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Abstract

The seminal work of (Charikar, 2002) gives a space efficient sketching algorithm (Simhash)
which compresses real-valued vectors to binary vectors while maintaining an estimate of the
Cosine similarity between any pairs of original real-valued vectors. In this work, we pro-
pose a sketching algorithm – Simsketch – that can be applied on top of the results obtained
from Simhash. This further reduces the data dimension while maintaining an estimate of
the Cosine similarity between original real-valued vectors. As a consequence, it helps in
scaling up the performance of Simhash. We present theoretical bounds of our result and
complement it with experimentation on public datasets. Our proposed algorithm is simple,
efficient, and therefore can be adopted in practice.

1. Introduction

Corpora like WWW contain datasets having dimensionality in the order of billions (Agarwal
et al., 2014). Most of such datasets are sparse owing to the widely adapted “Bag-of-words”
(BoW) representations of documents and images. This is mainly due to the rarity of oc-
currence of most words in a document – the word frequency within a document follows the
power law, where the number of words varies as a power of frequencies. Thus, algorithms
that can reduce data dimensionality while preserving semantics are of great importance.
One way of doing this is by conserving the similarity between data objects. Thus, it is use-
ful to develop methods that can generate a small size sketch of the given data objects while
maintaining an estimate of the desired similarity between their corresponding sketches.
Such algorithms not only provide an efficient storage of the data objects but also help in
processing the data and in turn yield inferences at a faster rate. In this work, we focus
on deriving a sketching algorithm that preserves the Cosine similarity for high dimensional
real-valued datasets.

Cosine similarity is a measure widely used for comparing the similarity between doc-
uments. If u and v are d-dimensional vector representations of two documents, then the
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Cosine similarity between them is defined as

cos(u,v) = 〈u,v〉/||u||2||v||2,

where 〈u,v〉 =
∑

d

i=1 u[i]v[i], and ||u||2 denotes the l2 norm of vector u.
The sketching algorithm of (Charikar, 2002) takes as input high-dimensional real-valued

vectors and produces binary vectors as their respective sketches. The idea is to project data
points on a random vector whose entries are sampled from {+1,−1}, each with probability
1/2. As discussed by (Goemans and Williamson, 1995), the Hamming distance between
any pair of sketches maintains an estimate of the Cosine similarity between their respec-
tive real-valued vectors. Simhash (Charikar, 2002) is a well celebrated result that has been
extensively applied in several fundamental machine learning and data mining applications.
However, when the data points are high dimensional and highly similar, Simhash requires
a large dimensional sketch to accurately estimate the Cosine similarity between the origi-
nal data points. Such high dimensional sketches of Simhash could be impractical in many
applications. In this work we address this problem, and present a sketching algorithm that
can be applied on top of the sketch obtained by Simhash. We show that our algorithm
outputs a more succinct sketch while preserving estimates of the Cosine similarities be-
tween the original data objects. We further demonstrate that our results can scale up the
performance of Simhash on several applications where it is the state-of-the-art.

Organizing of the paper: The rest of the paper is organized as follows: Section 2
presents the necessary background; Section 3 discusses our algorithm and its correctness; in
Section 4, we complement our results with extensive experimentation on real-world datasets;
finally, in Section 5, we conclude our discussion by providing some potential applications of
our result.

2. Background

Notation. Let u and v denote two real-valued vectors in d-dimension. Suppose us and
vs are two binary vectors in d-dimension that are obtained after applying Simhash on u
and v. Let u(s) and v(s) denote binary vectors in d(s)-dimension that are obtained after
applying our sketching algorithms on us and vs.

Sketching algorithm for Cosine similarity – Simhash

Given a vector u ∈ Rd, Simhash (Charikar, 2002) generates a random vector r ∈ {−1,+1}d,
where each component is generated from {−1,+1} with probability 1/2, and stores only
the sign of the projected data. That is,

Simhash(r)(u) =

{
1, if 〈u, r〉 ≥ 0.

