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Abstract

Individual treatment effect (ITE) estimation is widely used in many essential fields, such
as medical and education. But two problems, unknown counterfactual outcome and con-
founder, are the barriers for making a good ITE estimation. Although some representation
learning methods based on potential outcome framework have been proposed to solve the
problems, we find that most of previous works assume all features (also named covariate)
of a unit are confounders. However, this assumption is not easy to become true, because
instrument variables, adjustment variables and irrelevant variables can also be included in
features. Therefore, this paper proposes a simple method to split covariates, and then a
network, Split Covariate Representation Network (SCRNet), is mentioned, which is used
to estimate ITE by different kinds of variables. Experiment results show that our method
outperforms other state-of-arts methods on IHDP, a semi-synthetic dataset, and Jobs, a
real-world dataset.
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1. Introduction

Causal Inference gradually became a focus in machine learning community recently.
As one of most important tasks in causal inference, ITE estimation plays a significant
role in the fields of medical [Shalit (2019)], education [Zhao and Heffernan (2017)] and so
on. Up to now, there are two basic models for counterfactual which are proved equivalent
[Pear]l (2009b)]: Structural Causal Model (SCM) [Pearl (2009a)] and Potential Outcome
Framework (PO) [Rubin (2005)].

Except for unknown counterfactual outcome, confounder is the main barrier in ITE
estimation. A confounder is a variable that not only affects treatment, but also affects out-
come. Taking an assumed example in the field of education to illustrate how a confounder
causes selection bias and disturbs treatment effect estimation, we want to know how the
ranking, r, in college entrance examination affects undergraduates’ grades, g, in a Chinese
university. Obviously, province, as a variable where a student comes from, is a confounder.
Because, r is a treatment, ¢ is an outcome, and province affects both ranking and grades
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due to different level of education in different province. However, students from high educa-
tion quality province often rank lower than students from poor education quality province.
Therefore, we could get the result that lower ranking leads to better grades. This error is
resulted by imbalance distribution in treatment, which is also named selection bias.

For solving this problem, traditional representation methods based on PO framework re-
gards selection bias as a domain adaptation problem. They learn a balance representation of
confounders used to inference outcomes, which include factual outcome and counterfactual
outcome. The most popular one of these methods is TARNet [Shalit et al. (2017)].

But we find most of previous works assumed that all features of a unit are confounders,
however, such assumption is difficult to become true. We can see in Figure 1 that some
covariates only affect treatment which are named instrument variables[Pearl (2009a)] and
some covariates only affect outcome which are named adjustment variables[Pearl (2009a)].
Even, some covariates are irrelevant variables that have no effect on both treatment and
outcome.

As for how to use these variables, we think that irrelevant variables should be removed
at first when we estimate treatment effect. Because Pearl etc.[Pear]l (2012)] have proved
that conditioning on instrument variable will increase confounding bias. And in nonlinear
model, conditioning on instrument even bring other new bias which is undesirable. In real
world, causal model is often nonlinear. So, it is necessary to remove instrument variable
when we estimate causal effect [Pearl (2012);Wooldridge (2016)]. Compared to confounders,
we think adjustment variables are not necessary to be balanced. Previous works [Shalit
et al. (2017);Johansson et al. (2016)] proposed that selection bias can be regarded as a
case of domain adaptation and learning a balancing representation of confounders between
treated and control group can solve this problem. However, adjustment variable has no
effect on treatment, so it has no contribution to selection bias. We think it may bring
some estimation bias when balancing the representation of adjustment blindly. Except
for instrument variables and adjustment variables, some irrelevant variables are mixed in
covariates. Though these variables have no effect on outcome prediction, we can decrease
the collecting information about a unit by removing these variables when estimating causal
effect. Causal inference is widely used in medication and education which both relate to
privacy, such as family income and disease history. So, less covariates in ITE estimation
can make collecting observational data easier.

To relax the assumption that all of covariates are confounders, we propose a simple
method, which can divide covariates into confounders, instrument variables, adjustment
variables and irrelevant variables. This method combines usual causal structure and con-
ditional independence. Besides, we propose a new ITE estimation model, Split Covariate
Representation Network (SCRNet), to make good use of split covariates. In a word, the
contributions of this paper are:

e 1. Combining usual causal structure and conditional independence, this paper pro-
poses a simple method to divide covariates into confounders, instrument variables,
adjustment variables and irrelevant variables.

e 2. For removing the estimation bias caused by instrument variables, and for making
good use of adjustment variables and confounders, a new ITE estimation model is
proposed — Split Covariate Representation Network (SCRNet).
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Figure 1: Covariates may include four kinds of variables: confounders, instrument variables,
adjustment variables and irrelevant variables.

e 3. In experiment, two datasets are used to evaluate our method, and results show
that our method outperforms other state-of-arts.

