. Tests have cost with the more informative ones resulting in higher monetary
costs and higher latency. Thus, they are often organized as a cascade (Chen et al., 2012;
Trapeznikov and Saligrama, 2013), so that a new input is first probed by an inexpensive test
then more expensive one. We refer to such cascaded systems as Unsupervised Sequential
Selection (USS) problem1, where an arm represents a test/ worker. A learner’s goal in the
USS problem is to select the most cost-effective arm so that the overall system maintains
high accuracy at low average costs.

In this paper, we draw upon several concepts introduced in prior work (Hanawal et al.,
2017; Verma et al., 2019b). Specifically, we use the notion of weak dominance (Verma et al.,
2019b) that helps to find optimal arm using observed disagreements between arms. We
propose a Thompson Sampling (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Agrawal
and Goyal, 2013) based algorithm for the USS problem and show that it is a near-optimal
algorithm. We then validate its performance on several problem instances derived from
synthetic and real datasets. Our contributions can be summarized as follows:

• We develop a Thompson Sampling based algorithm named USS-TS for the USS problem.
This algorithm uses a one-sided test to find the optimal arm, whereas the state-of-the-art
algorithm proposed in Verma et al. (2019b) uses a two-sided test to identify the optimal
arm. The new one-sided test leads to a simpler algorithm.

• In Section 4, we characterize the regret of USS-TS in terms of how well the problem
instance satisfies the WD property and show that it has sub-linear regret under WD
property. We also give problem independent regret bound and establish that the regret
bounds are near-optimal using results from the partial monitoring system.

• We demonstrate empirical performance of USS-TS on synthetic and real datasets in
Section 5. Our experimental results show that regret of USS-TS is always lower than
USS-UCB (Verma et al., 2019b) and heuristic algorithm given in Hanawal et al. (2017).

1. Note that the unsupervised sequential selection problem is referred to as the unsupervised sensor selection
problem in the prior work (Hanawal et al., 2017; Verma et al., 2019b).
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2. Problem Setting

We consider a stochastic K-armed bandits problem. The set of arms is denoted by [K] where
[K]

.
= {1, 2, . . . ,K}. In each round t, the environment generates a binary K + 1-dimensional

vector
(
Yt, {Y i

t }i∈[K]

)
. The variable Yt denotes the best binary feedback for round t, which

is hidden from the learner. The vector
(
{Y i

t }i∈[K]

)
∈ {0, 1}K represents observed feedback

at time t, where Y i
t denote the feedback2 observed after playing arm i. We denote the cost

for using arm i ∈ [K] as ci ≥ 0 that is known to learner and the same for all rounds.
In the USS setup, the arms are assumed to be ordered and form a cascade. When the

learner selects an arm i ∈ [K], the feedback from all arms till arm i in the cascade is observed.
The expected loss of playing the arm i is denoted as γi

.
= E

[
1{Y i 6=Y }

]
= P

{
Y i 6= Y

}
, where

1{A} denotes indicator of event A. The expected total cost incurred by playing arm i is
defined as γi + λiCi, where Ci

.
= c1 + . . .+ ci and λi is a trade-off parameter that normalizes

the loss and the incurred cost of playing arm i.
Since the best binary feedback are hidden from the learner, the expected loss of an arm

cannot be inferred from the observed feedback. We thus have a version of the stochastic
partial monitoring problem, and we refer to it as unsupervised sequential selection (USS)
problem. Let Q be the unknown joint distribution of (Y, Y 1, Y 2 . . . , Y K). Henceforth we
identify an USS instance as P .

= (Q, c) where c
.
= (c1, c2, . . . , cK) is the known cost vector

of arms. We denote the collection of all USS instances as PUSS. For instance P ∈ PUSS, the
optimal arm is given by

i? ∈ max

{
arg min

i∈[K]
(γi + λiCi)

}
(1)

where the ‘max’ operator selects the arm with the largest index among the minimizers. The
choice of i? in Eq. (1) is risk-averse as we prefer the arm with lower error among the good
arms. The interaction between the environment and a learner is given in Algorithm 1.

Algorithm 1 Learning with USS instance (Q, c)

For each round t:

1. Environment chooses a vector (Yt, {Y i
t }i∈[K]) ∼ Q.

2. Learner selects an arm It ∈ [K] to stop in cascade.

3. Feedback and Loss: The learner observes feedback (Y 1
t , Y

2
t , . . . , Y

It
t ) and incurs a

total loss 1{Y It 6=Yt} + λItCIt .

