Proceedings of Machine Learning Research 129:81-96, 2020 ACML 2020

A State Aggregation Approach for Solving Knapsack
Problem with Deep Reinforcement Learning

Reza Refaei Afshar R.REFAEI.AFSHARQTUE.NL
Yingqgian Zhang YQZHANG@QTUE.NL
Murat Firat M.FIRAT@QTUE.NL
Uzay Kaymak U.KAYMAKQIEEE.ORG

Eindhoven University of Technology, PO Box 513, 5600 MB FEindhoven, The Netherlands

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

This paper proposes a Deep Reinforcement Learning (DRL) approach for solving knapsack
problem. The proposed method consists of a state aggregation step based on tabular rein-
forcement learning to extract features and construct states. The state aggregation policy is
applied to each problem instance of the knapsack problem, which is used with Advantage
Actor Critic (A2C) algorithm to train a policy through which the items are sequentially
selected at each time step. The method is a constructive solution approach and the process
of selecting items is repeated until the final solution is obtained. The experiments show
that our approach provides close to optimal solutions for all tested instances, outperforms
the greedy algorithm, and is able to handle larger instances and more flexible than an exist-
ing DRL approach. In addition, the results demonstrate that the proposed model with the
state aggregation strategy not only gives better solutions but also learns in less timesteps,
than the one without state aggregation.

Keywords: Combinatorial Optimization Problems, Knapsack Problem, Deep Reinforce-
ment Learning, State Aggregation.

1. Introduction

Heuristic algorithms for solving Combinatorial Optimization Problems (COPs) achieve ac-
ceptable solutions in a polynomial time. These algorithms rely on handcrafted heuristics
that conduct the process of finding the solutions. Although these heuristics work well in
many COPs, they mostly rely on the nature of problems and they need to be revised for
different problem statements (Bello et al., 2017). In this paper, we aim to learn and im-
prove the handcrafted heuristics to improve the quality of the solutions. We study knapsack
problem (KP), which is one of the well-known benchmark problems in COPs. KP is defined
as selecting some items from a given set such that the selected items fit in the knapsack and
their total value is maximized. This problem has many applications such as cargo loading,
cutting stock and capital budgeting (Wilbaut et al., 2008).

Recently, there is a great progress in Artificial Intelligence (Al) literature in developing
machine learning (ML) methods to solve COPs (Bengio et al., 2018), where a promising
ML based method is Deep Reinforcement Learning (DRL). DRL is the integration of Re-
inforcement Learning (RL) and Deep Neural Networks (DNN) (Arulkumaran et al., 2017;
LeCun et al., 1998; Huang et al., 2019). Several DRL based approaches have been proposed

© 2020 R.R. Afshar, Y. Zhang, M. Firat & U. Kaymak.

AFSHAR ZHANG FIRAT KAYMAK

to solve the Traveling Salesman Problem (TSP), e.g. (Bello et al., 2017; Joshi et al., 2019;
Kool et al., 2019) that mainly use sequence to sequence modeling because the solution of
a TSP is a sequence, i.e. a permutation of the input. These approaches work well for the
TSP problem, however, in the Knapsack problem, the solutions are subsets of the inputs.
Hence, the existing DRL based approaches for solving sequence to sequence problems like
TSP might not work well for KP. Furthermore, KP solutions require to be feasible and sat-
isfy constraints which are different with T'SP. Bello et al. (2017) solve a Knapsack problem
using the policy gradient algorithm with pointer networks. Although their method solves
instances up to 200 items optimally, the following limitations are identified: (1) intractabil-
ity to large instances: the state space grows rapidly with increasing number of items, and
(2) generality to other sizes of instances: the trained model is applicable for solving the
problems that have exactly the same knapsack capacity and the same number of items. In
this paper, we introduce a DRL approach with state aggregation that boosts the capability
of the typical greedy algorithm and improves this heuristic. Besides, our method does not
have the aforementioned limitations.

We propose a state aggregation method to discretize the feature values of items. A
tabular reinforcement learning is used to learn the best aggregation strategy for each item.
This discretized features not only provide a discrete representation of the problem instances,
but also reduces the state space by reducing the number of unique values. Since even the
reduced state space after applying the state aggregation is still large, DRL is employed as a
powerful function approximation method. We use Advantage Actor Critic (A2C) algorithm
to learn the policy of selecting items. A2C makes use of two DNNs for learning policy and
value functions (Mnih et al., 2016). The policy DNN has an output size that is equal to the
number of items in the KP instance. The proposed method greedily solves the KP problem
by successive item selections and placing them in the knapsack, each is done by following a
greedy or softmax algorithm on the output of the policy DNN.

The experimental results show that the proposed approach finds optimal solutions for
the problem instances of size 50 that is used in Bello et al. (2017). Moreover, we show the
method obtains close to optimal solutions for three different types of instances with at most
50, 300 and 500 items. We also demonstrate that the proposed DRL method with state
aggregation performs better than the DRL without aggregation in terms of both learning
rate and the solution quality. Finally, we compare the results with two approaches based
on pointer network (Bello et al., 2017; Gu and Hao, 2018). Although many works focus
on sequence to sequence problems like TSP, they are not directly applicable on KPs. We
summarize our contributions as follows.

e Our DRL-based approach to solve KP improves the heuristic greedy algorithm for 0-1
KP and shows better performance than the existing DRL approaches. The developed
method can be trained once for N items and it can be used for any KP instances with
size up to V.

e Developing a state aggregation strategy to derive state embedding that reduces the
state space size. This general strategy effectively speed up learning on solving KP.