Some notations in this paper are given here. In this paper, we assume that the number
of units is n, and each unit has features z € X and treatment ¢. The treatment is a binary
variable as most of previous works setup. The units with ¢ = 1 constitute treated group
and the units with ¢ = 0 constitute control group. Under PO framework, due to t € {0, 1},
each unit has two potential outcomes, y;(t = 0) and y;(t = 1). One of potential outcomes
is factual outcome, denoted as y’', and the other is counterfactual outcome, denote as
y©F. After defining the potential outcome for ith unit, we give the definition of individual
treatment effect (ITE):

ITE; = yi(t =1) — yi(t = 0)

Some assumptions are often made when using PO framework [Rubin (2005)]. And in
this paper, we also follow these assumptions:

Assumption 1 (SUTVA). Every units should be independent of each other and has no
interaction. Treatment has unique level.

Assumption 2 (Ignorability). Given Covariates X, potential outcomes should be inde-
pendent of treatment assignment, i.e., ¢t L y(t =1),y(t = 0)|X

Assumption 3 (Positivity). For any set of covariates x, treatment is not decided, i.e.,
P(t|X) > 0,Vt, X.

2. Related work

There are two main research directions in causal field — causal discovery [Kalisch and
Buhlmann (2014);Guo et al. (2018)] and causal inference[Yao et al. (2020)]. The aim of
causal discovery is to construct causal graph from data, such as observational data [Peter
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et al. (2000)] and interventional data [Kocaoglu et al. (2017)]. Causal inference focus on
treatment effect estimation. And PO framework is an important basis for this topic.

The methods based on PO framework can be divided into five categories. The first is re-
weighting. These methods construct a supposed balance contribution by re-weighting each
unit, such as DCB [Kuang et al. (2017a)]. The second category is stratification. The main
idea of these methods is dividing units into different groups according to some standard
so that the distribution is balance in each group. The third category is matching which
is often used. In observational data, if a unit is treated, the nearest unit on x in control
group is used as the counterfactual. For example, HSIC-NMM [Chang and Dy (2017)] and
etc. belong to these matching methods. The forth category is tree-based method, which
uses decision tree to learn how to predict counterfactual outcome. BART [Hill (2011)] and
Causal Forest[Wager and Athey (2018)] are famous versions in this category.

And representation method is the last category which our method belongs to. Balanc-
ing Neural Network (BNN) [Johansson et al. (2016)] converted counterfactual prediction
to domain adaptation firstly. Then, Treatment Agnostic Representation Network (TAR-
Net) [Shalit et al. (2017)] and Counterfactual Regression (CFR) [Shalit et al. (2017)] used
two-head network to improve performance. Recently, DragonNet [Shi et al. (2019)] added
another head to predict treatment based on TARNet, and got a better result.

However, the methods mentioned above assumed that all confounders are observable.
CEVAE [Louizos et al. (2017)] combined TARNet with auto-encoder, giving a method that
can estimate treatment effect with latent confounders.

3. Method

For relaxing the assumption regarding all covariates as confounders, we use usual causal
structure and conditional independence to split covariates. And then, this paper propose
SCRNet with inputting confounders and adjustment variables to estimate treatment ef-
fect. So this section is divided into two parts to illustrate splitting covariates and SCRNet
respectively.

3.1. Split Covariate

Each covariate of each unit can only be the cause of treatment and outcome, because
covariates are inherent attributes of units. Therefore, each covariate probably belongs to
one of confounder, instrument variable, adjustment variable and irrelevant variable. We
assume that covariates X is set of variables, denoted as X = {x1,x2,...2p}. And the sets
of confounders, instrument variables and adjustment variables are denoted as X., X;, X,
respectively.

Each item of X will be judged which kind of variable it belongs to. And when all items
are judged, covariates are split. There are two steps in the process of judgement. The
first step is to find out possible instrument variables and adjustment variables. As figure 2
shows that, instrument variable, treatment and outcome form a chain structure, while as
figure 3 shows that treatment, outcome and adjustment variable form a collider structure.
According to universal causal structure rule [Pearl (2009a)], start node is independent of end
node in collider structure. So, if a covariate is not independent of treatment, the covariate
cannot be an adjustment variable and we add x to X;. However, start node interacts with
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Figure 2: Instrument variable, treatment and outcome form a chain structure.
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Figure 3: Treatment, outcome and adjustment variable form a collider structure.

end node under chain structure. If we block the middle node, this interaction will be cut
down. And the method of block is conditional independence. Therefore, if we conditioning
on treatment, instrument variable should be independent of outcome. Otherwise, there
is other access between this covariate and outcome, which illustrates that this covariate
has effect on outcome. So, for x € X; which means that chain structure exits, if x is not
independent of outcome conditioning on treatment, it may belong to adjustment variable
and we add = to X,. And for z ¢ X;, we only need judge whether z is independent of
outcome.

