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Abstract
We consider the problem of efficient decomposition of a given point x in an n-dimensional
convex polytope into convex combination of its extreme points. Besides the widespread
scopes of the problem in theory of convex polytopes in mathematics, the problem also has
applications in online combinatorial optimization problems. Towards this we first propose a
general class of convex polytopes–Generalized Submodular Base Polytopes (GSBPs)–that
includes several well known convex polytopes as its special case including permutahedron,
k-forest, spanning tree, combinatorial subset choice polytopes. We next propose a general
decomposition algorithm for the above class of GSBPs that uses the novel idea of first
decomposing the given point into at most n face centers, and further decomposing each
face center into extreme points of their corresponding faces. In addition, we discover a few
special class of partition-respecting and symmetric GSBPs for which the above two steps
could be performed in respectively O(n2 + nT (f)) and O(n2T (f)) 1 time. We also give a
complete characterization of the underlying submodular function f , for which the associated
GSBP satisfies the above properties. One interesting fact is that we show that the support
of the resulting decomposition with our proposed algorithm is only poly(n) in the number
of extreme points which respects efficient sampling from the resulting distribution. Finally
we corroborate our theoretical results with empirical evaluations.

1. Introduction

The theory of convex polytopes has many applications across mathematics and computer
science Gao and Lauder (2001); Ewald (2012); Meurant (2014). Of course the core problem
has significance in mathematics in its own right. In machine learning community a very
relevant application is online learning in combinatorial decision spaces, e.g. in online routing,
job scheduling, subset selection, resource allocation etc., Rahmanian et al. (2016); Dai et al.
(2017); Audibert et al. (2013); Hazan et al. (2016a); Hazan and Kale (2009); Chen et al.
(2008); Rakhlin et al. (2010); Gopalan et al. (2014); Neu and Valko (2014) where the goal is
to find the “optimal (profit maximizing) decision” in an online fashion. However classical
algorithms like Exponential-Weight or Weighted-Majority algorithm Freund and Schapire
(1997); Arora et al. (2012), fail to give real time performances as they require to maintain a
weight distribution over the decision simplex, which is of combinatorially large dimension in
the current setup Littlestone and Warmuth (1994); Kale (2007). Here precisely the polytope
decomposition becomes useful as now it suffices to maintain a point in a suitably chosen
polytope whose extreme points has an one-to-one mapping to each point in the decision

1. T (f) is the unit time to evaluate the submodular function f at any input point.
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space, and one can recover back the desired distribution by decomposing that point into
convex combination of the extreme points of the polytopes; for instance the Alg. 1 of Suehiro
et al. (2012), PermELearn algorithm Helmbold and Warmuth (2009), or more generally
LDOMD algorithm Rajkumar and Agarwal (2014) etc.
Related Works. In recent years, the above problem was studied for some specific polytopes
arising out of different combinatorial structures, e.g. rankings, spanning trees, k-forests,
job scheduling, subset selection, shortest paths etc Koolen et al. (2010); Helmbold and
Warmuth (2009); Yasutake et al. (2011, 2012); Rajkumar and Agarwal (2014); Fujita et al.
(2013); Hazan et al. (2016b); Bubeck (2011); Fujita et al. (2014); Audibert et al. (2013,
2014). Many of these polytopes turn out to be associated with an underlying submodular
function, known as submodular base polytopes (SBPs). Suehiro et al. (2012) give a general
O(n6 + n5T (f)) time algorithm for decomposing a point in a SBP into its extreme points
by solving a submodular minimization problem (T (f) being the unit time to evaluate the
submodular function f). Yasutake et al. (2011) consider the permutahedron polytope, and
give a O(n2) decomposition algorithm for the same. Generalizing above to any cardinality
based SBPs (of which permutahedron is a special case), Suehiro et al. (2012) also give an
O(n2) time decomposition algorithm. In another line of work Hoeksma et al. (2014) consider
the single machine scheduling polytopes (SMSP) which in general are not SBPs, and give a
O(n2) time decomposition for the same.

From the above chain of developments, the following questions thus arise naturally: Are
there interesting generalizations of SBPs that respects an O(poly(n)) decomposition? Can we
characterize the structural properties of such a polytope under which such decompositions are
possible? What is the common intuition behind generalizing the above algorithms?
Contributions. Our specific contributions are as follows:

1. We conceptualize a class of convex polytopes: generalized submodular base polytopes
(GSBP), that generalizes several well studied class of convex polytopes including
permutahedrons Yasutake et al. (2012), spanning-trees, k-subsets, SBPs, and SMSPs
Suehiro et al. (2012); Hoeksma et al. (2014); Rajkumar and Agarwal (2014); Koolen
et al. (2010) etc.

2. Polytime decomposition into face centers (Sec. 4): Towards this, we first define
a special class of partition-respecting GSBP (Def. 7), and give an O(n2 + nT (f)) time
efficient algorithm that decomposes any point x of the GSBP into convex combination
of at most n of its face centers, say c1, c2, . . . , ct ∈ Rn, such that x =

∑t
i=1 λ

ici,
where λi ∈ [0, 1], ∀i ∈ [t],

∑t
i=1 λ

i = 1, t ≤ n (see Algorithm 2 and Thm. 11). We
also give a complete characterization of the underlying submodular function of any
partition-respecting GSBP (Thm. 10).