82

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

2. Related Work

It may take exponential time, in the size of instances, to solve most of COPs optimally
due to their NP-Hardness (Karp, 1972; Cook, 2006). Knapsack Problem (KP) has gained a
remarkable attention in the literature. Despite the fact that the fractional KP is optimally
solvable by the heuristic greedy algorithm, the 0-1 knapsack problem is NP-Hard (Cormen
et al., 2009), and a large variety of KPs remain hard to solve (Pisinger, 2005). Moreover,
it has been shown by empirical evidence that solving instances near the phase transition
are challenging for humans (Yadav et al., 2018). The phase transition emerges around
critical values of items and capacity so that the probability of having a solution for an
instance changes from zero to one. Many algorithms, ranging from dynamic programming
algorithms, e.g. (Dasgupta et al., 2008), to meta-heuristics, e.g. (Feng et al., 2018) have
been proposed to solve KP.

Cleverly searching and branch and bound methods can prune the search tree and re-
duce computational times for solving COPs in practice (Woeginger, 2003). However, these
methods are still prohibitive for large instances. Although polynomial time approximation
schemes and integer linear programming (ILP) based approaches might be performed in
reasonable time, they rely on handcraft heuristics and they may suffer from weak optimal-
ity (Du and Pardalos, 2013). In order to cope with this limitations, Machine Learning (ML)
based and data driven methods are developed to learn heuristics.

In Pointer Network (Vinyals et al., 2015), the output layer of the DNN is a function of
the input. In (Bello et al., 2017), the pointer network is used with RL to solve the Traveling
Salesman Problem (TSP). They use policy gradient and a variant of Asynchronous Advan-
tage Actor-Critic (A3C) algorithm of Mnih et al. (2016) to train a DNN, and show close to
optimal solutions are found for up to 100 cities. In (Khalil et al., 2017) a neural network
framework is introduced for graph-based COPs, where structure2vec of Dai et al. (2016)
is used to derive an embedding for the vertices of the graph. The structure2vec computes
a p-dimensional feature embedding for each node and a parametric) function is trained
using Q learning algorithm. In (Kool et al., 2019), the pointer network is incorporated
with attention layers. With the REINFORCE algorithm, they obtained close to optimal
solutions for the TSP instances of up to 100 nodes. In Kong et al. (2018), DRL is used for
solving online KPs where a mixture of input distribtions are used to train the network.

Most of ML-based research on solving COPs focuses on TSP. COPs like TSP and Vehicle
Routing Problem that have gained high attentions in past few years, require a sequence of
the input as the solution and sequence-to-sequence neural architectures might be proper
approaches for solving them (Sutskever et al., 2014). However, the solutions of COPs like
KP are a subset of the input. This issue makes the original sequence-to-sequence approaches
inapplicable for solving KP. Recently, a pointer network deep learning approach is presented
for solving 0-1 KP (Gu and Hao, 2018). This method is based on supervised learning and
optimal solutions which are not available in most of the cases. In this paper we propose a
DRL framework for subset selection problems.

3. Problem Definition and Modeling

An instance of 0-1 Knapsack Problem, denoted by P, includes a set Zp of items and a
knapsack with capacity Wp. For practical reasons in the notation of further sections, we

83

AFSHAR ZHANG FIRAT KAYMAK

have |Zp| = np. Each item ¢ € Zp has value v; and weight w;. The goal is to maximize
the total value of a selected subset of items such that the total weight of the selected items
does not exceed the knapsack capacity Wp. Since P is a 0-1 KP, selecting a fraction of an
item is not possible.

Our method for solving this variant of KP is based on deep reinforcement learning.
We assume that the number of items is variable and a constructive solution can solve the
problem. Therefore, the process of selecting a subset of items Zf, C Zp is modeled as a
sequential decision process. The policy DNN is trained with A2C introduced in (Mnih
et al., 2016) on a set of problem instances with at most /N items. The information of each
problem instance consists of |Zp| = np < N items with value v; and weight w; for each
1 € Ip and together with Wp, they are the inputs of DNN. The DNN has N outputs that
each being associated with a value of selecting a specific item ¢ € Zp. The policy is to select
the item with highest selection value in each step. After selecting item ¢, it is removed from
the original problem instance P and a new problem instance P’ with a reduced item set
Ipr =TIp \ {i} and capacity Wpr = Wp — w; is generated. For the cases where i cannot be
added to the knapsack because of the capacity constraint, the new instance P’ is generated
by removing i from the item set, without altering Wp. In this way, when the policy is
trained with KP instances of at most N items, it can be used to find solutions for new
instances as long as their item sizes are no greater than N.

Such KP problems can be found in different applications. For example, an online ad
publisher faces with a set of advertisements. Assuming a fixed upper bound for the number
of ads, the problem is to select a subset of them to show to the users. In this example, the
values are relevance scores and the weights are the size of ads banners. The goal is to fill a
slot of a certain size with the ads.