The second step is to find out confounders. After the first step, variables in X; and X,
are the cause of treatment and the cause of outcome respectively. For confounder is the
cause of both treatment and outcome, the variables that belong to not only X; but also X,
are confounders. So we add these covariates to X, which equals to X, = X;[)X,. And
then removing covariates x € X, from X; and X,, we will get the true instrument variables
set and adjustment variables set. Irrelevant variables are the covariates that not belong to
X, X, and X.. And split covariates are accomplished.

3.2. SCRNet

Recently, representation learning methods have succeeded in treatment effect estimation.
The main idea of these methods is to convert the problem of selection bias to domain
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Figure 4: The structure of SCRNet.

adaptation. These methods learn a balance representation of confounders between treated
group and control group. And almost all methods assume treatment as a binary variable,
so a two-head network is proposed for predicting treated and control outcome respectively.
With more precise outcome prediction, the performance of ITE estimation also becomes
better.

SCRNet follows the basic structure of previous works. However, covariates are split
instead of being confounders, so we have to alter the structure of network. Obviously,
for irrelevant variables has no impact on outcome, we remove them directly. Although
instrument variables can help estimate treatment effect when confounders are unobservable
[Hartford et al. (2017)], they will bring bias when all confounders are observable[Pearl
(2012);Wooldridge (2016)]. Therefore, the input of our model also excludes instrument
variables. While adjustment variables have effect on outcome like confounders, they don’t
produce selection bias. So, we don’t balance the representation of adjustment variables. And
we simply concatenate their representation with confounders’ representation. In conclusion,
the structure of SCRNet is shown in figure 4.

As mentioned before, the aim of our model is to balance the representation of con-
founders and to reduce the error of outcome prediction. So, the loss of our model is:

L(Xe, Xa,t) = sz ) fa(Xg ) ti), yi)+ (1)

- W/GSS((f%( N)iti=0 (FelXD))izt=1) + A - |||
L N ek Zt )

2u ' 2(1—u)

Note that u is the proportion of treated units in the population. w; is named inverse
probability of treatment weighting (IPTW) [Rosenbaum and Rubin (1983)], which is used
to compensate the different size between treated and control group. And the calculation
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of IPTW is shown in (2). In (1), L(-) is RMSE, which is used to reduce the prediction
error.Wass(-,-) is Wasserstein distance[Sriperumbudur et al. (2012)], which is used to mea-
sure the difference between two distributions. As a part of loss, it is used to balance the
representation of confounders between treated group and control group. ||h||2 is the 12
regularization of parameters. o and A are hyperparameters.

We used stochastic gradient descent to train our model by minimizing the loss in (1).
During the process of training, the error is backpropagated to both inference layer and
representation layer, which means that it is an end-to-end process. Two stage training like
BNN [Johansson et al. (2016)] is not applied in our model.

4. Experiment

It is often difficult to evaluate causal inference algorithm, because counterfactual out-
comes are often missed. With no counterfactual outcome, ground truth ITE is unknown.
Therefore, most of previous works used synthetic or semi-synthetic datasets to conduct ex-
periments. This paper applied a semi-synthetic dataset ITHDP [Hill (2011)] and a real-world
dataset Jobs [Shalit et al. (2017)] to evaluate our method.

Besides, we choose four baselines to compare with SCRNet. The first baseline is Bal-
ancing Neural Network (BNN) [Johansson et al. (2016)], which firstly adopted domain
adaptation to causal inference. And the second is Treatment-Agnostic Representation Net-
work (TARNet)[Shalit et al. (2017)], which applied two-head network to the inference layer.
The third model is Counterfactual Regression (CFR)[Shalit et al. (2017)], which promoted
performance by balancing representation of confounder. The last baseline is DragonNet [Shi
et al. (2019)]. This algorithm add a head network to predict treatment, so the inference
layer of DragonNet is a three-head network.

In experiment, we followed within-sample and out-of-sample setup as [Shalit et al.
(2017)] did. The meaning of within-sample setup is to get accurate ITE when a unit
has been treated or control, while the setup of out-of-sample is to make the best policy for
a new unit.

4.1. Semi-Synthetic Dataset: ITHDP

IHDP is a semi-synthetic dataset, which can be created by NPCI package [27]. And we
generated 100 low sampled value (for accuracy of splitting covariates) IHDP replications
for evaluation. In this dataset, treatment is specialist home visits and outcome is infants’
future cognitive test scores. The number of covariates are 25, and these covariates are some
information about infants and their mothers.