0, otherwise.
(1)

For a pair of vectors u,v ∈ Rd, Simhash offers the following guarantee Pr[Simhash(r)(u) =
Simhash(r)(v)] = 1 − θ

π , where θ = cos−1 (〈u,v〉/||u||2||v||2) (Goemans and Williamson,
1995). We repeat the above experiments d times and obtain their signature binary vectors
us,vs ∈ {0, 1}d. The Cosine similarity between two vectors u and v ∈ Rd can be computed
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using the Hamming distance between their binary sketch vectors us,vs ∈ {0, 1}d. Due
to (Charikar, 2002), we have

cos(u,v) = cos
[(π
d

)
Ham(us,vs)

]
. (2)

3. Our contribution

Given a pair of real-valued vectors u,v ∈ Rd, Simhash compresses them into a pair of
binary vectors us,vs ∈ {0, 1}d such that the Hamming distance between us and vs gives
an estimate of the Cosine similarity between u,v, where d � d . A precise relation is
mentioned in Equation 2. In our proposed algorithm Simsketch, we further compress the
binary vectors us,vs to u(s),v(s) ∈ {0, 1}d(s) , where d(s) � d, while maintaining an estimate
of the Hamming distance between us,vs. This as a consequence, maintains an estimate of
the Cosine similarity between u and v. Therefore, Simsketch further compresses (to a much
smaller dimension) the hash codes obtained from Simhash and simultaneously maintains
an estimate of the Cosine similarity between original real-valued data points. Simsketch
independently can also be seen as dimensionality reduction for binary data which approxi-
mates the Hamming distance between the data points. This result can be potentially used
for compressing the hashcodes obtained from other discrete hashing algorithms such as
“Winner Takes All (WTA) (Yagnik et al., 2011)”.

3.1. Simsketch

For a d-dimensional binary vector us ∈ {0, 1}d, our algorithm reduces it to a d(s)-dimensional

binary vector u(s) ∈ {0, 1}d(s) , where d(s) is specified later. It randomly maps each bit
position 1 ≤ i ≤ d to an integer 1 ≤ j ≤ d(s). In order to compute the j-th bit of u(s), it
checks which bit positions have been mapped to j, computes the parity of the bits located
at those positions and assigns it to u(s)[j].

Figure 1: Illustration of Simsketch. The left binary vector is the d-dimensional binary vector
obtained after applying Simhash. The right binary vector is the d(s) dimensional
binary vector obtained after applying Simsketch on the left one.
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3.2. Theoretical analysis of Simsketch

In what follows, we analyze the guarantee offered by our algorithm. This evaluation of
our result is adapted from the well-studied literature of bin-ball analysis (Johnson and
Kotz, 1977), and some steps of our analysis are similar to the result of (Mitzenmacher
et al., 2014). However, we argue that the objectives of both the results are different. The
algorithm proposed in (Mitzenmacher et al., 2014) takes as input the sketch obtained by
applying Minhash (Broder et al., 1998) on a pair of sets, and produces as output a pair of
compact binary vectors that maintains an estimate of the Jaccard Similarity between the
given sets. Simsketch, however, takes as input the sketch obtained by applying Simhash on
the given pair of real-valued vectors, and outputs compact binary vectors for estimating the
Cosine similarity between the given original vectors. We present our analysis as follows.

Let ψ denote the number of 1s in us. Using the aforementioned sketching algorithm, the

probability that a particular bit position in u(s) has value 1 is 1−(1−2/d(s))ψ
2 (follows via a

simple induction based on Markov chains). Let Xi be a 0− 1 random variable denoting the

value of i-th bit position of u(s), and X =
∑

iXi. Then E[X] = d(s)
(
1−(1−2/d(s))ψ

2

)
. If α is

a good approximation of E[X], that is α ≈ d(s)
(
1−(1−2/d(s))ψ

2

)
, then solving this expression

for ψ gives its estimate ψ̃, which is

ψ̃ =
ln(1− 2α/d(s))

ln(1− 2/d(s))
= −d

(s)

2
ln

(
1− 2α

d(s)

)
. (3)

The second equality is satisfied when d(s) is sufficiently large.
Our aim is to estimate the Cosine similarity S between two real-valued vectors u and

v. For a pair of vectors us,vs ∈ {0, 1}d, ψ can be considered as the Hamming distance
between them. Once the vectors u(s) and v(s) are obtained after applying Simsketch on
us,vs, we can refer α as the Hamming distance between us,vs. We wish to find an estimate
of Ham(us,vs) using Ham(u(s),v(s)) which we estimate by considering a vector obtained
by taking bitwise-XOR between us and vs, and putting it in Equation 3. Further, as a
consequence, an estimate of S can be obtained using the result of Equation 2. If we denote