The learner’s goal is to learn a policy that find an arm such that the cumulative expected
loss is minimized. Specifically, for T rounds, we measure the performance of a policy that
selects an arm It in round t in terms of regret given by

RT =

T∑
t=1

(γIt + λItCIt − (γi? + λi?Ci?)) . (2)

2. In the USS setup, an arm i could represent a classifier. After using the first i classifiers, the final label
can be a function of labels predicted by the first i classifiers, i ∈ [K].
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A good policy should have sub-linear regret, i.e., lim
T→∞

RT /T = 0. The sub-linear regret
implies that the learner collects almost as much reward in expectation in the long run as
an oracle that knew the optimal arm from the first round. We say that a problem instance
P ∈ PUSS is learnable if there exists a policy with sub-linear regret.

3. Conditions for Learning Optimal Arm

Next, we define the strong and weak dominance property of the USS problem instance that
makes the learning of the optimal arm possible.

Definition 1 (Strong Dominance (SD) (Hanawal et al., 2017)). A problem instance is said
to satisfy SD property if

Y i = Y for some i ∈ [K] =⇒ Y j = Y, ∀j > i.

We represent the set of all instances in PUSS that satisfy SD property by PSD.

The SD property implies that if the feedback of an arm is same as the true reward, then
the feedback of all the arms in the subsequent stages of the cascade is also same as the true
reward. Hanawal et al. (2017) show that the set of all instances satisfying SD property is
learnable by mapping such instances to stochastic multi-armed bandits problem with side
information (Wu et al., 2015). A weaker version of the SD property is defined as follows:

Definition 2 (Weak Dominance (WD) (Verma et al., 2019b)). Let i? denote the optimal
arm. Then an instance P ∈ PUSS is said to satisfy weak dominance property if

∀j > i? : Cj − Ci? > P
{
Y i? 6= Y j

}
. (3)

We denote the set of all instances in PUSS that satisfy WD property by PWD.

The set of problems satisfying the WD property is maximally learnable, and any relaxation
of WD property makes the problem unlearnable (Verma et al., 2019b, Theorem 1). In the
following equation, we use an alternative characterization of the WD property, given as

ξ
.
= min

j>i?

{
Cj − Ci? − P

{
Y i? 6= Y j

}}
> 0. (4)

The larger the value of ξ, ‘stronger’ is the WD property, and easier to identify an optimal
arm. We later characterize the regret upper bound of our algorithm in terms of ξ.

3.1. Optimal Arm Selection

Without loss of generality, we set λi = 1 for all i ∈ [K] as their value can be absorbed into
the costs. Since i? = max

{
arg min

i∈[K]
(γi + Ci)

}
, it must satisfy following equation:

∀j < i? : Ci? − Cj ≤ γj − γi? , (5a)
∀j > i? : Cj − Ci? > γi? − γj . (5b)
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As the loss of an arm is not observed, the above equations can not lead to a sound
arm selection criteria. We thus have to relate the unobservable quantities in terms of the
quantities that can be observed. In our setup, we can compare the feedback of two arms,
which can be used to estimate their disagreement probability. For notation convenience, we
define pij

.
= P

{
Y i 6= Y j

}
. The value of pij can be estimated as it is observable. We use the

following result from Hanawal et al. (2017) that relates the differences in the unobserved
error rates in terms of their observable disagreement probability.

Proposition 1 (Proposition 3 in Hanawal et al. (2017)). For any two arms i and j,
γi − γj = pij − 2P

{
Y i = Y, Y j 6= Y

}
.

Now, using Proposition 1, we can replace Eq. (5a) by

∀j < i? : Ci? − Cj ≤ pji? , (6)

which only has observable quantities. For j > i?, we can replace Eq. (5b) by using the WD
property as follows:

∀j > i? : Cj − Ci? > pi?j . (7)

Using Eq. (6) and Eq. (7), our next result gives the optimal arm for a problem instance.

Lemma 1. Let P ∈ PWD and B = {i : ∀j > i, Cj − Ci > pij} ∪ {K}. Then the arm It =
min(B) is the optimal arm for the problem instance P .

Proof. Let i? be an optimal arm for the problem instance P . Since pi?j
.
= P

{
Y i? 6= Y j

}
, we

have ∀j < i? : Ci?−Cj ≤ P
{
Y i? 6= Y j

}
=⇒ Ci?−Cj ≯ P

{
Y i? 6= Y j

}
=⇒ j /∈ B,∀j < i?.

