THOMPSON SAMPLING FOR UNSUPERVISED SEQUENTIAL SELECTION

Supplementary Material for

‘Thompson Sampling for Unsupervised Sequential Selection’

Appendix A. Useful results needed to prove regret bounds of USS-TS

We use the following results in our proofs.

Fact 2 (Chernoff bound for Bernoulli distributed random variables). Let X1,..., X, be i.i.d.
Bernoulli distributed random variables. Let fi, = 1 3" | X; and p = E[X;]. Then, for any
€€ (0’ 1- ,U,),

P{fin > p+e} <exp(—d(p+e,pu)n),

and, for any e € (0, ),
P{fin < p—e} <exp(—d(p—e,u)n),

where d(x, u) = zlog (%) + (1 —x)log (t—z)

See Section 10.1 of Chapter 10 of book ‘Bandit Algorithms’ (Lattimore and Szepesvari, 2020)
for proof.

Fact 3 (Pinsker’s Inequality for Bernoulli distributed random variables). For p,q € (0,1),
the KL divergence between two Bernoulli distributions is bounded as:

d(p,q) > 2(p — q)*.

Fact 4. Let x > 0 and D > 0. Then, for any a € (0,1),

L e 2" (3 >1n(1/a) /D)
expPr —1 — = (x <In(1l/a)/D).

Further, we have,
n

244L7<@4L+l
po expPr -1 — Dz D)’

1
expPr —1

Proof. Using exp? > y+1 (by Taylor Series expansion), we have < ﬁ as expP* —1 >

— Dz . —
P Since exp~P

Dzx. We can re-write L = T is strictly decreasing function for

» expPr —1 l—exp— Dz *

all Dz > 0, it is easy to check that exp~™* < @ holds for any = > In(1/a) /D and a € (0,1).

Hence, 1?;?(;?;1 < exf__fx for all x > 1n(1/a) /D.

Now we will prove the second part,

n

1 In(1/a) = exp ¥
P e ey D DR v
z=1 z>In(1/a)/D
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_In(i/a) 1 / oxp-D" s

- D2 (I—a) Ju=o
_ In(1/a) N 1 (exp_Dx> >
D? (1—a) -D =0
_ In(1/a) n 1 0— exp
D2 (1—-a) -D
_ In(1/a) 1
-~ D? (1—a)D
. 1 11
— <
- ;expDI—l_@<D2+D> -
Fact 5. Lete € (0,1) and 0 <z <y < z<1. Ifd(y,z) =d(z,z)/(1+¢€) then
d(z, z)
x> : _
R P, (20=2)
z(1—2)

Proof. By definition
1-—

ﬁ

d(p,q) = plnf ln( )
ln(() (=) )

:n< q(1—p) p)
P(l—Q) 1—q

— oo (=) 40 (125)

Set I(p,q) = In ( 8 ZD' Note that [(p,-) is a strictly decreasing function of p and positive
for all p < q. We can re-arrange above equation as

p-lp.q) = —d(p, )+ln<1_p>

—4q

Using above equation, we have

y.l(y,z)—:p-l(x,z):—d(y,z)—i-ln(i_y) +d(x,z)—1n<1_$>.

—z 1—=z2

Using d(y, z) = d(z,2)/(1 +¢),

€ 1—vy
y%w@—xuma=LHMLA+m@fx)

After adding y(I(z, z) — I(y, z)) both side, we have

(y —x)l(z,2) = 1 igd(w,z) +In (1:5) +y(l(x,z) — Uy, 2)).
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.5 = (2) v 4= (242

= 1 d(@,2) + d(y,2)

As d(p,q) > 0 and dividing both side by I(z, z),

d(z,z)
1+e Iz, z)

== y—x >

Substituting value of I(x, z) in the above equation, we get

y—z> e dz2) 0
ST ()
z(1—=2)

Appendix B. Leftover proofs from Section 4

Lemma 4. Let P € Pwp and satisfies the transitivity property. If s be the number of times
the sub-optimal arm j is selected by USS-TS then, for any j < i*,

. |
R I !