3. Polytime decomposition of face centers into extreme points (Sec. 5): Our
end goal being decomposing x in terms of extreme points of the GSBP, we further
propose to decompose each face center ci into convex combinations of the extreme
points of its corresponding face. Towards this, we introduce notion of structural
symmetries of GSBP (Def. 18), under which any of its face center can shown to be
O(poly(n)T (f)) time decomposable (Thm. 19). We also analyze two such special
symmetric structures: circular and reflexive symmetry (Def. 22 and 25) along with a
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Efficient GSBP decomposition

(a) Input: Any
point x in GSBP
B(f,w) ⊂ Rn,
which satisfies
two structural
properties: 1.
Partition Re-
specting, and
2. Symmetric.
(Def 7 and 18)

(b) Step 1. Decom-
pose x ∈ B(f,w)
into convex com-
bination of
at most n
face centers:
c1, c2, . . . , ct ∈
Rn, such that
x =

∑t
i=1 λ

ici

(Alg. 2, Sec. 4)

(c) Step 2. Further
decompose each
ci into convex
combination
of extreme
points of it face:
ei1, e

i
2, . . . , e

i
τ i
,

such that
ci =

∑τ i

j=1 λ̃
ieij

(d) Final Output.
x as convex com-
bination of N
extreme points
of B(f,w),
say E :=
{e1, e2, . . . , eN}:
x =∑t

i=1 λ
i
(∑τ i

j=1 λ̃
ieij

)
=∑N

j=1 γ
jej .

Figure 1: Proposed algorithm of this work: GSBP Decomposition in a nutshell

complete characterization of the underlying submodular functions under them (Thm.
24, 27), and give an O(n2 T (f)) decomposition (Thm. 23, 26).Fig. 1 summarizes the
key steps of our proposed algorithm.

4. Efficient Sampling: Often times the application might demand the support of the
decomposition of x to be ‘small’, precisely O(poly(n)) in order to efficiently sample an
extreme point from the resulting convex combination (which induces a distribution)
of x (Sec. 2.2). We show that our above algorithm is not only polytime executable,
but it also decomposes x into only poly(n) number of extreme points aiding efficient
sampling of the resulting extreme points (Thm. 23, 26).

In summary, we develop a fundamental understanding of the complexity of a class of
polytope decomposition problem in terms of their structural properties.
Organization. We introduce the preliminaries and the formal problem statement in Sec. 2.
We formally define generalized submodular base polytopes (GSBP) in Sec. 3. Our proposed
algorithms are presented in Sec. 4 and 5 – Fig. 1 summarizes the key steps: Step-1 is
described in Sec. 4 which decomposes the given point into the GSBP face centers, following
which Sec. 5 details how to further decompose each face center into convex combination of
extreme points of their respective faces. Sec. 7 concludes with some future directions. 2

2. Preliminaries and Problem Statement

Notations. For any n ∈ Z+, let [n] = {1, ..., n}. For a set S ⊆ [n], we denote the cardinality
of S by |S|, the power set of S by 2S , S(i) denotes the ith element when elements of (ordered)

2. All proofs are deferred to the appendix due to space constraints.
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set S are sorted in the increasing order, and the set of all permutations of the elements of set
S by ΣS = {σ : S→[|S|] | σ is a bijective mapping}; for any σ ∈ ΣS and i ∈ S, σ(i) ∈ [|S|]
denotes the position of i ∈ S under σ, and ∀j ∈ [|S|], σ−1(j) ∈ S denotes the item in S
ranked at position j. 1n denotes the n-dimensional all-ones vector.

Definition 1 (Ordered partition) For 0 < d ≤ n, an ordered d-partition of [n] is a
tuple (S1, . . . , Sd), where Sk ⊆ [n] ∀k ∈ [d] with Sk 6= ∅ ∀k, Sk ∩ Sk′ = ∅ ∀k 6= k′, and
∪dk=1Sk = [n].

Definition 2 (Permutations respecting an ordered partition) A permutation σ ∈ Σ[n]

respects an ordered d-partition P = (S1, . . . , Sd) of [n] if for all 1 ≤ k < k′ ≤ d, i ∈ Sk, i′ ∈
Sk′ =⇒ σ(i) < σ(i′). We denote the set of all permutations in Σ[n] respecting P as ΣP

[n]. It

is easy to note that, |ΣP
[n]| =

∏d
k=1 |Sk|!.

2.1. Problem Statement

Given a generalized submodular base polytope (GSBP) B(f,w) ⊂ Rn (see Def. 3), and a fixed
point x ∈ B(f,w), the problem is to find a O(poly(n))-time computable representation of x
into convex combination of ‘small number of’ extreme points of B(f,w). More precisely, if
E(B) := {e1, e2, . . . eN} denotes the extreme points of GSBP B(f,w), can we find a convex
combination γ1, γ2, . . . , γN ∈ [0, 1] with

∑N
j=1 γ

j = 1, x =
∑N

j=1 γ
jej? However, note that,

in general B(f,w) can have at most n! many extreme points, i.e. N = O(nn), in which
case computing the above representation is infeasible! Thus we also want the support of
γ = (γ1, . . . , γN ) to be small: precisely, ‖γ‖0 = O(poly(n)).

Results in a nutshell. We propose a O(n2T (f)) time algorithm for the problem (T (f):
unit time required to evaluate f), for any GSBP with two “nice properties”: 1 Partition
respecting and 2. Symmetry. See Sec. 3 for all the definitions. The main building blocks of
our algorithm is given in Fig. 1.