If any sub-optimal arm h ∈ B then the index of arm h must be larger than the index of
optimal arm i? in the cascade. Hence the element of the set B in round t is given as follows:

B = {i?, h1, . . . , ht,K},

where i? < h1 < · · · < ht < K. By construction of set B, the minimum indexed arm in set B
is the optimal arm.

Remark 1. The WD property holds trivially for the problem instances that satisfy SD
property as the difference of mean losses is the same as the disagreement probability between
two arms due to P

{
Y i
t = Yt, Y

j
t 6= Yt

}
= 0 for j > i. Also, by definition, the WD property

holds for all problem instances where the last arm of the cascade is an optimal arm.

4. Thompson Sampling based Algorithm for USS

Upper Confidence Bound (UCB) based methods are useful for dealing with the trade-off
between exploration and exploitation in bandit problems (Auer et al., 2002; Garivier and
Cappé, 2011). UCB has been widely used for solving various sequential decision-making
problems. On the other hand, Thompson Sampling (TS) is an online algorithm based on
Bayesian updates. TS selects an arm to play according to its probability of being the best
arm, and it is shown that TS is empirically superior then UCB based algorithms for various
MAB problems (Chapelle and Li, 2011). TS also achieves lower bound for MAB when
rewards of arms have Bernoulli distribution, as shown by Kaufmann et al. (2012).
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4.1. Algorithm: USS-TS

We develop a Thompson Sampling based algorithm, named USS-TS, that uses Lemma 1
to select optimal arm. The algorithm works as follows: It sets the prior distribution of
disagreement probability for each pair of arms as the Beta distribution, Beta(1, 1), which is
the same as Uniform distribution on [0, 1]. The variable Sij represents the number of rounds
when a disagreement is observed between arm i and j. Whereas, the variable Fij represents
the number of rounds when an agreement is observed. The variables S(t)

ij and F (t)
ij denote

the values of Sij and Fij at the beginning of round t.

USS-TS Thompson Sampling based Algorithm for Unsupervised Sequential Selection

1: Set ∀1 ≤ i < j ≤ K : S(1)
ij ← 1,F (1)

ij ← 1
2: for t = 1, 2, ... do
3: Set i = 1 and It = 0
4: while It = 0 do
5: Play arm i

6: ∀j ∈ [i+ 1,K] : compute p̃(t)
ij ← Beta(S(t)

ij ,F
(t)
ij )

7: If ∀j ∈ [i+ 1,K] : Cj − Ci > p̃
(t)
ij or i = K then set It = i else set i = i+ 1

8: end while
9: Select arm It and observe Y 1

t , Y
2
t , . . . , Y

It
t

10: ∀1 ≤ i < j ≤ It : update S(t+1)
ij ← S(t)

ij + 1{Y it 6=Y jt },F
(t+1)
ij ← F (t)

ij + 1{Y it =Y jt }
11: end for

In round t, the learner plays the arm i = 1 and then observe its feedback. For each
(i, j) pair, a sample p̃(t)

ij is independently drawn from Beta(S
(t)
ij , F

(t)
ij ). Then algorithm checks

whether the arm i is the best arm using Eq. (7) with p̃(t)
ij in place of p(t)

ij . If the arm i is not
the best, then the algorithm plays the next arm, and the same process is repeated. If the
arm i is the best arm for the round t, then the algorithm stops at arm It = i in the round t.

After selecting arm It, the feedback from arms 1, . . . , It are observed, which is used to
update the values of S(t+1)

ij and F
(t+1)
ij . The same process is repeated in the subsequent

rounds.

Remark 2. USS-TS is adapted for the USS problem from the Thompson Sampling algorithm
for stochastic multi-armed bandits. However, the feedback structure and the way arms are
selected in the USS setup differ from that in the stochastic multi-armed bandits.

4.2. Analysis

The following definitions and results are useful in subsequent proof arguments.

Definition 3. For the optimal arm i? and j ∈ [K], define

ξj
.
=

{
pi?j − (Ci? − Cj), if j < i? (8a)
Cj − Ci? − pi?j , if j > i? (8b)

where pi?j = P
{
Y i? = Y j

}
.
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Note that the values of ξj for all j ∈ [K] is positive under the WD property.

Definition 4 (Action Preference (�t)). USS-TS prefers the arm i over arm j in round t if:

i �t j
.
=

 p̃
(t)
ji ≥ Ci − Cj if j<i (9a)

p̃
(t)
ij < Cj − Ci if j>i (9b)

Definition 5 (Transitivity Property). If i �t j and j �t k then i �t k.