˜Ham(us,vs) as an estimate of Ham(us,vs), then due to Equation 3 we have

˜Ham(us,vs) = −d
(s)

2
ln

(
1− 2Ham(u(s),v(s))

d(s)

)
. (4)

As we have ˜Ham(us,vs), putting this in Equation 2, gives an estimate S̃ of the Cosine
similarity S between two real-valued vectors u and v.

S̃ = cos
[(π
d

)
˜Ham(us,vs)

]
.

= cos

[
−
(π

2

) d(s)
d

ln

(
1− 2Ham(u(s),v(s))

d(s)

)]
.

(5)

The first equality follows from Equation 2, and the second from Equation 4. Due to Equa-
tion 5, our estimate S̃ of the Cosine similarity is closely related to the estimate of the
quantity Ham(u(s),v(s))/d(s). In what follows, we present the concentration and the vari-
ance bounds of this quantity.
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Concentration bounds. Our sketching algorithm can be considered as an experiment of
throwing some balls into several bins and the sketch is obtained by considering the parity
of the number of balls that have fallen into each bin. The sketch of the input vector us
is obtained by throwing ψ balls into d(s) bins and the sketch of each bin corresponds to
the parity of the number of balls that have fallen into that particular bin. A fundamental
difficulty in analyzing this scenario is that the events – number of balls falling into each
bin – are not independent. It is important to overcome these sorts of dependencies. We
circumvent this problem by considering the scenario where each bin receives a number
(of balls) independently from a Poisson distribution having mean ψ/d(s). The difference
between throwing ψ balls randomly and assigning each bin a number of balls from a Poisson
distribution with mean ψ/d(s) is that in the former, we know that there are ψ balls in total
whereas in the latter we only know that ψ is the expected number of balls in all of the bins.
We use the following result.

Lemma 1 (Corollary 5.9 of (Mitzenmacher and Upfal, 2005)) Any event that takes
place with probability p where each bin obtains an independently distributed Poisson number
of balls with mean µ, occurs with probability at most pe

√
m when m = µn balls are thrown

into n bins.

Let Xi be a random variable denoting the parity of the number of balls that fall in the i-th
bin, and X =

∑
iXi be a random variable denoting the number of bins containing an odd

number of balls – let us call them odd bins. Similarly, let Yi be the parity of the number
of balls that fall in the i-th bin in the setting where the number of balls are independently
Poisson-distributed, and let Y =

∑
i Yi. Due to Chernoff bounds, we have,

Pr([Y − E[Y ]] ≥ εd(s)) ≤ 2e−2d
(s)ε2 . (6)

Equation 6 along with Lemma 1 gives the following

Pr([X − E[Y ]] ≥ εd(s)) ≤ (2e
√
ψ)−2d

(s)ε2 .

The term E[Y ]/d(s) is the mean when the Poisson distribution is considered and its value

is 1− e−
2ψ

d(s) , while the term X/d(s) is the true expected fraction of the number of odd bins,

and its value is 1−(1−2/d(s))ψ
2 .

We remark that the guarantee stated in Equation 4 holds for binary vectors and Ham-
ming distance as the similarity measure, and can be used in any other applications which
require compressing binary vectors preserving Hamming distance. Furthermore, the guar-
antee offered by Equation 4 is different from the well-known Locality Sensitive Hashing
(LSH) algorithm due to Gionis et. al. (Gionis et al., 1999). Equation 4 suggests compress-
ing high dimensional binary vectors into low-dimensional binary vectors such that from
the low-dimensional binary vectors we can accurately estimate the corresponding pairwise
Hamming distance of full-dimension. Our guarantee holds for both close and far distances
(for far points the compressed dimension d(s) increases as per Equation 4) whereas the
guarantee of LSH holds for close points only.
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Second moment estimation. We would like to give a variance bound on the estimate
of the number of odd bins. Recall that Xi is a 0 − 1 random variable denoting the parity

of the number of balls landed in the i-th bin, and Xi = 1 with probability 1−(1−2/d(s))ψ
2 .