2.2. One Potential Application in Online learning with Combinatorial Decision
spaces

We briefly describe a well studied problem in online learning where polytope decomposition
algorithms are hugely relevant.

Setup. Consider a combinatorially large decision space D, say set of 2n subsets of a
given set of size n, or maybe n! possible number of permutations of n items, or even the
set of spanning tress of a given graph with n vertices etc. Each decision point is associated
to some unknown reward and the learner’s goal to identify the ‘optimal profit maximizing’
decision in the hindsight by playing an online game: At each iteration, the learner chooses
an decision point following which a noisy reward vector of the decision model is revealed to
the learner based on which the learner chooses to update which point to play in the next
round–now how to play this game efficiently when the number of choices in the decision
space D is combinatorially large in n?

We here describe a general algorithm (high level idea) that is used to deal with this class
of problems Suehiro et al. (2012); Rajkumar and Agarwal (2014), as described in Algorithm
1. It precisely maintains a point xt in a suitably chosen convex polytope D̂, and plays at
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Algorithm 1 Online Learning from Combinatorial Decision Spaces: A generic approach
with Polytope Decomposition

1: input: A suitable mapping φ : D 7→ Rd, d : positive integer (D being the combinatorial
decision space)

2: init: D̂ ← Convex-Hull(D) [convex polytope of interest], Note: Extreme points of D̂ has
1-1 mapping to D

3: Choose any point x1 ∈ D̂
4: for t = 1, 2, . . . do
5: Decompose xt into extreme points of D̂ as: xt =

∑
j∈D γ

jφ(j), where∑N
j=1 γ

j = 1, γj ∈ [0, 1]

6: Play a decision j ∈ D with probability γj

7: Receive environment feedback and update xt 7→ xt+1

8: end for

each round decomposing xt as convex combinations of its extreme points (Line 5)–where our
polytope decomposition routine plays the pivotal role. Further the support of γ = (γ1, . . . , γN )
being small, i.e. ‖γ‖0 = O(poly(n)), Line 6 (sampling) can be executed efficiently which
would have been otherwise impossible (Sec. 2.1).

3. Generalized Submodular Base Polytopes

In this section, we introduce the notion of generalized SBPs, which will be used throughout
the rest of the paper.

Definition 3 (Generalized submodular base polytope (GSBP)) Let f : 2[n]→R be
a submodular function, with f(∅) = 0, and w ∈ Rn. We define the generalized submodular
base polytope (GSBP) B(f,w) as

B(f,w)=

{
x∈Rn

∣∣∣∑
i∈S
wixi ≤ f(S) ∀S ⊂ [n],

∑
i∈[n]

wixi = f([n])

}

Clearly, B(f,w) lies in an (n − 1)-dimensional subspace of Rn, and is defined by the
intersection of (2n− 2) half-spaces (corresponding to the inequalities for S ⊂ [n], S 6= ∅) with
this subspace. It is easy to verify that B(f,w) is convex from its definition.

Definition 4 (Extreme points of GSBPs.) The extreme points of a polytope are those
which cannot be represented as a convex combination of any other points of the polytope Ziegler
(1995). For B(f,w), each permutation σ ∈ Σ[n] gives rise to an extreme point eσ ∈ Rn with
coordinates:

eσi =
1

wi

(
f
({
i′ ∈ [n] | σ(i′) ≤ σ(i)

})
− f

({
i′ ∈ [n] | σ(i′) < σ(i)

}))
∀i ∈ [n]. (1)

Any n − 1-dimensional polytope has faces of dimension ranging from 0 to n − 1; the
extreme points are faces of dimension 0 (zero degrees of freedom for the points belonging to
that face), edges are faces of dimension 1 (one degree of freedom), and the polytope itself
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is a face of dimension n − 1 (clearly the coordinates of any arbitrary point belonging the
polytope has n − 1 degress of freedom, as could be verified from Def. 3). Now just as all
extreme points of B(f,w) (i.e. 0-dimensional faces) can be viewed as coordinates arising
from permutations (where note that each permutation defines an n partition of the set [n]),
for any d ∈ [n], all (n − d)-dimensional faces can be viewed as arising from all possible
ordered d-partitions. More formally any ordered d-partition P = (S1, . . . , Sd) of [n] gives rise
to an (n− d)-dimensional face FP ⊂ Rn such that

FP =

{
x ∈ B(f)

∣∣ ∑
i∈∪k

k′=1
Sk′

xi = f
(
∪kk′=1 Sk′

)
∀k ∈ [d− 1]

}
. (2)

Note that, in general, it is possible for two or more ordered d-partitions to give rise to the
same face. It is worth noting that, FP being a face of a convex polytope B(f,w), it is also
convex, as follows from the above definition as well.

Definition 5 (Faces of GSBPs.) For GSBP B(f,w), each ordered d-partition P = (S1, . . . , Sd)
of [n] gives rise to an (n− d)-dimensional face FP ⊂ Rn:

FP=

{
x∈B(f,w)

∣∣∣ ∑
i∈∪k

k′=1
Sk′

wixi = f
(
∪kk′=1 Sk′

)
∀k ∈ [d− 1]

}
. (3)

Definition 6 (Face P -center of a GSBP.) Given any ordered d-partition P = (S1, . . . , Sd),

the face P -center of the face FP is defined as cP =

∑
σ∈ΣP

[n]
eσ∏d

k=1 |Sk|!
.

It is easy to see cPi =

∑
σ′∈Σ(σ,Sk) e

σ′
i

|Sk|!
, for each coordinate i ∈ Sk, k ∈ [d], and any σ ∈ ΣP

[n].