4. DRL-based KP Solver

Figure 1 shows the overview of our proposed method. It consists of two components. The
first component includes a formulation of KP to MDP, which is solved using a DRL approach
(Algorithm 1). The second component is a state aggregation method (Algorithm 2), which
learns an aggregation policy to discretize states that serve as inputs to DRL.

4.1. Deep Reinforcement Learning method

In order to solve the 0-1 KP, DRL is used to derive a policy through that the items are
sequentially added to the solution. We define the states, actions and rewards of DRL
modeling of KPs for an instance P’ which is a representation of P after selecting some
items, as follows.

States s(P): A complete set of information of instance P’ containing np/, v; and w; for
nps items, capacity Wps, the total value of the items (Sv = Ziezp, v;), and the total weight
of the items (Sw = Zz’ezp/ w;) makes a feature vector of 2nps + 4 features. Since npr < N
for all P’, the feature vector of the instances that have npr < N items consists of 2N + 4
features such that the first 2nps 4 4 features carry the information of the problem instance
and the remaining ones are zero. Section 4.2 will reduce this feature vector by a state
aggregation strategy.

84

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

— Algorithm 2 Algorithm 1
P,) -
— 1 Derive a state
P, aggregation ~ Selectan "~ Selectan Selectan
™ policy for each P o iy ol Indid ey ol
3

5
3
M : :
PM \ Py, ..., Py Solution

Figure 1: The overview of the KP solver. 1) A set of instances are used for deriving an
aggregation policy. 2) The same set of instances are used with DRL. 3) A KP
instance is selected for training. 4) Items are selected sequentially until finding
a solution. At each step the updated P is aggregated to find the state. A2C
updates the parameters of DNNs. 5) The best solution is stored. 6) Another KP
instance is selected and the process continues for a certain number of timesteps.

Actions: There are N actions Aj, Ao, ..., Ay, each corresponding to select one item. At
each decision moment, a state is fed to the policy DNN and an action is selected according
to the output of the DNN.

Reward Function: The reward function is defined based on three criteria. First, if
item ¢ can be added to the knapsack without exceeding the capacity limit, the reward is
positive. Second, if w; is greater than Wps, i.e. ¢ cannot be added to the knapsack, the
reward is negative. Third, for each instance P’ where npr < N, the first np/ outputs of
DNN correspond to the items of P’ and the next N — nps outputs are undefined actions
because the corresponding items do not exist. Therefore, a large penalty i.e. —Wps is used
for the reward of choosing undefined actions. We separate the reward of undefined action
and heavy items because an action with ¢ > n is always undefined, however items with
w; > Wp could be added to the knapsack if they were selected in earlier steps. Therefore,
their penalty is lower. The normalized values vr; and normalized weights wr; which are
explained in Section 4.2 are used as positive and negative rewards respectively. Equation
(1) shows the reward of state s(P’) and action A;.

—Wp/ if 7> nps
T(S(Pl),Ai) = 4§ ur; if w; < Wpr (1)
—wr; if w; > Wpr

Employing these definitions of states, actions and rewards, the A2C algorithm is used
for training policy and value DNNs (Mnih et al., 2016), where two DNNs are used for policy
(m) and value (V') functions respectively. The advantage value is obtained by subtracting
state values (V) from state action values (Q) which is defined by 7 + vV (s¢41). This value
is used in gradient function to update the parameters of the DNNs using Equations (2) and
(3) (Mnih et al., 2016; Hill et al., 2018).

0"« 0" + Ve log m(A;|s(P), 0")[re + vV (s(P'), 05) — V(s(P),0L)] (2)

85

AFSHAR ZHANG FIRAT KAYMAK

Algorithm 1 DRL-based Knapsack Solver

Input: M Problem Instances each having at most IV items
Output: Values of solutions of the M instances

1: Initialize a policy network m(A;|s,#) with 2N + 4 inputs, N outputs and parameters 6.
2: Initialize a value DNN with parameters 6, as V' (s,0,)
3 tmaz = 3N x 10%, t =0
4: Initialize Val: a list of length M, all 0
5: while t < t,,4, do
6: Select a problem instance P with capacity Wp.
7: ow = 0 {Total weight of selected items}
8: ov =0 {Total values of selected items}
9: Pl<—P, npr < np, Wp < Wp
10: while ow < Wp: and npr > 0 do
11: Find s(P’) using state aggregation strategy (Eqn. (7))
12: Perform action i according to policy m(A4;|s(P’),0%) and observe r(s(P’), A;)
13: if i <np and w; + ow < Wp, then
14: ow — ow + w; , ov < ov + v;, Wpr +— Wpr — w;
15: end if
16: P'eP'\{i},np/enp/fl
17: Update 6 and 6, using Eqns. (2) and (3)
18: t+—t+1
19: end while
20: if ov > Val[P'] then
21: Val[P'] < ov
22: end if

23: end while
24: return Val

O(re +V(s(P'),0;) — V(s(P), 0;))

t+1 t
0,7 + 0, + a0! (3)

where, 0' and 6! are the parameters of policy and value DNNs in decision moment ¢
respectively. The corresponding state of a problem instance P is fed to the policy DNN and
the items can be selected by following a policy according to the output of the policy DNN.
Upon selecting an item, P’ is obtained from P and it is again fed to the policy DNN to
select the next item. This process is continued until filling the knapsack or exceeding the
weight constraint. Algorithm 1 shows the DRL-based knapsack solver method.

