
Proceedings of Machine Learning Research 129:241–256, 2020 ACML 2020

Data-Dependent Conversion to a Compact Integer-Weighted
Representation of a Weighted Voting Classifier

Mitsuki Maekawa maemitsu@ist.hokudai.ac.jp

Atsuyoshi Nakamura atsu@ist.hokudai.ac.jp

Mineichi Kudo mine@ist.hokudai.ac.jp

Hokkaido University, Sapporo, Japan

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

We propose a method of converting a real-weighted voting classifier to a compact integer-
weighted voting classifier. Real-weighted voting classifiers like those trained using boosting
are very popular and widely used due to their high prediction performance. Real numbers,
however, are space-consuming and its floating-point arithmetic is slow compared to integer
arithmetic, so compact integer weights are preferable for implementation on devices with
small computational resources. Our conversion makes use of given feature vectors and solves
an integer linear programming problem that minimizes the sum of integer weights under
the constraint of keeping the classification result for the vectors unchanged. According
to our experimental results using datasets of UCI Machine Learning Repository, the bit
representation sizes are reduced to 5.2-33.4% within 3.7% test accuracy degrade in 7 of
8 datasets for the weighted voting classifiers of decision stumps learned using AdaBoost-
SAMME.

Keywords: ensemble classifier, weighted voting, compact representation, integer linear
programming

1. Introduction

Ensemble classifiers are popularly used when high classification performance is required.
Ensemble classifiers integrate outputs of base classifiers, and a weighted voting is one of
the most popular ways of integration. We can obtain a high-performance weighted voting
classifier by boosting algorithms like AdaBoost (Freund and Schapire, 1997) from given
labeled data.

Due to recent development of machine learning technology, machine learning algorithms
and the predictors learned by them have become applied to various areas. In some appli-
cations such as edge computing, computational resource in a terminal device is limited and
compact representation that enables fast hardware implementation is preferable. Thus, con-
verting a space-consuming weighted voting classifier to compact representation may make
the choice of the classifier possible in such application. Compressed representation also has
various possibility. For example, a more accurate classifier can be loaded on the same sized
memory, a less powerful device can be used for classification, and the number of classification
tasks done parallelly or per unit time in a HPC machine can increase.

Real values are generally used as weights in a weighted voting classifier, and a real
value requires 32 bit as a float type representation in C language. By converting real

c© 2020 M. Maekawa, A. Nakamura & M. Kudo.

Maekawa Nakamura Kudo

weights to small integer weights, weight arithmetic speed can be improved. Conversion
from real weights to integer weights is possible by simple quantization, however, those
integer weights might not be small under the constraint of keeping classifier accuracy. In
this paper, we propose data-dependent conversion of real weights to compact integer weights
using integer linear programming (ILP). Given a real-weighted voting classifier and a set
of unlabeled data S, our method calculates non-negative integer weights that minimize the
sum of them subject to weighted voting classification unchanged for all data in S. Integer
linear programming is known to be NP-hard, but approximate solution can be obtained
reasonably fast using mixed integer programming solvers such as commercial solvers Gurobi
and CPLEX, and open source solvers CBC, SCIP and GLPK.

In our ILP formulation, the number of constraints systematically generated from a
weighted voting classifier and a dataset, is N(K − 1), where N is the number of data and
K is the number of classes. This number becomes large for large N , which may make
ILP solvers slow. Many constraints, however, might be unnecessary, that is, they might
be implied by other constraints. To efficiently eliminate such unnecessary constraints, we
introduce a method of checking set-inclusion relation between sets of voters to the same
label.

By using the training data of the given weighted voting classifier as a set of data inputted
to our method, a kind of simplification of the weighted voting classifier can be achieved
without changing its classification performance for the training data. Then, the converted
integer-weighted voting classifier is expected to have generalized classification performance
similar to the original real-weighted voting classifier. Since keeping classification results for
wrongly predicted training data seems nonsense, we propose a way of applying our method
in this situation that uses correctly predicted data only as a given set of unlabeled data S.