The random variable X =
∑

iXi denotes the number of odd bins. We wish to calculate the
variance of the random variable X, which is E[X2]− E[X]2. We start with giving a bound
on the term E[X2].

E[X2] = E[(
∑
i

Xi)
2] =

∑
i

E[X2
i ] + 2

∑
i<j

E[XiXj ].

=
∑
i

E[Xi] + 2
∑
i<j

E[XiXj ].
(7)

The last equality follows as Xi is a 0−1 random variable, thus X2
i = Xi, and as a result

E[X2
i ] = E[Xi]. We would like to give a bound on the second term of Equation 7. Let us

consider a specific pair of random variables, say X1 and X2, that correspond to the parities
of the number of balls that have fallen into the first and second bins. We wish to evaluate
the possibilities that the random variable X1X2 attains the value 1. Clearly, if the total
number of balls that landed in the first two bins is odd, then X1X2 = 0, because at least one
of the bins will have an even number of balls, which leads to the value of the corresponding
random variable becoming zero, causing the value of their product to be zero. The only
possible case when X1X2 attains the value 1 is when both the first as well as the second bin
contain an odd number of balls. This happens with probability 1/2. To understand this,
consider the last ball that lands in either of the first two bins. One of these bins must have
an odd number of balls. If the ball falls into the other bin, then both the bins have an odd
number of balls and this happens with probability 1/2. Thus, the probability that both the
bins have an odd number of balls after the i balls have been thrown is

1 + (1− 4/d(s))i − 2(1− 2/d(s))i

2
.

The above expression follows by applying a simple induction on the two-state Markov chain.
The value of the second term in Equation 7 is(

d(s)

2

)
1 + (1− 4/d(s))ψ − 2(1− 2/d(s))ψ

2
.

Thus, the variance of our estimate

E[X2]− E[X]2 =
∑
i

E[Xi] + 2
∑
i<j

E[XiXj ]− E[X]2.

=

(
d(s)

2

)
1 + (1− 4/d(s))ψ − 2(1− 2/d(s))ψ

2

+
d(s)(1− (1− 2/d(s))ψ)

2
−

(
d(s)(1− (1− 2/d(s))ψ)

2

)2

.

After simplifying the above expression we have

d(s)
2 (1− 4/d(s))ψ − (1− 2/d(s))2ψ

4
+ d(s)

1− (1− 4/d(s))ψ

4
.
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There are two terms in the above expression. In the first term, the numerator (both terms)

of the coefficient of d(s)
2

asymptotically converges to e
− 4ψ

d(s) . A careful analysis can show

that when ψ = d(s) 1−(1−2/d
(s))ψ

2 , the term e
− 4ψ

d(s) asymptotically converges to O(1/d(s)
2
).

Thus, the first term asymptotically converges to O(1). In the second term, the numerator

term of the coefficient of d(s) asymptotically converges to 1− e
− 4ψ

d(s) . Thus, the second term
asymptotically converges to O(d(s)). Therefore, the variance of our estimate is O(d(s)).

Accuracy of the estimate. Let us recall Equation 4.

˜Ham(us,vs) = −d
(s)

2
ln

(
1− 2Ham(u(s),v(s))

d(s)

)
.

The value of ˜Ham(us,vs) determines the estimate of Cosine similarity between original
vectors using Equation 5. The accuracy of this term depends on the correct estimate of
the term Ham(u(s),v(s))/d(s). There are two possibilities of inaccuracies in the expression
mentioned above. The first one is due to the approximation of the bin-ball analysis with
Poisson distribution in the above concentration bounds. However, we argue that this is

not significant since the expected value of the estimate Ham(u(s),v(s))

d(s)
as per bin-ball anal-

ysis is 1−(1−2/d(s))Ham(us,vs)

2 , and as per Poisson distribution it is 1 − e
− 2Ham(us,vs)

d(s) . It is
clear that the difference between these two estimates is O(1) and is not significant. The
second source of inaccuracy is when the actual value of the estimate deviates from its ex-
pected value. Especially when the value of the estimate gets closer to 1/2, the value of

˜Ham(us,vs) tends to infinity, which gives unfavorable results. Thus, we would like to have
the expected value of the estimate (due to Poisson approximation) less than 1/2. For lower
Cosine similarity thresholds, the value of the estimate becomes closer to 1/2 as the value of
Ham(u(s),v(s)) becomes high. As a consequence, a higher value of d(s) is required to obtain
a desired performance. For higher Cosine similarity thresholds, the value Ham(u(s),v(s)) is
relatively smaller which leads to the value of the estimate being less than 1/2 and producing
encouraging results. This behavior has also been reflected in our experimental study.