Definition 6. Let Ht denote the σ-algebra generated by the history of selected arms and
observations at the beginning of the time t and given as follows:

Ht
.
=
{
Is,
{
Y i
s

}
i≤Is , s = 1, . . . , t− 1

}
,

where Is denotes the arm selected and set
{
Y i
s

}
i≤Is denotes the observations from arm 1 to

Is in the round s. Define H1
.
= {}.

Fact 1 (Beta-Binomial equality, Fact 1 in Agrawal and Goyal (2012)). Let F betaα,β (y) be the
cumulative distribution function (cdf) of the beta distribution with integer parameters α and
β. Let FBn,p(·) be the cdf of the binomial distribution with parameters n and p. Then,

F betaα,β (y) = 1− FBα+β−1,y(α− 1).

Lemma 2 (Lemma 2 in Agrawal and Goyal (2013)). Let n ≥ 0 and µ̂n be the empirical
average of n samples from Bernoulli(µ). Let x < µ and qn(x)

.
= 1 − F betanµ̂n+1,n(1−µ̂n)+1(x)

be the probability that the posterior sample from the Beta distribution with its parameter
nµ̂n + 1, n(1− µ̂n) + 1 exceeds x. Then,

E
[

1

qn(x)
− 1

]
≤


3

∆(x) if n < 8/∆(x)

Θ

(
exp−

n∆(x)2

2 + exp−nd(x,µ)

(n+1)∆(x)2 + 1

exp
n∆(x)2

4 −1

)
if n ≥ 8/∆(x),

where ∆(x)
.
= µ− x and d(x, µ)

.
= x log

(
x
µ

)
+ (1− x) log

(
1−x
1−µ

)
.

Recall that pi?j is the disagreement probability between arm i? and j and p̃
(t)
i?j is the

sample of pi?j using Beta distribution with the t samples. Next, we bound the probability
by which USS-TS selects the sub-optimal arm whose index is smaller than the optimal arm.

Definition 7. For any j < i?, define qj,t as the probability

qj,t
.
= P

{
p̃

(t)
i?j ≥ pi?j − ξj |Ht

}
.

Lemma 3. Let P ∈ PWD and satisfies the transitivity property. If j < i? then the probability
by which USS-TS selects any sub-optimal arm j over the optimal arm is given by

P {It = j, j < i?|Ht} ≤
(1− qj,t)
qj,t

P {It ≥ i?|Ht} .
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Proof. If the sub-optimal arm j is selected then arm j is preferred over the arms whose
indexed is larger than j (Lemma 1). Hence we have

P {It = j, j < i?|Ht} = P {j �t k,∀k > j, j < i?|Ht} ≤ P {j �t k,∀k ≥ i?, j < i?|Ht} .

Since the feedback from an arm is independent of the feedback of other arms,

= P {j �t i?, j < i?|Ht}P {j �t k, ∀k > i?, j < i?|Ht} .

If arm j is preferred over the arm i? then p̃(t)
i?j < Ci? −Cj . As Ci? −Cj = pi?j − ξj for j < i?,

= P
{
p̃

(t)
i?j < pi?j − ξj |Ht

}
P {j �t k, ∀k > i?, j < i?|Ht}

=
(

1− P
{
p̃

(t)
i?j ≥ pi?j − ξj |Ht

})
P {j �t k, ∀k > i?, j < i?|Ht}

=⇒ P {It = j, j < i?|Ht} ≤ (1− qj,t)P {j �t k, ∀k > i?, j < i?|Ht} . (Definition 7) (10)

Similarly, the probability of selecting an arm whose index is larger than the optimal arm can
be lower bounded as follows:

P {It ≥ i?|Ht} ≥ P {It = i?|Ht} ≥ P {It = i?, i? �t j, j < i?|Ht}
= P {i? �t k, ∀k > i?, i? �t j, j < i?|Ht} (Lemma 1)
≥ P {i? �t j, j �t k,∀k > i?, j < i?|Ht} (Definition 5)
= P {i? �t j, j < i?|Ht}P {j �t k, ∀k > i?, j < i?|Ht} .

If arm i? is preferred over the arm j then p̃(t)
i?j ≥ Ci? −Cj . As Ci? −Cj = pi?j − ξj for j < i?,

= P
{
p̃

(t)
i?j ≥ pi?j − ξj |Ht

}
P {j �t k,∀k > i?, j < i?}

=⇒ P {It ≥ i?|Ht} ≥ qj,tP {j �t k, ∀k > i?, j < i?} . (Definition 7) (11)

Combining the Eq. (10) and Eq. (11), we get

P {It = j, j < i?|Ht} ≤
(1− qj,t)
qj,t

P {It ≥ i?|Ht} .