Remark 1 The above class of GSBP subsumes a number of well studied polytopes, including
k-subsets, spanning trees, permutahedron (more generally truncated permutahedons) Suehiro
et al. (2012), k-forest, single machine scheduling polytope (SMSP) amongst many. Few
specific examples are described in more details below, we also show empirical evaluations on
fours GSBPs in experiments (Sec. 6).

Example 1 (Permutahedron Rajkumar and Agarwal (2014)) A well studied gener-
alized submodular base polytope is the permutahedron, which is a GSBP B(f,w) associated with
the function f : 2[n]→R defined as f(S) =

∑|S|
i=1(n+ 1− i) ∀S ⊆ [n], with w = 1n. It is well

known that permutahedron has n! extreme points given by
{

(σ(1), . . . , σ(n))> |σ ∈ Σ[n]

}
. It

can be easily verified from Eqn. 1 that eσi = n+1−σ(i), and therefore each permutation σ yields
a distinct extreme point. Just to understand a toy example, let n = 4 and consider the ordered
2-partition P = (S1, S2) of {1, 2, 3, 4}, where S1 = {3, 4}, S2 = {1, 2}. Then from Eqn. 3 and
6 the face of B(f) induced by P is given by FP =

{
x ∈ B(f)

∣∣ ∑
i∈{3,4} xi = f

(
{3, 4}

)
= 7
}
,

and the corresponding face P -center of FP is cP = (1.5, 1.5, 3.5, 3.5)>.

630



Efficient GSBP decomposition

Example 2 (Single machine scheduling polytope (SMSP) Hoeksma et al. (2014))
Given a vector w ∈ Rn+, the single machine scheduling polytope (SMSP) can be viewed as an
example of a GBSP B(f,w), where the submodular function f : 2[n]→R is defined as:

f(S) =
(∑
i∈S

wi
)( ∑

i∈[n]\S

wi −
∑

i∈S wi

2

)
∀S ⊆ [n].

Suppose w ∈ Rn+ denotes the processing times of n jobs, and σ ∈ Σ[n] be a scheduling of
the n jobs, then the half completion time of job i is defined as hσi =

∑σ(i)−1
i′=1 wσ−1(i′) + wi

2 .
The SMSP B(f,w) can be viewed as convex hull of all vectors representing the remaining
time after half-completion of the set of n jobs, when scheduled on a single machine according
to some scheduling σ ∈ Σ[n], without idle time, non-preemptively. Thus the set of extreme
points of SMSP B(f,w), computed using Eqn. 1, becomes {x ∈ Rn|xi =

∑
i∈[n]wi −

hσi ∀i ∈ [n], σ ∈ Σ[n]}. Again consider a simple example n = 3: Here the set B(f,w) is
{x ∈ R3 |xi =

∑
i∈[3]wi − hσi ∀i ∈ [3], σ ∈ Σ[3]}. Let P = (S1, S2) be a partition of the set

{1, 2, 3}, where S1 = {2, 3} and S2 = {1}. Then from Eqn. 3, we get:

FP =

{
x ∈ B(f,w)

∣∣∣ ∑
i∈{2,3}

wixi = (w2 + w3)
(w2

2
+
w3

2
+ w1

)}
,

and the corresponding face P-center of FP turns out: cP1 = w1
2 , and cP2 = cP3 = w1 + w2+w3

2 .

4. Decomposing Points in Partition Respecting GSBPs into P -Centers

We now describe our main algorithm for decomposing any point x ∈ B(f,w) of a partition-
respecting GSBP into a convex combination of its extreme points. Our first step is to
decompose the given point into at most n of its face centers: c1, c2, . . . , ct, t ≤ n (see Step-1
of Fig. 1). Following definitions will prove to be useful, before going into the details of the
actual algorithm (see Algorithm 2).

4.1. Partition-Respecting GSBPs

Definition 7 (Partition-respecting GSBP) Let f : 2[n]→R be a submodular function
with f(∅) = 0, and let w ∈ Rn. We define the GSBP B(f,w) to be partition-respecting if for
all 0 < d ≤ n, and all ordered d-partitions P = (S1, . . . , Sd) of [n], the P -center cP satisfies
the following:

∀k ∈ [d] : i, i′ ∈ Sk =⇒ cPi = cPi′ (4)
∀0 < k < k′ ≤ [d] : i ∈ Sk, i′ ∈ Sk′ =⇒ cPi ≥ cPi′ . (5)

Theorem 8 (Face P -Center of Partition-respecting GSBP) If GSBP B(f,w) is partition-
respecting, then it can be shown that for all ordered d-partitions P = (S1, . . . , Sd), 0 < d ≤ n,
for any i ∈ Sk, k ∈ [d],

cPi =
f(∪kk′=1Sk′)− f(∪k−1

k′=1Sk′)∑
i∈Sk wi

. (6)
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Proposition 9 Let f : 2[n]→R be a submodular function with f(∅) = 0, and let w ∈ Rn.
Then for all σ ∈ Σ[n], eσσ−1(1) ≥ e

σ
σ−1(2) ≥ · · · ≥ e

σ
σ−1(n), if and only if for all d ∈ [n], and each

ordered d-partition P = (S1, . . . , Sd) of [n], cPi ≥ cPi′ , where i ∈ Sk, i′ ∈ Sk′ , 0 < k < k′ ≤ [d].