S P{L=jj<i}< 5+ > @<exp YT e e

t=1 I s>8/¢; i I expt -1

Proof. Applying Lemma 3 and properties of conditional expectations, we have

T T
S P{L=j,j<i*y =) EP{L=jj<i*[H}].

t=1 t=1

As g is fixed given Hy,

T T
s 1—gj "
= g P{It:],j<Z}SE E[(WP{LZMHt}]
t=1 t=1

— Jit
T
1_ .
S -
t=1 s
Using law of iterated expectations,
- — [ = g50)
S — it
— Srtn=ii<it< e[, "
t=1 t=1 b
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Let s,, denote the time step at which the output of arm i* is observed for the m** time
for m > 1, and let s) = 0. For j < ¢*, whenever the output from arm i* is observed
then the output from arm j is also observed due to the cascade structure. Note that
gjt =P {ﬁgf)] > Dirj — fj\Ht} changes only when the distribution of ﬁg)J changes, that is,
only on the time step when the feedback from arms i* and j are observed. It only happens
when selected arm I; > ¢*. Hence, g;; is the same at all time steps t € {sp, +1,..., sm41} for

every m. Using this fact, we can decompose the right hand side term in Eq. (14) as follows,

T—1 q 1) Sm+41
‘7 ’VV'L+
Sl DRSS {}]

QJt
ZE { LUQI*}] Z . q5,5m+1
om t=8m+1

S E |:(]‘_qj:5m+1):|
4j,sm+1

Using above bound in Eq. (14), we get

Z]P’{It_]j<z*}<T§:l [ ‘1 _1}

m= 0 qj7$m+1

Substituting the bound from Lemma 2 with u = pij,z = pp; — &, A(x) = &, and
qn(x) = gj.s,,, we obtain the following bound,

T .

o 24 B exp 54 Pix ;=& pix ;) 1
> P{It:],]<2*}§§7+ 2 G(GXP w2y p( +1)€2 T —en - U
t=1 i s>8/¢ § §; exp™i’® —1

Lemma 6. For any x; > pij,

- 0 1

S G T
; v ! d(xjvpl*])
Proof. Let s, denote the time step at which the outputs of arm * and j is observed for the
mt time for m > 1, and let sy = 0. Note that probability P {ﬁgf)] > :Ej} changes when the
outputs from both arm ¢* and j are observed. Hence, we have

T T—
Z}P’{ >x]} Z]P’{p” (Smt1) > xj}

m=0
T-1
= D P{pirj(smi1) = pirj > x5 — pirs}
m=0
T-1
< exp FdPij 5 =PixjPirj) (using Fact 2)
m=0
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T—
Z 7k'd :E] yPi* ) .
m=0
Using > sgexp™*® < 1/a, we get
ip{ﬁ(t).>x»}<1 0
i*j J — d(xj7pz*3) .

t=1

Lemma 7. Let P € Pwp. For any e > 0 and j > i*,

T
Y P{jm it > i < (1+e) T +0 (12)
=1 d(pixj, pirj + &5) 2

Proof. Let pix; < x; <yj < pixj + & for any j > ¢*. Than,

ZP{J i, j >} = ZP{P” > pirj +§g}

<SR < 0yl > )+ YR > ).

t=1 t=1

Using Lemma 6 and Lemma 5, we have

InT 1

P{j> S < - 414
Z i j>i< (%%)Jr +d(ﬂ?japz‘*j)

For e € (0,1), we set z; € (pi*j, pirj +&;) such that d(zj, pij +&5) = d(pij, pixj + &)/ (1 +e€),
and set Yj € (w]apz*] + f]) such that d(l‘j,y]) = d(xjapl*j + gj)/(l + 6) — d(pz*],pz*j +
&)/ (1+ £)2. Then this gives

In(T) 2 In(T)
d(ﬂ?j,yj) - (1+€) d(pz *jy Pi*j +£J)

USiIlg Fact 9, ifee (0, 1), T € (pi*j,pi*j +§j), and Cl(ﬂ?j,pi*j —f-f]) = d(pi*japi*j +f])/(1+6)
then
d(pixj, pixj + &5)