4.2. State Aggregation

As the number of items increases, the state space grows up exponentially and this affects
the performance of function approximation with DNN. In order to shrink the state space
and boost the method to have the capability of solving large problem instances, a new state
embedding is derived by state aggregation. Specifically, the problem is to find a certain
number of split points on the values of items and transform the values into integers using
these split points. In other words, the feature values of states are divided into subsets and
the values of each subset are converted to a certain value. Finding proper number of split
points is difficult because the evaluation should be performed after training the model with

86

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

the defined states which is computationally expensive. Besides, the number of split points
for each item influence on the number of split points of other items because the objective
is to decrease the total number of states entailed by transforming all items. Therefore, we
opt for reinforcement learning to tackle delayed reward and to sequentially determine the
proper number of split points for each item. The problem instances are used to model the
environment which is explained in the next section.

Preparing data. A set of problem instances are used for deriving the state embedding.
Each problem instance is identified by a set of feature values which are the items information
and capacity. The first step in aggregating the states is to generate random solutions for each
problem instance. As mentioned before, an episode is a sequence of states and actions that
each action selects an item and the solution is the set of selected items. These instances can
be shown in a table in which each row corresponds to a problem instance and the columns
are items information.

One issue in selecting the feature vector of original items information as states is that
different KP instances are not comparable because the values and weights of items might
be very different. As an example, assume that values and weights of an instance are integer
numbers between 1 to 10, while these values and weights lies between 100 and 110 for
another instance. Generalization based on these different values is difficult, although their
ratio are similar. In order to solve this issue, for each item of instance P, all v; are normalized
through dividing by the product of w; and Wp as shown in Eqn. (4). Furthermore, the ratio
between w; and W is also calculated based on Eqn. (5). The v; and w; for each item are
replaced with these two ratios in the feature vector of P. This modification makes the items
of different problems comparable. The learned policy network in this way would boost the
capability of the well-known heuristic greedy algorithm which is optimal for fractional KP.

Uri(viawiv WP) = ﬁ (4)
wri(vi, wi, Wp) = I/Ili; (5)

where, vr; and wr; are the normalized value and normalized weight respectively. For
a problem instance P, vr;, wr;, Wp, Sv and Sw construct a feature vector F(P) =
(Fi, ..., Fonta) = (np, Wp, Sv, Sw,vry,wry, ..., vy, Wy,), where F(P) is the feature vec-
tor of P, Sv and Sw are the sum of remaining values and weights respectively.

After obtaining a table of problem instances with comparable items, we sort for each row
(i.e. each problem instance) the columns (i.e. vr; and wr;) in descending order with respect
to vr;. In other words, the first two columns of each row, i.e. vry and wry correspond to the
item with the highest normalized value. The second two columns which are vry and wrs,
correspond to the item with the second highest normalized value and so on. For a problem
P with np < N, the items information are located from the columns vry and wr; to vry,,
and wry,, respectively. The values of vr,,41 to vry and also the values of wry, 41 to wry
are zero. This ordering helps to aggregate all the highest vr; of all problem instances with a
single aggregation strategy because the problem instances are comparable and the highest
vr; is in a certain column. This explanation holds for second, third and other highest vr;.
Fach column is called a feature and the next step is to derive an aggregation strategy for
the values of each feature.

87

AFSHAR ZHANG FIRAT KAYMAK

State aggregation through Q-Learning. The idea of the aggregation is to reduce the
number of unique values for all features. We do such reduction by splitting the values of
one feature into several groups and then mapping each group’s value to a particular integer.
The proper number of splits for each feature is learned by reinforcement learning. For each
feature Fj that k € {1,...,2N + 4}, let action dp, be the number of splits on the values
of the feature Fj, and Fj, p be the value of feature Fj, for problem instance P. Among all
features, we perform state aggregation on vr; and wr; of item 3.

For aggregating the values of vr; of all M problem instances, action d,,, € {1,2,...,x} is
the number of splits where its optimal value i.e. dy,. is obtained by Algorithm 2. Using dy,..
splits, the values of vr; are divided into dj,. + 1 subsets and all the subsets except the last
one have (%1 values. The last subset has M — ([%] d,.) values. Then, all values of
each subset is converted to an integer starting from 0. "This process transforms the values
of feature vr; to a set of integers {0,1,...,dy, } . As an example, assume there are M =7
problem instances that the values of vry are (1,2,6,3,1,2,5) and dy,. is 2. These values
need to be divided into dj,. + 1 = 3 subsets. First the sorted values (1,1,2,2,3,5,6) are
acquired. Then, three subsets ({1,1,2},{2,3,5},{6}) are obtained that each has [7/3] = 3
values except the last one which has one value. Finally, the values of vr; are aggregated
and the new values are (0,0,2,1,1,0,1). The aggregation reduces 5 unique values of vr; to
3 unique values.

For all wr;, d,,. is 2 and the split points are 0.5 and 1. The motivation of this hard
setting is separating illegal, light and heavy weights. Illegal weights are the weights with
wr; > 1 that cannot be added to the knapsack. Similarly, wr; < 0.5 and 0.5 < wr; < 1
determine light and heavy items respectively. The aggregation process is performed by the
function map(Fy, p, d}k) that gets I}, p and returns an integer which corresponds to a subset
based on d}k splits.