Example 3 (Permutahedron is Partition-Respecting) Let n = 4 and f : 2[4]→R be
the submodular function associated with the Permutahedron in R4: f(S) =

∑|S|
i=1(5− i) ∀S.

Consider the ordered 2-partition P = (S1, S2) of {1, 2, 3, 4}, where S1 = {3, 4}, S2 = {1, 2}.
Then the face of B(f) induced by P is given by FP =

{
x ∈ B(f)

∣∣ ∑
i∈{3,4} xi = f

(
{3, 4}

)
=

7
}
. Also note that here cP3 = cP4 = f({3,4})−f(∅)∑

i∈S1
wi

= 3.5, and cP1 = cP2 = f([4])−f({3,4})∑
i∈S2

wi
= 1.5,

hence cP3 = cP4 > cP1 = cP2 . It can be verified that this is the case for all ordered partitions P ,
and the permutahedron is order-respecting.

Theorem 10 (Characterization of partition-respecting GSBPs) Let f : 2[n]→R be
a submodular function with f(∅) = 0, and w ∈ Rn. If the GSBP B(f,w) is partition-
respecting, then f satisfies the following conditions:

∀{i, j} ⊆ [n] : f({i, j}) =

(
f({i})

(wi − wj)
+

f({j})
(wj − wi)

)
(wi + wj)

∀{i, j, k} ⊆ [n] : f({i, j, k}) =
( ∑
i′∈{i,j,k}

f({i′})∏
j′∈{i,j,k}\{i′}(wi′ − wj′)

)
(wi + wj + wk)

...

f([n]) =

(
n∑

i′=1

f({i′})∏
j′∈[n]\{i′}(wi′ − wj′)

)( n∑
i′=1

wi′
)
.

4.2. Algorithm for Decomposition into P -Centers

We now describe our algorithm for decomposing any point x in a partition-respecting GSBP
as a convex combination of at most n of its face P -centers. The details is given in Algorithm
2. Without loss of generality we assume x1 ≥ x2 ≥ · · · ≥ xn (one can always sort the
coordinates of x in the decreasing order). The algorithm starts by setting x1 = x, and
proceeds iteratively: At any iteration t < n, if xt hits one of the face P -center of B(f,w), the
algorithm terminates; otherwise xt is partially represented by a suitably chosen face P -center
ct scaled by a constant λ̃t, and the remaining part of xt is projected back to B(f,w) setting
xt+1 = xt−λ̃tct

1−λ̃t
. Theorem 11 shows that our proposed algorithm terminates in at most n

iterations, as xt eventually hits the center of the GSBP B(f,w) itself, note this point is
given by the vector

( f([n])∑
i∈[n] wi

)
1 as per Thm. 8.

Theorem 11 (Correctness and running time of Algorithm 2) Let f : 2[n]→R be a
submodular function with f(∅) = 0, and w ∈ Rn such that the GSBP B(f,w) is partition-
respecting. Then Algorithm 2 decomposes any point x∈B(f,w) as a convex combination of
at most n face P -centers of B(f,w) in O(n2 + nT (f)) time, where T (f) denotes the unit
time to evaluate the function f .

Proof (sketch): Proof follows using the following key observations:
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Algorithm 2 Decomposition of partition-respecting submodular base polytopes into at most
n face P -centers
1: input: x ∈ B(f,w), such that x1 ≥ x2 ≥ · · · ≥ xn, and B(f,w) is partition-respecting
2: init: t = 1, x1 = x, λ0 = 0, J1 = {i ∈ {2, 3, . . . , n} | x1

i−1 > x1
i }

3: While J t 6= ∅
4: – Compute the center ct of the face associated to the partition induced by J t:

cti =
f(∪k

k′=1
St
k′ )−f(∪k−1

k′=1
St
k′ )∑

i∈St
k
wi

∀i ∈ Sk, k ∈ [|J t|+ 1],

where Stk = {J t(k − 1), J t(k − 1) + 1, . . . , J t(k)− 1}, J t(0) = 1, J t(|J t|+ 1) = n+ 1

5: – Set: λ̃t = mini∈Jt
{
xti−1−xti
cti−1−cti

}
6: – If λ̃t = 1 break
7: – Update:
8: xt+1 = xt−λ̃tct

1−λ̃t
, J t+1 = {i ∈ J t | xt+1

i−1 > xt+1
i }

9: λt =
(
1−

∑t−1
i=1 λ

i
)
λ̃t, t = t+ 1

10: End
11: ct = xt

12: λt = 1−
(∑t−1

j=1 λ
j
)

13: output: Face P -centers c1, . . . , ct, and λ1, . . . , λt ∈ [0, 1],
∑t

i=1 λ
i = 1, such that

x =
∑t

i=1 λ
ici

Lemma 12 At any iteration i ∈ [t] 2,
∑n

j=1 x
i = f([n]), and

∑
j∈T ik

xij < f(T ik) for all
k ∈ [|J i|+ 1].

Lemma 13 At any iteration i ∈ [t] of Algorithm 2, xi1 ≥ xi2 ≥ · · · ≥ xin, 0 ≤ λ̃i ≤ 1.

Lemma 14 For any i ∈ [t], 0 ≤ λi ≤ 1, and
∑t

i=1 λ
i = 1.

Lemma 15 After t iterations, x =
∑t

i=1 λ
ici

Lemma 16 For any iteration i ∈ [t− 1], |J i| ≥ |J i+1|+ 1, hence 1 ≤ t ≤ n.