(Pix j+E€5) (L=pix5) ) ’
Pix; (1=pix j—&;5)

TP 2 1+e
n

Using Pinsker’s Inequality (Fact 3), 1/d(zj, pi;) < 1/2(x; — pixj)* = O(1/€%) where big-Oh
is hiding functions of the p;+; and &;,

T
ok In(T) 1
Y P{j - i%, >} < (1+e)? +O<>
= et = ) d(pirj, pirj + &j)



VERMA HANAWAL HEMACHANDRA

< (1+3e)— @) ;+0 <€12>

d(pixj, pirj + &
In(T) 1
<(14¢€ O —3
<(l+e¢ )d(pi*j;pz‘*j sy + (5,2> ,

where ¢/ = 3¢ and the big-Oh above hides p;+; and &; in addition to the absolute constants.
Replacing € by &’ completes the proof. O

Theorem 1 (Problem Dependent Bound). Let P € Pwp and satisfies the transitivity
property. If € > 0 then, the expected regret of USS-TS in T rounds is bounded by

K-
%y < A-+O< )
= Z dpz jvaj+£j) ! g2

Proof. Let M;(T) is the number of times arm j is selected by USS-TS. Than, the regret is

%= STEMD]A = Y E [Zﬂut—]}

je(K] je[K]
T
Z Z M=) A= ) ZP{It—J}A
je[K] t=1 JE[K] t=1
T
Z S P{L=j.j#i}A,
K t=1
T

= Rp =Y Y P{L,=jj<i*} A +ZZP{L5—]]>1}A (15)

J<e* t=1 j>ir t=1

First, we bound the first of term of summation. From Lemma 4, we have

5 Sd(pi*j—éjmi*j) 1
IP’I—jj<z*< + © expsf/2 + )
Z . fer 2 ( g 1

2/4
s>8/¢; exp™// -

Using > ~oexp™ < 1/a, d(pisj — &, pirj) < 2512 (Fact 3), and Fact 4, we have

zp{ft_”d}gg+@(;+;+(;+;))gom. ()
J J J J

If arm I; > ¢* is selected then there exists at least one arm kq > ¢* which must be preferred
over ¢*. If the index of arm k; is smaller than the selected arm, then there must be an arm
ko > k1, which must be preferred over k. By transitivity property, arm ks is also preferred
over i*. If the index of arm ks is still smaller of the selected arm, we can repeat the same
argument. Eventually, we can find an arm k' whose index is larger than the selected arm,
and it is preferred over arm k;, ..., k1,7*. Note that the selected arm must be preferred over
k’;: hence the selected arm is also preferred over i*. We can write it as follows:

T T
D P{Li=4> iy A=Y P{Li=5.j > K ek k= K > Gk > i) A,
= t=1
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T
= Z]P’{It =j,j >k =i kK > j} A; (Definition 5)
t=1

T
= Z]P{j ¢ k,Vk > j,j > i K =i k' > j} Aj (Lemma 1)

t=1
T
= Y P{j >~ k,Vk>j,j > i%j = i} A; (Definition 5)
t=1
T T
= Y P{Li=j,j >} A; < ) P{j= %5 > A (17)
t=1 t=1

Using Lemma 7 to upper bound Zthl P{j =¢1*,7 >4} A; and with Eq. (16), we get

Ry <0(1)+ 3 ((1 r W) o (;)) A,

= Pirj, Pirj + &j)

(14¢e)In(T) (K—z’*)
= Rr < A+ 0 . O
' Jg d(pivj, pirj + &) e?