Please note that our proposed algorithm Simsketch can also be used in any other applica-
tion which requires compressing binary data while maintaining Hamming distance between
data points. Furthermore, similar to Simhash, it can also be used in scaling up the perfor-
mance of another popular hashing algorithm – WTA (winner take all) (Yagnik et al., 2011)
– a sparse embedding method that transforms the input feature space into binary vectors
such that Hamming distance in the resulting space closely correlates with rank similarity
measures.

4. Empirical evaluation

Hardware description. Amazon Machine Image (AMI) : Ubuntu Server 16.04 LTS
(HVM), EBS General Purpose (SSD) Volume Type Instance Type:- m4.2xlarge (26 ECUs,
8 vCPUs, 2.4 GHz, Intel Xeon E5-2676v3, 32 GiB memory, EBS only). In order to reduce
the effect of randomness, we repeated each experiment several times and took the mean.
No special optimisation techniques were adopted in our implementations.
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Datasets. The experiments were performed on publicly available datasets - namely, BBC
News Datasets (number of points = 2225, dimension = 9635) (Greene and Cunningham,
2006), NYTimes news articles (number of points = 300000, dimension = 102660), Enron
Emails (number of points = 39861, dimension = 28102), and KOS blog entries (number
of points = 3430, dimension = 6906) from the UCI machine learning repository (Lichman,
2013). We considered the entire corpus of KOS and BBC News, while for NYTimes and
ENRON we took a sample of size 5000.

4.1. Experiment 1: Accuracy of Estimation

In this set of experiment, we evaluated the fidelity of the estimate of our proposed sketching
algorithm, in the case when data points were highly similar. We discuss it as follows.

Evaluation Metric. In order to understand the behavior of Simsketch when the data
points are highly similar, we need to extract samples of highly similar pairs of points from the
datasets. To this purpose, we iterated over all the pairs, and extracted those whose Cosine
similarities were higher than the given thresholds ∈ {0.95, 0.9, 0.85, 0.8}. For example: for
the threshold value 0.95, we considered only those pairs whose Cosine similarities are higher
than 0.95. Thus, we generated datasets in which most of the points were highly similar. We
used mean square error (MSE) as our evaluation criteria. We first compressed the pruned
datasets using Simhash at d = 10K. We emphasize that sketches of size d = 10K are space-
efficient representations of the given datasets because originally they are represented in real-
valued vectors while after applying Simhash they get mapped into binary vectors. Then
using Simsketch we further compressed the sketch obtained by Simhash to various values of
d(s). In order to compare the performance of Simsketch with Simhash, we compressed the
pruned datasets solely using Simhash to the same dimension of d(s). For every pair of data
points, we calculated the square of the difference between their estimated Cosine similarity
after the result of Simsketch, and the corresponding ground truth Cosine similarity. We
added these values for all such pairs and calculated its average. The value of this quantity
is at most 1, so we computed the negative logarithm base e of this quantity. A smaller
MSE corresponds to a larger − log(MSE), therefore, a higher value of − log(MSE) is an
indication of better performance. We computed these − log(MSE) values on various values
of d(s), and compared them with the corresponding values obtained via Simhash.