Effectiveness of our method is demonstrated through experimental results using several
datasets in UCI machine learning repository. A set of real weights learned by AdaBoost-
SAMME with 100 decision stumps and its training dataset are inputted to our method. On
average, more than half weights become 0 for all the datasets except digits dataset, and
6 bits are enough for representing converted maximum integer weight. Assuming 32 bit
representation of real number, bit representation size of an ensemble classifier is reduced
to 5.2 ∼ 33.4% in 7 of 8 datasets. The generalized (test) classification performance of the
classifier with the converted integer weights is almost the same as that of the classifier with
the original real weights, and the performance degradation is at most 3.7%. Our proposed
constraint reduction method works and makes the running time significantly shorter for
some datasets: 60 ∼ 96% constraints are removed except for cancer and Parkinson datasets,
which induces 44 ∼ 89% running time reduction. When a set of training data of given
classifiers is inputted as a set of unlabeled data, using correctly predicted training data
only was confirmed to be effective in our experiments. Effectiveness of our method was
also demonstrated for not only real-weighted voting classifiers learned by boosting, but also
simple voting classifiers learned by random forest; its bit representation size dropped to
1.6 ∼ 31.9% within 4.9% accuracy degradation.

This paper is organized as follows. Sec. 2 introduces notation about ensemble classifier
and formulates the problem that we deal with in this study. Sec. 3 describes the details
of our proposed method to handle the problem formulated in Sec. 2. Sec. 4 reports the
experimental settings and results for demonstrating effectiveness of our proposed method

242

Conversion to a Compact Integer-Weighted Voting

and Sec. 5 discusses the interpretability and generalization performance of the ensemble
classifiers converted by the proposed method based on our experimental results. In Sec 6,
we summarize the contributions of our study and describe the perspectives for future work.

Related Work

There are many studies on efficient hardware implementation of ensemble classifiers such
as random forests (Van Essen et al., 2012) and AdaBoost (Shi et al., 2008). Memory
reduction of AdaBoost weights by converting floating point to fixed point was investigated
in (Mitsunari and Yu, 2016), but the conversion was implemented by quantization and
no optimization was done. In game theory, the minimum integer weighted binary voting
representation has been studied for the weighted game (Freixas and Kurz, 2014). Reduction
to integer linear programming problem is studied in the paper but the objective of their
study is purely theoretical analysis and no practical use was considered.

Our weight conversion method makes the weights of unnecessary component classifiers be
zero, that is, it has an effect of ensemble pruning. Ensemble pruning is a very popular study
area and a lot of work have been done so far (Mart́ınez-Muñoz et al., 2009; Tsoumakas et al.,
2009). The task of ensemble pruning is to reduce the number of component classifiers, and
does not address weight size reduction. This is a kind of combinatorial optimization problem
with search space of exponential number of candidates. Using measures such as accuracy
and diversity, various approaches are taken: top selection with the fixed (Margineantu and
Dietterich, 1997) or statistically meaningful (Tsoumakas et al., 2005) number of component
classifiers, greedy removing (Banfield et al., 2005), heuristic search by genetic algorithm
(Hernández-Lobato et al., 2006), and formulation by quadratic integer programming (Zhang
et al., 2006). In the last approach, the best fixed sized subset of component classifiers is
searched. Recently, bi-objective formulation that also considers subset size minimization
simultaneously has been studied (Qian et al., 2015).

Our proposed method is aimed at reducing the size without performance degradation,
which is different from the above pruning studies that aim to improve the generalization
performance. In addition to such difference in aim, our method is unique in the points
that it does not need (1) class labels and (2) specifying the number of base classifiers to
be selected. To our best knowledge, all the existing ensemble pruning methods use class
labels or specify the number of base classifiers to be selected; some diversity-based pruning
method like Kappa pruning (Margineantu and Dietterich, 1997) does not need class labels
but must specify the number of base classifiers to be selected, and error minimization for
validation data using genetic algorithm (Hernández-Lobato et al., 2006) does not need to
specify the number of base classifiers to be selected but need class labels of validation data.