Theorem 2 (Problem Independent Bound). Let P € Pwp and satisfies the transitivity
property. Then the expected regret of USS-TS in T rounds

e for any instance in Psp is bounded as

%Tgo(\/m).

e for any instance in Pwp is bounded as

Ny <O ((KlnT)1/3 T2/3) :

Proof. Let M;(T) is the number of times arm j preferred over the optimal arm in 7" rounds.
From Lemma 4, for any j < ¢*, we have

T
E[M;(T)] =Y P{I, = j,j <i*}

t=1
24 —sd(p; i—&5pi* ) 1
< =) + Z © expfsfgz'/2+exp J . J N L |
& s>8/¢; (s +1)&; exp*6 /4 _1
—sd( i*'*f'-, 7;*')
It is east to show that &R -7 I 1

2
(s+1)é7 = (12 and exp*s/* —1 > 85?—/4 (as exp? > y+1),
J J

24 1 1 4

5>8/¢;
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By using > qexp* < 1/a and ST (1)s) =logT,

24 1 InT InT
EM(T)<5+0 |5+ | = EM(D) <0 =5 ). (18)
e gre &
For any j > i*, using Lemma 5 and Lemma 6 with Eq. (17), we have
E[M ZIP’{It—]j>z*}<Z]P’{j>tz,j>z*}< nt +1+¥.
($J7ya) d(xj, pirj)
2 ; 262 2§]2.

By setting z; = pi+; + %’ and y; = pij + 5
(using Fact 3).

=, we have d(z;,y;) > - and d(xj, pij) > 5

E[M,(T)] < 9;?+1+;§2
J
— E[M,(T)] <O (hgf) | (19)

The regret of USS-TS is given by
S = S BM(T)) A = Y EMG(D] A+ Y EM(T
jAi* j<i* j>i*

Recall A; = Cj +v; — (Cix + 7v4+) and for any two arms ¢ and j, 0 < p;; — (75 — vir) < B.
By using Eq. (8a) for j <, we have A; =& — (pir; — (v — 7)) = A, <&, and using
Eq. (8b) for j > *, we have Aj = & + (pirj — (vir — 7)) = A; <& + 8. Replacing A,

= Ry < Y E[M;(T)]&+ > E[M;(T)] (& + B).

J<i* j>ix

Let 0 < ¢ < 1. Then Ry can be written as:

R < Y E[M(T) &+ Y E[M(T)]¢

§'>¢; &'<g;
j<i* j<i*
+ Y EMT)] (& +B8) + D> EIM(T)] (& + B).
&>¢; §'<g;
j>* J>i*

Using > E[M;(T)] <T for any j such that £ > &;,

§>¢;
Ry <TE+ Y EM(T)| &+ > EB[M(T)] (& + B)-
£'<&; £'<¢;
J<i* J>i
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Substituting the value of Rr from Eq. (18) and Eq. (19),

R <T¢ + Y 0 <5ng) >0 ( S +f2 mT)
J

£<g €<g
j<i* j>i*
InT InT InT
<T£+ZO<Z> Zo(n [“;)
€< / €< & &
j<i* J>i*
KInT KInT BKInT
ST§/+O(5/>+O< ¢ + Iz >

) 1
—re ot (54 2))

Let there exist a variable « such that O (K InT <é + 5%)) <aKInT (é + E’%>’

1 B
= Ry <=T¢ +aKlnT(§/ 5'2). (20)
Consider Pwp class of problems. As ¢’ < 1 and § < 2 (as arms in the cascade may not be

L) <et<3,

ordered by their error-rates, it is possible that v; < v;), we have (é +

3aKInT

Ry <=T¢ + %

1/3 .. .
Choose & = (W) / which maximize above upper bound and we get,

(6aK InT)Y? 2/
2
— Ry <2(6aKInT)PT3 =0 ((KlnT)1/3 T2/3)

Ry < (60K InT)Y31%3 4

It completes our proof for the case when any problem instance belongs to Pwp.

Now we consider any problem instance § € Psp. For any 6 € Psp = Vj € K|, pij =
v —7; = B =0 (Setting P {Yi =Y, Y # Y} =0 for j > ¢ in Proposition 3 of Hanawal
et al. (2017)). We can rewrite Eq. (20) as
aKInT

&

Ry <TE +

Choose ¢ = (%)1/ ? which maximize above upper bound and we get,
— Ny <2(aKTInT)/?=0 (\/KTlnT>

This complete proof for second part of Theorem 2. O
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