Lemma 4. Let P ∈ PWD and satisfies the transitivity property. If s be the number of times
the sub-optimal arm j is selected by USS-TS then, for any j < i?,

T∑
t=1

P {It = j, j < i?} ≤ 24

ξ2
j

+
∑
s≥8/ξj

Θ

(
exp−sξ

2
j /2 +

exp−sd(pi?j−ξj ,pi?j)

(s+ 1)ξ2
j

+
1

expsξ
2
j /4−1

)
.

Proof. (sketch) Using Lemma 3 and property of conditional expectations, we can have∑T
t=1 P {It = j, j < i?} =

∑T
t=1 E [P {jIt = j, j < i?|Ht}]. By using some simple algebraic

manipulations on quantity
∑T

t=1 E [P {It = j, j < i?|Ht}] with Lemma 2, we can get the
above stated upper bound.
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The detailed proof of Lemma 4 and all other missing proofs appear in the supplementary
material. Our next result is useful to bound the probability by which USS-TS prefers the
sub-optimal arms whose index is larger than the optimal arm.

Lemma 5. Let p̂(t)
i?j be the empirical estimate of pi?j and j > i?. Then, for any xj > pi?j

and yj > xj,
T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj

}
≤ lnT

d(xj , yj)
+ 1.

Proof. Define Lj(T ) = lnT
d(xj ,yj)

. Let Nj(t) be the number of times the output from arm j is
observed in t rounds. Then, the given probability term can be decomposed into two parts:

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj

}
=

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj , Nj(t) ≤ Lj(T )

}
+

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj , Nj(t) > Lj(T )

}
≤ Lj(T ) +

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj , Nj(t) > Lj(T )

}
. (12)

The first term of the above decomposition is bounded trivially by Lj(T ). To bound the
second term, we demonstrate that if Nj(t) is large enough and event p̂(t)

i?j ≤ xj is satisfied,
then the probability that the event p̃(t)

ij > yj happens, is small. Then,

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj , Nj(t) > Lj(T )

}
=

T∑
t=1

E
[
1{

p̂
(t)
i?j
≤xj ,p̃

(t)
i?j
>yj ,Nj(t)>Lj(T )

}]

= E

[
T∑
t=1

E
[
1{

p̂
(t)
i?j
≤xj ,p̃

(t)
i?j
>yj ,Nj(t)>Lj(T )

}|Ht
]]
.

Since Nj(t) and p̂(t)
i?j are determined by the history Ht,

= E

[
T∑
t=1

1{
p̂

(t)
i?j
≤xj ,Nj(t)>Lj(T )

}P{p̃(t)
i?j > yj |Ht

}]
. (13)

Now, by definition, Si?j(t) = p̂
(t)
i?jNj(t), and therefore, p̃(t)

i?j is a Beta(p̂
(t)
i?jNj(t) + 1, (1 −

p̂
(t)
i?j)Nj(t) + 1) distributed random variable. A Beta(α, β) random variable is stochastically

dominated by Beta(α′, β′) if α′ ≥ α, β′ ≤ β. Therefore, if p̂(t)
i?j ≤ xj , the distribution of p̃(t)

i?j

is stochastically dominated by Beta(xjNj(t) + 1, (1− xj)Nj(t)). Therefore, given a history
Ht such that p̂(t)

i?j ≤ xj and Nj(t) > Lj(T ), we have

P
{
p̃

(t)
i?j > yj |Ht

}
= 1− F betaxjNj(t)+1,(1−xj)Nj(t)(yj).

553



Verma Hanawal Hemachandra

Now, using Beta-Binomial equality (Fact 1), we obtain that for any fixed Nj(t) > Lj(T ),

1− F betaxjNj(t)+1,(1−xj)Nj(t)(yj) = FBNj(t),yj (xjNj(t)) (using Fact 1)

Here FBNj(t),yj (xjNj(t)) is the cdf of Binomial distribution with parameter yj and Nj(T )

observations. Let S ′t be the number of successes observed in Nj(T ) observations. Then,

1− F betaxjNj(t)+1,(1−xj)Nj(t)(yj) = P
{
S ′t ≤ xjNj(t)

}
= P

{
S ′t

Nj(t)
≤ xj

}
= P {ŷj ≤ xj} (using ŷj = S ′t/Nj(t))

≤ exp−Nj(t)d(xj ,yj) (using Chernoff-Hoeffding bound)

≤ exp−Lj(t)d(xj ,yj), (as Nj(t) > Lj(T ))

which is smaller than 1/T because Lj(T ) = log(T )
d(xj ,yj)

. Substituting, we get that for a history

Ht such that p̂(t)
i?j ≤ xj and Nj(t) > Lj(T ),

P
{
p̃

(t)
i?j > yj |Ht

}
≤ 1

T
.