The proof of each of the above claims are given in in the supplementary. Lem. 12 and 13
lead to Lem. 14 and 15 which proves the correctness of Alg. 2. Lem. 16 shows the algorithm
can run for at most n iterations, and within any iteration i ∈ [t], all steps can be computed
in O(n) time except the computation of ci which in general can take T (f) time, thus making
the total runtime complexity O(n2 +nT (f)). Complete proof is given in the supplementary.

Remark 2 Clearly, given an input point x ∈ B(f,w), Algorithm 2 decomposes it as convex
combination of t ≤ n face center: x =

∑t
i=1 λ

ici. Note however our end goal is to decompose
x in terms of the extreme points of the GSBP, but according to Defn. 6, any face P -center of
a GSBP is itself a convex combination (more precisely average) of all its extreme points, i.e.

cP =

∑
σ∈ΣP

[n]
eσ∏d

k=1 |Sk|!
=

|ΣP
[n]
|∑

j=1

λ̃ej , (7)
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where we denote by ej the jth extreme point of the face corresponding to partition P and

λ̃ =
1∏d

k=1 |Sk|!
. Note

∑|ΣP[n]
|

j=1 λ̃ = 1, so it is a valid convex combination. Hence this

itself yields the desired final decomposition of x as: x =
∑t

i=1 λ
ici =

∑t
i=1 λ

i
(∑

j λ̃
ieij

)
=∑

k∈E(B) γkek, where
∑

k∈E(B) γk = 1 with γj ∈ [0, 1], ∀j ∈ E(B), which gives the desired
decomposition, at least theoretically. However this might be computationally infeasible as the
possible number of extreme points of a face corresponding to a d-partition P = (S1, . . . , Sd)
can be combinatorially many: |ΣP

[n]| =
∏d
k=1 |Sk|!, so Eqn. 7 could hard to compute for large

n. This motivates us to find a polytime decomposition of face P -centres into O(poly(n))
extreme points. Next section shows how that is actually possible for a class of GSBPs.

5. Decomposing Face P -Centers of GSBP into few Extreme Points and
Efficient Sampling

We now proceed to explain Step-2 of our decomposition routine, as given in Fig. 1. Recall
our final objective is to represent x as a convex combination of small number of extreme
points of B(f,w). As argued in Rem. 2, our objective is to express each P -center as a convex
combination of small number of extreme points of its associated face, for which we introduce
the notion of structural symmetry of a GSBP under which any face center of GSBP can be
efficiently decomposed in O(poly(n)T (f))-time, and analyze two of its special cases, namely
circular (Def. 22) and reflexive symmetry (Def. 25), which along with the partition-respecting
property can be shown to yield O(n2 T (f)) decomposition for any such GSBP.

Definition 17 (Shifts of a permutation restricted to a subset) Given any permuta-
tion σ ∈ Σ[n], we define the shifts of the permutation σ restricted to a S ⊆ [n], denoted
by Σ(σ, S), as the set of all permutations obtained by permuting the elements in S, keep-
ing the rankings of the rest of the elements in [n] fixed to that in σ. In other words,
Σ(σ, S) = {σ′ ∈ Σ[n] | σ′(i) = σ(i) ∀i ∈ [n] \ S}. Note that |Σ(σ, S)| = |S|!.

Definition 18 (Symmetry in a GSBP) Let f : 2[n]→R be a submodular function with
f(∅) = 0, and w ∈ Rn. We say the GSBP B(f,w) is symmetric if for every d ∈ [n], and all
ordered d-partition P = (S1, . . . , Sd) of [n], for any σ ∈ ΣP

[n], and k ∈ [d],

cPi =

∑
σ′∈R(σ,Sk)

eσ
′
i

|R(σ, Sk)|
∀i ∈ Sk,

where R(σ, Sk)⊂Σ(σ, Sk) denotes a subset of shifts of permutation σ restricted to set Sk s.t.
|R(σ, Sk)|=O(poly(|Sk|)). In particular we call B(f,w) to be c-symmetric if there exists a
constant c ≥ 0, such that |R(σ, Sk)|= |Sk|c,∀k ∈ [d].

Theorem 19 (Decomposition of face P -centers of c-symmetric GSBPs) Any face
P -center of a c-symmetric GSBP B(f,w) (for some constant c ≥ 0) B(f,w) can be decom-
posed into the extreme points of its corresponding face in O(nc+1 T (f)) time. Moreover, any
such extreme point can be randomly sampled in O(nc T (f)) time.
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Proof (sketch): By Defn. 18, for every 0 < d ≤ n, and all ordered d-partition P =

(S1, . . . , Sd) of [n], for any σ ∈ ΣP
[n], and k ∈ [d], cPi =

∑
σ′∈R(σ,Sk)

eσ
′
i

|R(σ,Sk)| ∀i ∈ Sk, with |R(σ, Sk)|=
|Sk|c ∀k ∈ [d]. Hence for all i ∈ Sk, the ith coordinate of cP can be represented as an average
of the ith coordinates of at most |Sk|c extreme points of the B(f,w), whose underlying
O(|Sk|c) permutations can be computed in O(|Sk|c) time, and using (1) all n coordinates of
such extreme points can be evaluated in O(n|Sk|c T (f)) time. The first claim now follows
since for all k ∈ [d], |Sk| ≤ n (as

∑d
k=1 |Sk| = n).