We use heuristics to define the reward function R(Fj,dp,) which is shown in (6).

17 Uy
(dFk + 1)CFkadFk

R(Fk7 dFk) = (6)

where, [f, ; is the size of jth subset, and CFy.dp, is the number of all common values
between all subsets. Three main motivations of designing rewards are: (1) We aim to define
the reward function such that it reduces the size of state space. The number of unique states
for each feature is dp, + 1 after applying dp, splits and this value inversely relates to the
reward of each action; (2) For feature Fy, and dp, splits, let j € {0,1,2,...,dF, } be a subset
based on dp, splits and [f, ; be the difference between maximum and minimum values of jth
subset. As larger [g, ; entail in aggregating more values, their rewards are higher than those
for smaller If, ;. However, unequal subsets contain unequal number of values. For example,
if the feature values are uniformly dispersed between 0 and 10, creating two subsets with
lengths 5 and 5 are better than two subsets with length 1 and 9. Therefore, the product of
the g, ; for all j is in the numerator of the reward function; and (3) Distinct states help
an agent to derive a deterministic policy because states have dissimilar features. Likewise,
two subsets with less overlapped values represent different sets of states and the policy can
better distinguish them. For example, for the subsets ({1,1,2},{2,3,5},{6}), 2 is common
between two subsets and it can be assigned to both subsets. Assigning this value to different

88

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

subsets entails a different policy that may have different performance. In order to reduce
the number of common values between two groups, we define CFy.dp, 88 the total number
of common values in different subsets.

A @ table is constructed for the states and actions and it is filled by the Q—learning
algorithm (Sutton et al., 1998) as shown in Algorithm 2. Each vr; is a state and the next
state is the vry which i’ is an arbitrary state. Finally, an optimal decision is found by using
the) table for each feature. The algorithm is used for aggregating vr; and we denote dy,.. as
the optimal aggregation action for each vr;. The state embedding derived by this strategy
is a feature vector consisting of aggregated features and this state embedding is used in line
11 of algorithm 1. Equation (7) shows s(P), the state embedding of P.

s(P) = {map(Fy p,dp,) : VEF, € F(P)} (7)

Algorithm 2 Q-Learning for State Aggregation

Input: Feature table of problem instances P4, ..., Py
Output: The number of optimal split points for all vr;

[y

: Initialize a @ table with N rows and = columns. States are features and actions are the number
of split points
Select item ¢ randomly
repeat
Select ¢’ randomly as the next item
Select dy, € {1,...,z} according to e-greedy policy
Find R(vr;,dyr,) using Eqn. 6
Updé}te Q(vria dvrt) — Q(Uria dvr,ﬂ,) + a[Rvn,,dvri + vy maxg Q(UTi’a d,) - Q(Uria dvri)]
i=1
until Convergence
return d;, = argmaxQ(vr;,d) Vi

—_
e

5. Experiments

The proposed DRL with aggregation algorithm is compared with (1) greedy algorithm and
(2) DRL without aggregation (3) DRL approaches for solving KPs with pointer network
(Bello et al., 2017) (4) Pointer Network and Supervised learning method (Gu and Hao, 2018).
There are several works using DRL for COPs. However, they are mainly for sequence to
sequence problems like TSP and they are not directly applicable on KPs. The problem
instances and code used for experiments are available in URL'.

5.1. Configuration of the method

We first choose the DRL algorithm for training the policy DNN by testing three algorithms:
Deep Q Network (DQN) (Mnih et al., 2013), Advantage Actor Critic (A2C) (Mnih et al.,
2016), and Proximal Policy Optimization (Schulman et al., 2017). We use stable-baseline
tools to implement the A2C algorithm (Hill et al., 2018). We test the algorithms with
different parameters on a set of knapsack problem instances with at most 50 items. The

1. https://github.com/7ReRA7/StateAggregation_KPs

89

https://github.com/7ReRA7/StateAggregation_KPs

AFSHAR ZHANG FIRAT KAYMAK

Table 1: The performance of three DRL algorithms and reward functions for solving 1000
randomly generated KPs with at most 50 items. Each column corresponds to
a reward definition for positive and negative rewards shown by + and -. The
numbers in the parentheses denote the average solution value and the number of
optimally solved instances respectively. The results are obtained by averaging over
ten separate runs each for 10% episodes for aggregated states. 4+ and — in Reward
column denote the rewards corresponding to w; < Wpr and w; > Wps respectively.

Algorithm + :vry, —:wr; +:ory,—:w; +:v,—wr; +v,—cw; o+ 1 - -1
A2C (434.50, 959) (433.77,881) (433.68, 882) (433.47, 854) (432.63, 802)
DQN (367.88, 384) (405.14, 501) (432.62, 794) (432.96, 816) (369.92, 382)
PPO (431.58, 725) (431.76, 737) (431.3, 714) (432.05, 762) (431.08, 697)