For other history Ht, the indicator term 1{
p̂

(t)
i?j
≤xj ,Nj(t)>Lj(T )

} in Eq. (13) will be 0 as either

event p̂(t)
i?j ≤ xj or event Nj(t) > Lj(T ) is violated. Summing over t, this bounds the right

hand side term in Eq. (13) as follows:

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj , Nj(t) > Lj(T )

}
≤ E

 T∑
t=1

1{
p̂

(t)
i?j
≤xj ,Nj(t)>Lj(T )

}
T


≤ E

[
T∑
t=1

1

T

]
= 1.

Replacing the second term in Eq. (12) by its upper bound and Lj(T ) with its value,

T∑
t=1

P
{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj

}
≤ lnT

d(xj , yj)
+ 1.

Lemma 6. For any xj > pi?j,

T∑
t=1

P
{
p̂

(t)
i?j > xj

}
≤ 1

d(xj , pi?j)
.

Proof. (sketch) This result is easily proved by using Chernoff-Hoeffding bound. See details
in the supplementary material.
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Lemma 7. Let P ∈ PWD. For any ε > 0 and j > i?,
T∑
t=1

P {j �t i?, j > i?} ≤ (1 + ε)
lnT

d(pi?j , pi?j + ξj)
+O

(
1

ε2

)
.

Proof. (sketch) Let pi?j < xj < yj < pi?j + ξj where j > i?. Then, it can be easily
shown that

∑T
t=1 P {j �t i?, j > i?} ≤

∑T
t=1 P

{
p̂

(t)
i?j ≤ xj , p̃

(t)
i?j > yj

}
+
∑T

t=1 P
{
p̂

(t)
i?j > xj

}
.

The upper bound on first term of right hand side quantity is given by Lemma 5 and the
upper bound of the second term of right hand side quantity is given by Lemma 6. Then, for
ε ∈ (0, 1) with suitable values of xj and yj , we can get the above stated upper bound.

Let ∆j = Cj + γj − (Ci? + γi?) be the sub-optimality gap for arm j. Now we state the
problem dependent regret upper bound of USS-TS.

Theorem 1 (Problem Dependent Bound). Let P ∈ PWD and satisfies the transitivity
property. If ε > 0 then, the expected regret of USS-TS in T rounds is bounded by

RT ≤
∑
j>i?

(1 + ε) lnT

d(pi?j , pi?j + ξj)
∆j +O

(
K − i?

ε2

)
,

Proof. (sketch) Let Mj(T ) is the number of times arm j is selected by USS-TS. Then, the
regret of USS-TS is given by RT =

∑
j∈[K] E [Mj(T )] ∆j =

∑
j∈[K]

∑T
t=1 E

[
1{It=j}

]
∆j =∑

j∈[K]

∑T
t=1 P {It = j}∆j . We divide the regret into two parts and it can be re-written as

RT ≤
∑

j<i?
∑T

t=1 P {It = j, j < i?}∆j +
∑

j>i?
∑T

t=1 P {It = j, j > i?}∆j . The first part of
the regret is upper bounded by using Lemma 4. For the second part, when arm It > i? is
selected, then there exists at least one arm k > i?, which must be preferred over i?. Using
transitivity property and a recursive argument, we can show that the selected arm is preferred
over the optimal arm. Hence,

∑
j>i?

∑T
t=1 P {It = j, j > i?}∆j can be upper bounded by∑

j>i?
∑T

t=1 P {j �t i?, j > i?}∆j . We can upper bound
∑

j>i?
∑T

t=1 P {j �t i?, j > i?}∆j

by using Lemma 7 to get the above stated regret upper bound for USS-TS.

Next we present problem independent bounds on the regret of USS-TS.

Theorem 2 (Problem Independent Bound). Let P ∈ PWD and satisfies the transitivity
property. Then the expected regret of USS-TS in T rounds

• for any instance in PSD is bounded as

RT ≤ O
(√

KT lnT
)
.