It is worth noting that if we are interested in randomly sampling only one such extreme
point, for all i ∈ Sk, we can compute the feasible set of permutations in O(|Sk|c) time, and
randomly sample one out of them. For this particular permutation, we can compute all
the ith coordinates of its corresponding extreme point in |Sk|T (f) time. Repeating this for
each k ∈ [d] the desired extreme point can be computed in O(nT (f)) time. Thus the total
sampling time complexity becomes O(nc T (f)). Complete proof is given in the supplementary.

Theorem 20 (Decomposition of symmetric, partition-respecting GSBP) Any point
of a c-symmetric, partition respecting GSBP B(f,w) (for some integer constant c ≥ 0), can
be decomposed into a convex combination of its extreme points in O(n2 + nT (f) + nc+2 T (f))
time. Moreover, any such extreme point can be sampled in O(n2 + nT (f) + nc+1 T (f)) time.

Next we discuss two special symmetry structures of GSBPs: Circular and Reflexive symmetry.

5.1. Circular Symmetry

Definition 21 (Circular shifts of a permutation restricted to a subset) Consider a
subset S of the set [n]. Given any permutation σ ∈ Σ[n], we define the circular shifts of
the permutation σ restricted to the subset S, denoted by C(σ, S), as the set of all per-
mutations obtained by applying circular shifts on the rankings of the elements in S, keep-
ing the rankings of the rest of the elements of [n] fixed to that in σ. In other words,
C(σ, S) = {σ1, σ2, · · · , σ|S|} ⊂ Σ[n], where σk(S(i)) = σ(S((i+ k − 1) mod |S|)) ∀i ∈ [|S|],
and σk(j) = σ(j) ∀j ∈ [n] \ S, ∀k ∈ [|S|]. Note that, here σ1 = σ, |C(σ, S)| = |S|, and
C(σ, S) ⊂ Σ(σ, S).

Definition 22 (Circular symmetry) Let f : 2[n]→R be a submodular function with f(∅) =
0, and w ∈ Rn. We define the GSBP B(f,w) to be circular symmetric if for every 0 < d ≤ n,
and all ordered d-partition P = (S1, . . . , Sd) of [n], for any σ ∈ ΣP

[n], and k ∈ [d],

cPi =

∑
σ′∈C(σ,Sk)

eσ
′
i

|Sk|
∀i ∈ Sk. (8)

Remark. Any circular symmetric GSBP is 1-symmetric.

Theorem 23 (Decomposition of circular symmetric partition-respecting GSBP)
Any point of a circular symmetric, partition-respecting GSBP B(f,w) can be decomposed
into a convex combination of its extreme points in O(n3 T (f)) time. Moreover any such
extreme point can be randomly sampled in O(n2 T (f)) time.
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Example 4 Permutahedron (Example 1) is a circular symmetric and partition respecting
GSBP, and thus could be efficiently decomposed in O(n3T (f)) time as per Thm. 23, and any
such extreme point can be sampled in O(n2T (f)) time. Note T (f) = O(1) for the underlying
f for Permutahedrons. In fact any cardinality based GSBP (i.e. whose underlying f(S) is a
function of |S|) can be shown to have Circular Symmetry property, for example the k-Subset
Polytope discussed in our experiments (Sec. 6), and respect O(n3T (f)) decomposition.

Theorem 24 (Characterization of partition-respecting, circular symmetric GSBPs)
If the GSBP B(f,w) is partition-respecting and circular symmetric then f satisfies all the
constraints of Thm. 10, and one additional property: ∀{i, j, k} ⊆ [n] : f({i})(wj − wk) +
f({j})(wk − wi), where the last property actually induces the circular-symmetry in B(f,w).

5.2. Reflexive Symmetry

Definition 25 (Reflexive symmetry) Let f : 2[n]→R be a submodular function with
f(∅) = 0, and w ∈ Rn. We define the GSBP B(f,w) to be reflexive symmetric if for all
ordered d-partition P = (S1, . . . , Sd) of [n], 0 < d ≤ n, for every σ ∈ ΣP

[n] and k ∈ [d],

cPi =
eσi + e

σ
Sk
R
i

2
, ∀i ∈ Sk, (9)

where σSkR denotes the reverse permutation of σ restricted to set Sk, i.e., σ
Sk
R (i) := nk−1 +

(nk−σ(i) + 1) ∀i ∈ Sk, and σSkR (i) := σ(i) ∀i ∈ [n] \Sk, nk = | ∪kk′=1 Sk′ | ∀k ∈ [d] 3. Note,
any reflexive symmetric GSBP is 0-symmetric.

Theorem 26 (Decomposition of reflexive symmetric, partition-respecting GSBP)
Any point of a reflexive symmetric, partition-respecting GSBP B(f,w), can be decomposed
into a convex combination of its extreme points in O(n2 T (f)) time. Moreover any such
extreme point can be randomly sampled in O(nT (f)) time.

Example 5 (Efficient decomposition for single machine scheduling polytope) Our
algorithm yields O(n2T (f)) decomposition for SMSPs (see Example 2) Hoeksma et al. (2014).
Note in this case T (f) = O(n) (this could be O(1) at a larger space complexity if

∑
i∈S wi are

precomputed for all S), and for every d ∈ [n], and all ordered d-partition P = (S1, . . . , Sd)

of [n], cPi =
eσi +e

σ
Sk
R
i

2 =
(∑

i∈[n]wi
)
−
( ∑
j∈∪k′≤k−1S

′
k

wj +
∑

j∈Sk
wj
2

)
∀i ∈ Sk, σ ∈ ΣP

[n], k ∈ [d].