2. Problem Setting

For some natural numbers m and K, let f be a list of classification functions (f1, f2, . . . , fm)
from some domain X to L = {1, 2, . . . ,K}, and let w be a list of positive real numbers
(w1, w2, . . . , wm) ∈ (0,∞)m. A real-weighted voting classifier F [f ,w] from X to L is defined
as

F [f ,w](x) = arg max
`∈L

∑
fi(x)=`

wi for x ∈ X.

243

Maekawa Nakamura Kudo

𝑥! ≤ 1

1 2

𝑥! ≤ 2

1 2

𝑥" ≤ 1

1 2

𝑥" ≤ 2

2 1

0.9 1.5 1.1 0.8

𝑥!

𝑥"

3.5, 0.8 2.6, 1.7 1.1, 3.2

0, 4.31.5, 2.82.4, 1.9

3.2, 1.1 2.3, 2.0 0.8, 3.5

𝑥! ≤ 1

1 2

𝑥! ≤ 2

1 2

𝑥" ≤ 1

1 2

𝑥" ≤ 2

2 1

1 1 0 1

𝑥!

𝑥"

2, 1 1, 2 0, 3

0, 31, 22, 1

3, 0 2, 1 1, 2

0 1 2

1

2

1

2

0 1 2

Weighted Voting

Weighted Voting

Figure 1: An example of Problem 1 (upper figures) and its solution (lower figures). The
given list of classification functions (f1, f2, f3, f4) is composed of decision stumps
from R2 to L = {1, 2} and the given list of weights are (0.9, 1.5, 1.1, 0.8). The given
set of points S is {((0.5, 0.5), (0.5, 1.5), (1.5, 1.5), (1.5, 2.5), (2.5, 0.5), (2.5, 1.5)}.
By the classification rules of the decision stumps, the domain R2 is partitioned
into 9 regions, which are shown in the right figures. The first and second numbers
written in each region of the figures are the weighted sums of votes to Class 1 and
Class 2, respectively. The region with diagonal lines background is Class 2 region
by the given weighted voting classifiers. The solution weighted voting classifier
has integer weights and one of them is 0. The classification result for S does not
change though the decision boundary changes.

The problem we address in this paper is stated as follows.

Problem 1 Given a real-weighted voting classifier F [f ,w] and a set of points S ⊆ X, find
a list of small non-negative integers z = (z1, z2, . . . , zm) that satisfies F [f , z](x) = F [f ,w](x)
for all x ∈ S.

In the case that F [f ,w] is an ensemble classifier learned from a training data T ⊆ X×L,
we can use {x | (x, y) ∈ T} as an input point set S of Problem 1, which enables a kind of
simplification of a learned classifier.

Example 1 An example of Problem 1 and its solution are shown in Fig. 1. In the example,
the given weighted voting classifier is composed of four decision stumps from R2 to L = {1, 2}
whose weights are 0.9, 1.5, 1.1 and 0.8. The set of six points shown in each right figure are
given as S. The found small non-negative integer weights are 1, 1, 0 and 1 with which

244

Conversion to a Compact Integer-Weighted Voting

the weighted voting classifier keeps classification result for S though the decision boundary
changes. Since we may ignore 0-weighted component classifier, not only each weight size but
also the number of component classifiers can be reduced when some of the solution integer
weights are 0 like this example case.

3. Proposed Method

In this section, we describe our proposed method for Problem 1.