Insights. We summarize our results in Figures 2,3,4. Our experiment can be thought of
as a two-step process. First, the application of Simhash on real-valued vectors and second,
application of Simsketch on the binary vectors obtained post Simhash. We quantify the error
associated with Simsketch w.r.t that obtained via Simhash at d = 10K. In our experiments,
on higher and intermediate thresholds values, the error (MSE) associated is significantly
less, that is the − log(MSE) is more when contrasted to Simhash at d(s). High threshold
values such as {0.95 . . . 0.75} indicate that data points are highly similar, which further
imply that the Hamming distance between the binary vectors obtained after Simhash are
small. Therefore, due to Equation 4, higher values of − log(MSE) are achieved even on small
values of d(s). Furthermore, on intermediate threshold values, Hamming distance between
the binary vectors obtained after Simhash tends to become high, therefore a higher value
of d(s) is required to achieve a good performance. This proves that Simsketch offers a more
robust measure of the Cosine similarity.
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Figure 2: Comparison of the − log(MSE) of Simsketch and Simhash at various values of
d(s) on NYTimes. Simsketch is applied to the sketch obtained after applying
Simhash on the original dataset with d = 10K. Recall that a higher − log(MSE)
corresponds to a lower MSE, which is an indication of an accurate compression.

Figure 3: Comparison of the − log(MSE) of Simsketch and Simhash at various values of d(s)

on ENRON dataset. Simsketch is applied to the sketch obtained after applying
Simhash on the original dataset with d = 10K.
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Figure 4: Comparison of the − log(MSE) of Simsketch and Simhash at various values of
d(s) on KOS dataset. Simsketch is applied to the sketch obtained after applying
Simhash on the original dataset with d = 10K.

Figure 5: Comparison of the precision-recall between Simsketch and Simhash with thresh-
olds= {0.95, . . . , 0.8} on ENRON.

4.2. Experiment 2: All-pair-similarity search

Evaluation Metric. Here, we used the all-pair-similarity search as our evaluation task,
which is a fundamental subroutine in several fundamental data mining applications such as
query refinement for search engines, semantic similarity in text (Reimers and Gurevych,
2019) collaborative filtering (Sarwar et al., 2001), near-duplicate detection (Bayardo et al.,
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Figure 6: Comparison of the precision-recall between Simsketch and Simhash with thresh-
olds = {0.95, 0.9, 0.85, 0.8} on BBC.

Figure 7: Comparison of the recall between Simsketch and Simhash with thresholds=
{0.9, . . . , 0.6} on NYTimes.

2007). As Simhash is a popular choice in such applications, Simsketch can further offer not
only a more succinct sketch but also a scaled up performance.

For this set of experiment, we first calculated the ground truth result by retriev-
ing every pair of data points whose Cosine similarity was higher than threshold values
∈ {0.95, . . . , 0.3}. We compressed the dataset to the dimension d = 10K using Simhash.
We further compressed the sketch obtained after Simhash using Simsketch to various values
of d(s). We compared the performance of Simsketch with Simhash algorithm. In order to
do so, we compressed the original dataset using Simhash to the same values of d(s) and
evaluated its performance. We used the precision-recall ratio as our standard measure. We
define it as follows. If the set O denotes the ground truth result (result on the uncompressed
dataset), and the set O′ denotes Simhash/Simsketch result, then precision := |O ∩ O′|/|O′|
and recall := |O ∩ O′|/|O|.
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Insights. We summarize our results in Figures 7,5,6 for the higher values of Cosine simi-
larity threshold. It is easy to verify that even on smaller values of d(s), the precision-recall
performance of Simsketch is almost equivalent to that of Simhash at d = 10K. For example:
for 0.95 threshold even for d(s) = 1000, we obtained almost the same precision-recall as of
Simhash at d = 10K. Thus, we were able to reduce the sketch size 10× while offering almost
the same precision-recall values. We further compared and contrasted the performance of
our proposed algorithm Simsketch with Simhash. It is easy to verify that Simsketch signifi-
cantly outperforms Simhash for higher threshold values on the recall measure, especially for
high dimensional dataset such as NYTimes (see Figure 7). Further, on the precision mea-
sure, for higher threshold values such as 0.95 and 0.9 Simsketch significantly outperforms
Simhash, whereas for not so high threshold values such as 0.85 and 0.8, the performance
of Simsketch is somewhat comparable w.r.t. Simhash. Simsketch gave better results for
certain initial and intermediate values of d(s).