Thus our algorithm respects efficient decomposition of SMSPs.

Theorem 27 (Characterization of partition-respecting, reflexive symmetric GSBPs)
If the GSBP B(f,w) is partition-respecting and reflexive symmetric then f satisfies all the
constraints of Thm. 10 and an additional ∀{i, j, k} ⊆ [n] : f({i})

wi
(wj − wk) + f({j})

wj
(wk − wi),

where the last property actually induces the reflexive-symmetry in B(f,w).

3. For example if n = 6, P = (S1, S2) with S1 = {1, 2, 3}, S2 = {4, 5, 6}. Then for σ = (1, 2, 3, 4, 5, 6), we
have σS1

R = (3, 2, 1) and σS2
R = (6, 5, 4).
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6. Experiments
In this section, we compare the empirical performances of our decomposition algorithm
(Alg. 2) over different GSBPs. The details of the experiment setups are given below:

Constructing GSBPs B(f,w). We use the following four different generalized
submodular base polytopes for our experiments:

1. Permutahedron: As described in Example 1.
2. SMSP: As described in Example 2.
3. k-Subset: The problem of k-subsets is a generalization of experts problem, where

each combinatorial structure corresponds to a set of k experts among n expert, each k-set
being represented by a sum of k-corresponding canonical basis vectors. The associated
submodular modular function of this polytope can be represented as: f : 2[n] 7→ R such that

f(S) =

{
|S| if |S| ≤ k
k otherwise

, for any subset S ⊆ [n].

4. Spanning-Tree: We consider undirected spanning trees G = (V,E). In this case
the extreme points of the GSBP is represented by an edge encoded format: {x ∈ {0, 1}|E| |
the edges reperesented by {x(i) = 1} forms a spanning tree of G}. The associated submod-
ular function in this case is given by f : 2|E| 7→ R such that f(S) = |V (S)| − c(S), with
V (S) being the vertex set of the subgraph induced by the edges in S, and c(S) being the
number of the connected components in the induced subgraph. This polyhedron is known as
spanning tree polyhedron Suehiro et al. (2012).

We choose k = n
2 for the k-subset polytope, and generate a random graph with n vertices

for the spanning tree experiments. All the reported results are averaged across 50 runs (i.e.
over 50 different initial points x).

6.1. Decomposition of different GSBPs with dimension (n)

We first run experiments to analyze the yielded number of decomposed points of our proposed
algorithm over different GSBPs. The first two figures of Fig. 2 (top left and bottom left)
respectively show the number of decomposed face-centres (Sec. 4) and extreme-points (Sec.
5) on Permutahedron with dimensionality n = 10, 40, 80, 150, 200.

Figure 2: No of decomposition points with increasing dimensionality (n) for four GSBPs
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Note that for each n the algorithm yields roughly O(n) decomposed face centres on an
average. The next two figures (in the middle) of Fig. 2 shows the same plots for SMSP
polytopes. In this case, while the pattern for the number of decomposed face centres remains
same as Permutahedrons, note the final number of decomposed extreme points for SMSPs are
much less than that of Permutahedrons—the reason being the later being circular symmetric
(Def. 22) each face centre can be decomposed up to O(n) extreme points, whereas the former
having reflexsive symmetry (Def. 25) here any face-center can be decomposed in to just 2
extreme points and consequently resulting into much smaller number of extreme points. The
last two figures (top and bottom of extreme right) again show the number of decomposed
face centres with increasing dimension for k-subset and spanning-tree polytopes, where again
it shows the number of decomposed face-centres are O(n) on an average.

6.2. Runtime comparison across different GSBPs

We also empirically evaluate the execution run-
time (in seconds) of Alg. 2 for different GSBPs.
As expected, and justified theoretically in Thm.
10, Fig. 3 shows that the average decomposi-
tion time varies roughly as O(n2): For example,
the runtime for n = 100 is about 4 times that
for n = 50; similarly that for n = 150 and
n = 200 is respectively are about ∼ 2 and ∼ 4
times higher than the corresponding average
runtime at n = 100.

Figure 3: Runtime (in seconds) comparison
across four different GSBPs

7. Conclusion and Future Works

We consider the problem of decomposing a given point of a convex polytope into a convex
combination of its extreme points for a new class of generalized submodular base polytopes
(GSBPs), that subsumes both SBPs and SMSPs as its special case. We first give a O(n2 +
nT (f)) polytime algorithm for decomposing any point of a GSBP into a small number of its
face centers under a partition-respecting property. Moreover, we define and characterize the
notions of symmetry associated with a GSBP, under which any face center GSBP is shown to
be O

(
poly(n)T (f)

)
efficiently decomposible into convex combination of its extreme points.

Our algorithm also is shown to perform in O(n2T (f)) time under special structures of circular
and reflexive symmetry. Our work unifies several previous polytope decompostion algorithms
including Suehiro et al. (2012) and Hoeksma et al. (2014), and develop a fundamental
understanding of the problem complexity in terms of structural properties of the polytopes.

Future Works. It would be interesting to analyze the regret guarantees of online combina-
torial optimization problems with our decomposition routine as blackbox, e.g. for Rajkumar
and Agarwal (2014) etc. Understanding the problem complexity for some special polytopes,
e.g. associahedron or zonotopes Doker (2011), or may be in the absence of the symmetry par-
tition respecting structures, and modelling more real world applications with submodularity
constraints to find practicability of our results are other interesting directions.
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