• for any instance in PWD is bounded as

RT ≤ O
(

(K lnT )1/3 T 2/3
)
.

Proof. (sketch) To get the above problem independent regret upper bound, we maximize
the problem-dependent regret of USS-TS with respect to the value of ξj .

Corollary 1. Let P ∈ PWD and satisfies the transitivity property. Then the expected regret of
USS-TS on PSD is Õ(T 1/2) and on PWD it is Õ(T 2/3), where Õ hides K and the logarithmic
terms that are having T in them.
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Discussion on optimality of USS-TS: Stochastic partial monitoring problems can be
classified as an ‘easy,’ ‘hard,’ or ‘hopeless’ problem with expected regret bounds of the order
Θ(T 1/2),Θ(T 2/3), or Θ(T ), respectively. And there exists no other class of problems in
between (Bartók et al., 2014). The class PSD is regret equivalent to a stochastic multi-armed
bandit with side observations (Hanawal et al., 2017), for which regret scales as Θ(T 1/2),
hence PSD resides in the easy class and our bound on it is near-optimal. Since PWD ) PSD,
PWD is not easy problem. Since PWD is also learnable, it cannot be a hopeless problem.
Therefore, the class PWD is hard. We thus conclude that the regret bound of USS-TS is also
near-optimal in T up to a logarithmic term.

5. Experiments

We evaluate the performance of USS-TS on different problem instances derived from synthetic
and two real datasets: PIMA Indians Diabetes (Kaggle, 2016) and Heart Disease (Cleveland)
(Detrano, 1998). The details of the used problem instances are given as follows.

Synthetic Dataset: We generate synthetic Bernoulli Symmetric Channel (BSC) dataset
(Hanawal et al., 2017) as follows: The true binary feedback Yt is generated from i.i.d. Bernoulli
random variable with mean 0.7. The problem instance used in the experiment has three
arms. We fix feedback as true binary feedback for the first arm with probability 0.6, second
arm with probability 0.7, and third arm with probability 0.8. To ensure strong dominance,
we impose the condition during data generation. When the feedback of arm 1 matches the
true binary feedback, we introduce error up to 10% to the feedback of arm 2 and 3. We
use five problem instances of the BSC dataset by varying the cumulative cost of playing the
arms as given in Table 1.

Values/Arms Arm 1 Arm 2 Arm 3 WD
PropertyError-rate (γi) 0.3937 0.2899 0.1358

Instance 1 Costs 0.05 0.285 0.45 X

Instance 2 Costs 0.05 0.1 0.53 X

Instance 3 Costs 0.05 0.3 0.45 X

Instance 4 Costs 0.05 0.25 0.29 X

Instance 5 Costs 0.1 0.2 0.41 5

Table 1: WD propoerty doesn’t hold for Instance 5. Optimal arm’s cost is in red bold font.

Real Datasets: An arm i represents a classifier whose prediction is treated as the feedback
of the arm i. The disagreement label for (i, j) pair is computed using the labels of classifier
(Clf.) i and j. In Heart Disease dataset, each sample has 12 features. We split the features
into three subsets and train a logistic classifier on each subset. We associate 1st classifier
with the first 6 features as input, including cholesterol readings, blood sugar, and rest-ECG.
The 2nd classifier, in addition to the 6 features, utilizes the thalach, exang and oldpeak
features, and the 3rd classifier uses all the features. In PIMA Indians Diabetes dataset, each
sample has 8 features related to the conditions of the patient. We split the features into three
subsets and train a logistic classifier on each subset. We associate 1st classifier with the first
6 features as input. These features include patient profile. The 2nd classifier, in addition to
the 6 features, utilizes the feature on the glucose tolerance test, and the 3rd classifier uses all
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the previous features and the feature that gives values of insulin test. The PIMA Indians
Diabetes dataset has 768 samples, whereas the Heart Disease dataset has only 297 samples.
As 10000 rounds are used in our experiments, we select a sample from the original dataset in
a round-robin fashion and give it as input to the algorithm. The details about the different
costs used in five problem instances of the real datasets are given in Table 2.

Values/
Classifiers (Arms)

PIMA Indians Diabetes Heart Disease
WD
PropertyClf. 1 Clf. 2 Clf. 3 Clf. 1 Clf. 2 Clf. 3

Error-rate (γi) 0.3098 0.233 0.2278 0.2929 0.2025 0.1483

Instance 1 Costs 0.05 0.28 0.45 0.02 0.32 0.45 X

Instance 2 Costs 0.2 0.25 0.269 0.2 0.25 0.395 X

Instance 3 Costs 0.05 0.309 0.45 0.02 0.34 0.45 X

Instance 4 Costs 0.2 0.25 0.255 0.2 0.25 0.3 X

Instance 5 Costs 0.05 0.146 0.3 0.2 0.25 0.325 5

Table 2: Costs of different problem instances which are derived from real datasets. WD
property doesn’t hold for Instance 5 and cost of optimal arm is in red bold font.