policy and the value networks consist of two layers of 64 nodes where the sigmoid function is
used in the output layer and Adam Optimizer is employed for optimizing the weights. The
learning rate is 0.001 and the weights are updated after five steps. Since the number of items
are finite, a close to one discount factor is chosen. The method is trained on 10* episodes
which are selected from M instances. We also consider v; and vr; for positive rewards,
and w; and wr; for negative rewards and run the method ten times on all combinations
of positive and negative rewards to infer the best definition of the reward function. The
positive and the negative values are selected based on values and weights because they
directly define the profit and constraints of the problem. Furthermore, we use constant
values +1 and -1 for positive and negative rewards respectively to show that item-dependent
rewards perform better. Table 1 shows the performance of these three DRL algorithms in
terms of the solution quality and number of optimally solved instances. The table shows
that using vr; and wr; for rewards, A2C provides a higher solution value and more optimally
solved instances than the other algorithms. The reason that A2C works better than PPO
is because the difference between close to optimal solutions is very low and the CLIP in
PPO discards this difference. A2C works better than DQN because the off-policy nature
and € — greedy algorithm which is used in DQN prevent the method from exploring close
to the current-best solution. These results are found based on averaging over ten separate
runs to show the stability of the results.

Based on the results, A2C is selected to be used in the remaining experiments to train
the policy DNN in our approach.

5.2. Problem Instances

We use three different types of instances in the experiments: Random Instances, Fized Wp
Instances and Hard Instances. A set of M problem instances makes a dataset that the
maximum number of items over all instances in the dataset is .

Random instances (RI): A dataset of random instances has M problem instances that
each instance P has np € {1,2,..., N} items. For an item 4, v; and w; are randomly
generated integers from one to R that is a fixed upper bound for v; and w;. The Wp is a
random integer between R/10 and 3R. Three datasets of random instances are generated
with M = 1000, N = 50, 300, 500, and R = 100, 600, 1800, respectively.

90

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

Fixed Wp Instances (FI): In (Bello et al., 2017) a set of KP instances with fixed capacity
and fixed item set size are used for evaluation. We generated three datasets of the same
instances with M = 1000. The N for these three datasets is 50, 300 and 500 respectively.
The values and the weights of all items in the three datasets are random real numbers
between zero and one. The Wp is fixed for all the instances and it is 12.5 for N = 50, 37.5
for N = 300 and 37.5 for N = 500.

Hard instances (HI): In (Pisinger, 2005), a group of hard to solve problem instances
were introduced that for each item i, v; is strongly correlated with w;. Specifically, w; is
a random integer in [1, R|, v; = w; + R/10 and Wp = MLHE?jlwi where p is the id of P.
Three datasets of M = 1000 hard instances are generated. For the first dataset, N is 50
and R is 100. Likewise, N is 300 and 500, and R is 600 and 1000 for the second and the

third datasets respectively.

5.3. Evaluation Metrics

We evaluate the performance of different approaches in terms of the following metrics.
Average values of solutions (Val). For each dataset of M problem instances, Val is
the average of all solution values (total values of the selected items). Likewise, Valopt is
the average values of optimal solutions, which are obtained using the optimization solver
Gurobi (Gurobi Optimization, 2020).

Learning rate. To compare how fast DRL with and without aggregation methods learn,
the rate of increasing in Val is calculated per timesteps and the result is shown for each
instance type when N = 300.

Number of optimally solved instances (#.,:). In order to evaluate the performance of
the method on the individual problem instances, the number of instances that the method
finds their optimal solution is computed for each dataset.

Number of instances with highest solution value (#pighest). This metric compares
the solutions of (1) DRL with aggregation; (2) DRL without aggregation; and (3) greedy
algorithm. It counts the number of wins each algorithm has in terms of solution values.

5.4. Experiment results

Table 2 shows the solution qualities of Greedy, DRL algorithms with (i.e. w/) and without
(i.e. w/o0) aggregation in solving three types of KP instances: RI, FI, and HI. The column
Wopt contains the average value of optimal solutions. Table 2 contains the ratio of Val and
Valopt. These values show that the ratios of the solutions provided by DRL w/ aggregation
and the optimal solutions are most of the times more than 99.9%. This ratio does not
change considerably when the number of items increases. Hence we conclude that our DRL
based approach is able to find very close to optimal solutions for all instances we tested.
Figure 2 shows the box plots of optimality gap for the solutions of different instance types
for 300 and 500 items. The optimality gap for each instance P is 1 — ‘Y;;g)t where Vali is
the solution value of running algorithm A on instance P, and Val,y is the optimal solution
value of P. The difference between the solutions of greedy algorithm and DRL algorithms
can be better observed in this figure. Furthermore, the solutions of DRL algorithtms are
very close to the optimal solutions and DRL with aggregation perform better than DRL

without aggregation.

91

AFSHAR ZHANG FIRAT KAYMAK

Table 2: Results of different algorithms and datasets of M = 1000 problem instances. It
is possible that two approaches find the optimal solution for a certain instance.
Hence, the total number.