Performance of Simsketch on low-threshold values. We argue that our result holds
true irrespective of similarity thresholds. However, on lower threshold values, a higher value
of d(s) is required to achieve a desired performance. On lower threshold values, the value of
term Ham(u(s),v(s)) is high, thus, a large value of d(s) is required to bring down the value
of the term 2Ham(u(s),v(s))/d(s) less than 1/2 (Equation 4). This is necessary to find a
correct estimate of the Cosine similarity (Equation 5). We performed experiments on low
threshold values for − log(MSE) and summarized our results in Figure 8.

We found that for low threshold values, the performance of Simsketch is somewhat
moderate when compared to its performance on higher threshold values. This behavior is
in coherence with the arguments mentioned above which suggest that for a lower threshold
value, a higher value of d(s) is required in order to achieve a desired performance.

Figure 8: Comparison of − log(−MSE) between Simsketch and Simhash on similarity
threshold={0.3, 0.2} on ENRON.

Efficiency of Simsketch. We comment on the efficiency of Simsketch and summarize
our results on ENRON and BBC News datasets in Figure 9. We noted the time required to
compress the original dataset using Simhash at d = 10K, and that required by Simsketch
to further compress this sketch to various values of d(s). We also noted the time required
by Simhash to compress the original dataset on various values of d(s). We notice that the
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Figure 9: Comparison on the compression time between Simsketch and Simhash on ENRON
and BBC News.

time required by Simsketch is negligible for all values of d(s) and on both the datasets, while
compression time of Simhash grows linearly with d(s).

To summarize, Simsketch offers an efficient dimensionality reduction/sketching algo-
rithm, which compresses a d-dimensional binary sketch obtained via Simhash to a d(s)-
dimensional binary sketch, where d(s) � d. Simultaneously, on higher and intermediate
threshold values, Simsketch preserves the desired performance of the d-dimensional sketch
of Simhash on the MSE measure, and performs significantly better than the d(s)-dimensional
sketch of Simhash.

Recently, there are some results (Pratap et al., 2019, 2018c,b) which suggest compress-
ing high-dimensional binary vectors to low-dimensional binary vectors such that the low-
dimensional vectors closely estimate the Hamming distance of the full-dimensional data
points. It will be interesting to see how these results compare with Simsketch.

5. Applications of Simsketch

As mentioned earlier, when the data dimension is very large, and data points have high
Cosine similarity, Simhash requires a large dimensional sketch to accurately estimate the
Cosine similarity between the data points. Such high dimensional sketches of Simhash could
be impractical in several applications. In such scenarios Simsketch can be a viable substitute
of Simhash by offering succinct and accurate sketches of the high dimensional data points.
In what follows we mention several fundamental applications where Simhash is currently in
use. We can potentially use Simsketch when data points are of high dimensional and share
high similarity between one another. We defer a detailed comparison on the advantage of
Simsketch on such applications to the full version of the paper.

Faster and scalable ranking of documents. Given a corpus of documents and a set
of query documents, the task is to find all documents in the corpus that are similar to
the query documents. This problem is a fundamental sub-routine in many applications
like near-duplicate data detection (Manku et al., 2007; Sood and Loguinov, 2011), efficient
document similarity search (Jiang and Sun, 2011; Nogueira et al., 2019) plagiarism detec-
tion (Buyrukbilen and Bakiras, 2013). Simhash is a popular choice of algorithm for such
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problems. However, when documents are very similar, Simsketch offers a more succinct
sketch and helps in scaling up the performing of these algorithms.

Scalable Clustering of documents. Spherical k-means (Dhillon and Modha, 2001) is
a popular choice of clustering text documents (Endo and Miyamoto, 2015; Pratap et al.,
2018a). Typically these documents are represented as high dimensional and sparse vectors.
In the case of high document similarity, Simsketch can be used to compress the documents
into binary vectors, and on this compressed representation, clustering can be performed
leading to efficient, scalable, and accurate clustering performance when compared to the
corresponding clustering results on the original dataset.

Other Applications. Apart from the above applications, Simhash compression has been
widely used in collaborative filtering (Bachrach et al., 2009; Sarwar et al., 2001), approx-
imate nearest neighbor search (Charikar, 2002), compressing social networks (Chierichetti
et al., 2009), all pair similarity (Bayardo et al., 2007). As the data objects are highly similar
in most of these cases, Simsketch can help in scaling up the performance of these algorithms
by offering a more compact binary sketch.
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