Verifying WD property: The error-rate associated with each arm is known to us as given
in Table 1 and Table 2 (but note that the error-rates are unknown to the algorithm); hence
we can find an optimal arm for a given problem instance. After knowing optimal arm, WD
property is verified by using the disagreement probability estimates after 10000 rounds.

5.1. Experimental Results

We fix the time horizon to 10000 in all experiments and repeat each experiment 500 times.
The average regret is presented with a 95% confidence interval. The vertical line on each
plot shows the confidence interval.

(a) BSC Dataset (b) PIMA Indians Diabetes (c) Heart Disease

Figure 1: Regret of USS-TS for different problem instances derived from synthetic and real datasets.

Expected Cumulative Regret v/s Time Horizon: The Regret of USS-TS versus Time
Horizon plots for the different problem instances derived from BSC Dataset and two real
datasets are shown in Figure 1. These plots verify that any instance that satisfies WD
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property has sub-linear regret. Note that USS-TS has linear regret for the Instance 5 as it
does not satisfy WD property. We also compare the performance of USS-TS with existing
UCB based algorithm USS-UCB algorithm of Verma et al. (2019b) with value of α = 0.5
(best possible parameter value mentioned in the paper) and Algorithm 2 of Hanawal et al.
(2017) with value of α = 1.5 (as used in the paper) on Heart Disease and PIMA Indians
Diabetes datasets. As expected, USS-TS outperforms other algorithms with large margins as
shown in Fig. 2(a) (PIMA Indians Diabetes dataset) and Fig. 2(b) (Heart Disease dataset).

(a) PIMA Indians Diabetes (b) Heart Disease (c) BSC Dataset

Figure 2: Comparing regret of USS-TS with USS-UCB (Verma et al., 2019b) and Algorithm 2
(Hanawal et al., 2017) for real datasets (Fig. 2(a) and Fig. 2(b)). Regret behavior of
USS-TS versus WD property for BSC Dataset is shown in Fig. 2(c).

Learnability v/s WD Property: We experiment with different problem instances of the
BSC dataset to know the relationship between regret of USS-TS and WD property. We
fixed an optimal arm and vary the cumulative cost of using arms in such a way that we pass
from the case where WD property does not hold (ξ ≤ 0 or Cj − Ci? ∈ (γi? − γj , pi?j ] for any
j > i? where ξ := minj>i? ξj) to the situation where WD property holds (ξ > 0). When
WD property does not hold for any problem instance, USS-TS treats a sub-optimal arm
as the optimal arm. In such problem instances, as Cj − Ci? increases, the regret will also
increase due to selection of sub-optimal arm by USS-TS until WD property does not satisfy
for that problem instance. When WD property does not satisfy for a problem instance then
Cj − Ci? ∈ (γi? − γj , pi?j ] holds in such cases, hence, it is easy to verify that ξ can not be
smaller than −max(pi?j − (γi? − γj)).

We consider the problem instances with the minimum possible value of ξ for which
problem instance satisfies WD property. Then we increase the value of ξ by increasing the
cumulative cost of the arm. The regret versus ξ plots for BSC Dataset is shown in Fig. 2(c).
It can be observed that there is a transition at ξ = 0. Through our experiments, we show
that the stronger the WD property (large value of ξ) for the problem instance, it is easier to
identify the optimal arm and, hence the less regret is incurred by USS-TS.

6. Conclusion

We studied the unsupervised sequential selection (USS) problem, where both accuracy and
cost of using arms are important. It is a variant of the stochastic partial monitoring problem,
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where the losses are not observed. Still, one can compare the feedback of two arms to see
if they agree or disagree. We estimate the disagreement probability between each pair of
the arms and develop an algorithm named USS-TS that achieves near-optimal regret. We
demonstrate our algorithms’ performance on two real datasets and empirically show that
any problem instance satisfying WD property has sub-linear regret. We ignored the inherent
side observations due to the arms’ cascade structure. By using these side observations, one
can tighten the regret bounds. Another interesting future direction is to develop algorithms
that relax the cascade structure assumption and selects the best subset of arms.
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