Dataset Method N Val Hopt Fhighest Wapt %al
alopt
Greedy 50 429.10 596 0 434.78 98.694%
DRL w/o aggregation 50 434.09 893 7 434.78 99.843%
DRL w/ aggregation 50 434.50 959 41 434.78 99.937%
Greedy 300 1144.96 418 0 1151.58 99.425%
RI DRL w/o aggregation 300 1150.83 830 21 1151.58 99.934%
DRL w/ aggregation 300 1151.10 878 47 1151.58 99.958%
Greedy 500 15216.51 345 0 15285.56 99.548%
DRL w/o aggregation 500 15273.47 701 30 15285.56 99.920%
DRL w/ aggregation 500 15278.44 786 80 15285.56 99.953%
Greedy 50 20.10 172 0 20.15 99.738%
DRL w/o aggregation 50 20.14 740 36 20.15 99.931%
DRL w/ aggregation 50 20.15 773 54 20.15 99.959%
Greedy 300 86.26 202 0 86.31 99.942%
FI DRL w/o aggregation 300 86.27 226 24 86.31 99.961%
DRL w/ aggregation 300 86.29 330 205 86.31 99.976%
Greedy 500 111.68 204 0 111.73 99.945%
DRL w/o aggregation 500 111.63 64 31 111.73 99.871%
DRL w/ aggregation 500 111.70 261 144 111.73 99.970%
Greedy 50 772.428 134 0 802.72 96.226%
DRL w/o aggregation 50 799.036 655 113 802.72 99.540%
DRL w/ aggregation 50 799.438 689 147 802.72 99.591%
Greedy 300 27778.03 37 0 27965.76 99.328%
HI DRL w/o aggregation 300 27947.11 323 161 27965.76 99.933%
DRL w/ aggregation 300 27952.63 353 233 27965.76 99.953%
Greedy 500 80779.23 25 0 81103.99 99.781%
DRL w/o aggregation 500 81022.60 71 168 81103.99 99.899%
DRL w/ aggregation 500 81064.99 136 304 81103.99 99.951%

Comparison with Greedy and DRL without aggregation. The results show that
the proposed DRL-based methods, with or without aggregation, always perform better
than the greedy algorithm, in terms of the average solution quality (Val), the number of
optimally solved instances (#op¢), and the number of instances with highest solution value
(#highest). As shown in table 2, the state aggregation strategy improves the solutions of
greedy algorithm for large instances, which is clearly observable in the solutions of all prob-
lem instance types. The column Val shows the difference between three approaches. The
DRL with state aggregation always works better than DRL without aggregation and greedy
algorithm. In terms of number of optimally solved instances, the DRL with aggregation
greatly outperforms greedy algorithm (about ten times higher for large instances with 500
items). DRL with aggregation also works better than DRL without aggregation and solves
more instances optimally. Furthermore, based on #p;gnest, the greedy algorithm never finds
better solutions than DRL algorithms. Comparing to DRL without aggregation, the DRL
with finds better solution most of the time (304 vs. 168 for HI and 500 items). Based on

92

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

RI 300 items 10? F1300 items HI 300 items

Optimality Gap
Optimality Gap

i i

DRLw Agg DRL wio Agg

Optimality Gap
ol
g e s
e

b4
i
|
i
|
i
i
002 ; + |
i
! 05
v E
o i
Greedy

DRL w Agg DRL wio Agg

Greedy DRLw Agg DRL wio Agg

(a) RI, 300 items (b) FI, 300 items (¢) HI, 300 items

RI 500 items <108 F1 500 items HI 500 items

Optimality Gap
Optimality Gap

Optimality Gap

+
i + b
I i *
0.04 * 1 | o1 ¥
i i
+ I
0.02 % 05 0.05
‘ i
.
Greedy DRL w Agg DRL wio Agg Greedy DRL w Agg DRL wio Agg Greedy DRL w Agg DRL wio Agg

(d) RI, 500 items (e) FI, 500 items (f) HI, 500 items

Figure 2: The box plot for the optimality gaps of solutions of the three instances types with
300 and 500 items.

Hard Instances

L 10° Random Instances 10t Fixed W Instances 107

DRL w/ Aggregation

DRL w/ Aggregation B

——— DAL wio Aggregation

DRL wio Aggregation

2 DRL w/ Aggregation

DAL wio Aggregation

ies of the solutions

m
Sum of valu

Sum of values of the solutions

2

0 05 1 15 2 25

0 0
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Timesteps 10°

Timesteps x10% Timesteps x10°

(a) Random Instances (b) Fixed Wp instances (¢) Hard instances

Figure 3: Learning rate of DRL algorithms w/ and w/o aggregation for 300 instances

these results, DRL with aggregation method outperform the well-known greedy heuristic
for KPs and also DRL without aggregation.

Learning Rate. The important benefit of DRL with aggregation method is that it is able
to find the high quality solutions in less time steps. As it can be observed from Figures
3(a)subfigure, 3(b)subfigure and 3(c¢)subfigure, the learning rate of DRL with aggregation
method is higher than the DRL without aggregation. Hence, in general, it not only provides
better solutions, but also the solutions are found in around 10,000 fewer timesteps.

Comparison with (Bello et al., 2017). The pointer network based DRL method is
used to solve KPs in (Bello et al., 2017). The FT instances with 50, 300 and 500 items and
fixed capacities used in our experiments are generated in the same way as those used in

93

AFSHAR ZHANG FIRAT KAYMAK

(Bello et al., 2017). For these FI instances, our proposed DRL with aggregation method
finds optimal solutions for 50 items, while a similar performance is reported in (Bello et al.,
2017). Our method also finds close to optimal solutions for larger instances up to 500 items.
In (Bello et al., 2017), the authors did not test instances with more than 200 items.

One disadvantage of the method of (Bello et al., 2017) is that it can only be applied
to solve the instances with exactly same number of items N, and in addition, with exactly
same capacity value Wp. Hence, it is not applicable for solving the instances of RI and HI
that contain varying capacities and item numbers.