For there exists ground-truth ITE in IHDP, we can evaluate the precision of predicting
ITE - Precision in Estimation of Heterogeneous Effects (PEHE) [Hill (2011)]. And the error
of PEHE is shown below:

N
1 i i ROBERG
cppne =~ 2l — ") — @ =3P (3)
i=1

Note that gjgi),@(()i) are the outcome of treated unit and control unit respectively. And

ground-truth ITE is denoted as y%i) — y(()i).
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Table 1: The results of experiment on IHDP.
Model Within-sample Out-of-sample

BNN 1.414 1.491
TARNet 0.669 0.716
CFR 0.654 0.706
DragonNet 0.753 0.786
SCRNet 0.651 0.681

The results of experiment on THDP are shown in Table 1. Lower epgpgyp represents
better performance. Therefore, we can conclude that our method outperforms other state-
of-arts on THDP dataset. In addition, our method use less features of unit to get a better
result, because we discard instrument variables and irrelevant variables, which is also an
advantage of our method.

4.2. Real-world Dataset: Jobs

Jobs dataset is a real-world dataset, which consists of a randomized controlled trial
(RCT) and an observational experiment. In this dataset, treatment is whether a person
joins job training, and outcome represents whether a person has a job in 1978. Obviously,
both treatment and outcome are binary variables. Covariates contain some information of
job seekers, such as age, education and so on.

For there is no counterfactual outcome in this real-world dataset, ground-truth ITE is
unknown. In [Shalit et al. (2017)], the paper proposed a standard, named policy risk, to
evaluate causal inference algorithm. The definition of policy risk is:

Rpo =1 = (Ei|mp(z) = 1] - p(mp = 1) + E[Yolmp(z) = 0] - p(mp = 0)) (4)
nr(x) = 1,if f(x,1) — f(x,0) > A.Otherwise, m¢(x) =0 (5)

In (4), m¢(x) represents what policy we should make according to ITE estimator. And
(5) gives how to calculate 7s(x), with A = 0 in this paper. The actual meaning of policy
risk, denoted as R, is average loss of decision implied by an ITE estimator.

Table 2: The results of experiment on Jobs.

Model Within-sample Out-of-sample

BNN 0.232 0.240
TARNet 0.228 0.234
CFR 0.223 0.229
DragonNet 0.226 0.235
SCRNet 0.215 0.229

We run experiments on jobs dataset 50 times and calculate the average R,,. Table 2
shows the results of experiment on Jobs dataset. R,y is lower, the performance of model
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is better. According to the results, we can see that our model has a good performance
compared with other state-of-arts.

4.3. Discussion

This paper focuses on splitting out variables of instrument, adjustment, irrelevant and
confounders from covariates all at once. As we know, although one method [Yao et al.
(2019)] based on representation learning has cared about the splitting issue, it used text-
based sample description to split out instrument variables and removed them. But we
don’t introduce any other information to complete split task and realize a corresponding
treatment effect estimator.And another work [Kuang et al. (2017b)] which split covariates
into adjustment variables and confounders is aimed at average treatment effect (ATE)
estimation.

Table 3: The number of different kinds of variable in two datasets.

Dataset Total Confounder Adjustment Instrument Irrelevant
IHDP (average) 25 2.8 2.85 8 11.35
Jobs 7 6 1 0 0

As shown in Table 3, it is necessary to split out variables of instrument, adjustment,
irrrelevant and confounder from covariates, which may improve the performance. We find
that the performance of our method is better, in IHDP experiment, but is similar to others,
in Jobs experiment. Compared with experimental results on Jobs, our method splits out
more adjustment and instrument variables on IHDP dataset. If not splitting these variables,
our method will be similar to CFR. Therefore, it is not difficult to understand why the
result of our method is similar to CFR on Jobs dataset, for only one adjustment variable
is split out. However, many variables of adjustment, instrument, and irrelevant are split
on THDP dataset, which illustrates that splitting covariates is necessary in ITE estimation.
But the accuracy of independence test which is not high due to finite datasets limits our
algorithm. In rare cases, we even have to split out confounders according to results of
several confidence coefficient setup. So, more accurate independence testing would promote
our algorithm furtherly. Moreover, we will study how different kinds of variables influence
ITE estimation in the future.

5. Conclusion

In this paper, we have proposed a simple method for splitting covariates and a new ITE
estimation model —SCRNet. Our method relaxes the assumption that all covariates of units
are confounders, which most of previous works have made. And we evaluated our method
on two datasets. The results of experiment indicate that our method outperforms other
state-of-arts. In the future, we will focus on why our method can have a good performance
with fewer features. And we think the combination with explainable machine learning is
also promising.
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