Comparison with (Gu and Hao, 2018). This work employs the pointer network and
supervised learning to solve 0-1 KPs. The authors of (Gu and Hao, 2018) generated 10000
instances for training and 1000 for testing and selected 100 randomly selected test instance
for evaluation. We generate the RI instances in the same way. Although our method is
based on active searching, we followed a greedy algorithm according to the outputs of the
policy network using 100 randomly selected instances that are not considered in active

searching to achieve a fair comparison with (Gu and Hao, 2018). The results show that

Val
Wopt
the performance ratio in (Gu and Hao, 2018) is 60% for a set of randomly generated problem

instances with 500 items.

ranges from 0.84 to 0.99 for the selected instances with 500 items. As a comparison,

6. Conclusion and future work

We developed a DRL-based method for boosting the heuristic greedy algorithm and solving
KP. In the DRL based KP solver, a policy DNN and a value DNN are trained using A2C
algorithm and the policy DNN is used for sequentially selecting items to find a solution.
The states in DRL modeling of KP contain the information of the instances that are aggre-
gated to reduce the state space. The state aggregation policy is derived by solving a tabular
RL problem. Using this aggregation policy, a state embedding is obtained and this state
embedding is used with another RL framework to train the parameters of the policy net-
work. We compared this method with several other approaches, namely the existing DRL
approaches (i.e. Bello et al. (2017) and Gu and Hao (2018)), the greedy algorithm, and
moreover, our approach without state aggregation, using three types of problem instances
and with different problem sizes.

The results have demonstrated that the proposed approach is promising for solving the
KP type of the problems which emerge in many applications such as cargo loading and
capital budgeting. The proposed method with some adaptation effort may be generalized
to some other COPs.

This paper uses RL to automate the reduction of the state space, as a pre-processing
step of the DRL based approach for KPs. In general, automating the state, reward and
action derivation for RL problems are interesting topics for research in the future.

Acknowledgments

This work was supported by NWO (project 628.010.001) and EU EUROSTARS (Project
E! 11582).

94

DRL AND STATE AGGREGATION FOR KNAPSACK PROBLEMS

References

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A
brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
combinatorial optimization with reinforcement learning. In ICLR (Workshop), 2017.
URL https://academic.microsoft.com/paper/2560592986.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. arXiv preprint arXiw:1811.06128, 2018.

Stephen Cook. The p versus np problem. The millennium prize problems, 2006.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2009.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for
structured data. In International conference on machine learning, 2016.

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. Algorithms.
McGraw-Hill Higher Education, 2008.

Ding-Zhu Du and Panos M Pardalos. Handbook of combinatorial optimization: supplement,
volume 1. Springer Science & Business Media, 2013.

Yanhong Feng, Juan Yang, Congcong Wu, Mei Lu, and Xiang-Jun Zhao. Solving 0-1
knapsack problems by chaotic monarch butterfly optimization algorithm with gaussian
mutation. Memetic Computing, 10(2):135-150, 2018.

Shenshen Gu and Tao Hao. A pointer network based deep learning algorithm for 0-1
knapsack problem. In 2018 Tenth International Conference on Advanced Computational
Intelligence (ICACI), pages 473-477. IEEE, 2018.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.
gurobi.com.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

Tingfei Huang, Yang Ma, Yuzhen Zhou, Honglan Huang, Dongmei Chen, Zidan Gong, and
Yao Liu. A review of combinatorial optimization with graph neural networks. In 2019
5th International Conference on Big Data and Information Analytics (BigDIA), pages
72-77. IEEE, 2019.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint:1906.01227, 2019.

95

https://academic.microsoft.com/paper/2560592986
http://www.gurobi.com
http://www.gurobi.com
https://github.com/hill-a/stable-baselines

AFSHAR ZHANG FIRAT KAYMAK

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85-103. Springer, 1972.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinato-
rial optimization algorithms over graphs. In Advances in Neural Information Processing
Systems, pages 6348-6358, 2017.

Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D Sivakumar. A new dog learns old
tricks: RL finds classic optimization algorithms. In International Conference on Learning
Representations, 2018.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In ICLR 2019 : 7th International Conference on Learning Representations, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXw preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International conference on machine learning, pages
1928-1937, 2016.

David Pisinger. Where are the hard knapsack problems? Computers € Operations Research,
32(9):2271-2284, 2005.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104-3112, 2014.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 2.
MIT press Cambridge, 1998.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in
Neural Information Processing Systems, pages 2692-2700, 2015.

Christophe Wilbaut, Said Hanafi, and Said Salhi. A survey of effective heuristics and their
application to a variety of knapsack problems. IMA Journal of Management Mathematics,
19(3):227-244, 2008.

Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial
optimization—eureka, you shrink!, pages 185-207. Springer, 2003.

Nitin Yadav, Carsten Murawski, Sebastian Sardina, and Peter Bossaerts. Phase transition
in the knapsack problem. arXiv preprint arXiv:1806.10244, 2018.

96

	Introduction
	Related Work
	Problem Definition and Modeling
	DRL-based KP Solver
	Deep Reinforcement Learning method
	State Aggregation

	Experiments
	Configuration of the method
	Problem Instances
	Evaluation Metrics
	Experiment results

	Conclusion and future work