3.1. Weight Conversion by Integer Linear Programming

In the definition of Problem 1,

F [f , z](x) = F [f ,w](x) for x ∈ S

must hold for z. This condition is rewritten as∑
i:fi(x)=F [f ,w](x)

zi >
∑

i:fi(x)=`

zi for ` 6= F [f ,w](x), x ∈ S.

To make z be composed of small non-negative integers, we try to minimize
∑m

i=1 zi.
Then, Problem 1 becomes a constrained minimization problem defined as follows.

Problem 2 Given a real-weighted voting classifier F [f ,w] and a set of points S ⊆ X, solve
the following integer linear programming (ILP) problem:

minimize

m∑
i=1

zi

subject to
∑

i:fi(x)=F [f ,w](x)

zi >
∑

i:fi(x)=`

zi for ` 6= F [f ,w](x), x ∈ S and

zi ∈ N for i = 1, 2, . . . ,m,

where N is the set of non-negative integers.

Note that the formulated constraints are strict inequalities, so the above ILP problem
is not a standard form. From the condition of zi ∈ N, the constraints of Problem 2 is
equivalent to ∑

i:fi(x)=F [f ,w](x)

zi −
∑

i:fi(x)=`

zi ≥ 1 for ` 6= F [f ,w](x), x ∈ S

and zi ∈ N for i = 1, 2, . . . ,m.

Therefore, Problem 2 can be solved as a standard form ILP problem. ILP problem is
known to be NP-hard but able to be solved approximately and practically fast using mixed
integer programming solvers such as commercial solvers Gurobi and CPLEX, and open
source solvers CBC, SCIP and GLPK.

245

Maekawa Nakamura Kudo

Example 2 The problem of Example 1 can be converted to the following ILP problem.

minimize z1 + z2 + z3 + z4

subject to z1 + z2 + z3 > z4
z1 + z2 > z3 + z4
z1 + z3 + z4 > z2

z2 + z4 > z1 + z3
z1 + z2 + z4 > z3
z1 + z2 + z3 + z4 > 0

z1, z2, z3, z4 ∈ N.

3.2. Consideration of Effective Constraints

In the ILP problem defined in Problem 2, the number of constraints is N(K − 1) for
the number of points N = |S| and the number of classes K = |L|, where | · | is the
number of elements in set ‘·’. Therefore, Problem 2 seems to become difficult to solve as N
increases. Some constraints, however, have no effect on the feasible solution space and can
be eliminated without changing the space, so the number of effective constraints may be
much smaller than N(K − 1) in practice. Reducing the number of constraints is considered
to be effective to decrease the time and space complexity of our ILP problem. In this
section, we propose an efficient method for deleting unnecessary constraints specific to the
ILP problem defined in Problem 2.

Let’s consider which constraint is unnecessary. For each x ∈ S and ` 6= F [f ,w](x),
constraint ∑

i:fi(x)=F [f ,w](x)

zi >
∑

i:fi(x)=`

zi

must be satisfied. Define Vx(`) and `x as Vx(`) = {i | fi(x) = `} and `x = F [f ,w](x),
respectively. Then, the above constraint is rewritten as∑

i∈Vx(`x)

zi >
∑

i∈Vx(`)

zi.

This constraint is unnecessary if there exist x′ ∈ S and `′ 6= `x′ such that

Vx(`x) ⊇ Vx′(`x′) and Vx′(`′) ⊇ Vx(`)

because this implies ∑
i∈Vx(`x)

zi ≥
∑

i∈Vx′ (`x′)

zi ≥
∑

i∈Vx′ (`
′)

zi ≥
∑

i∈Vx(`)

zi

due to non-negativeness of zi (i = 1, . . . ,m).
Consider a set pair (Vx(`x), Vx(`)) for each constraint

∑
i∈Vx(`x)

zi >
∑

i∈Vx(`)
zi. Then,

from the above consideration, the problem of deleting unnecessary conditions is reduced to
the following problem for set pairs (Vx(`x), Vx(`)) (x ∈ S, ` 6= `x).

246

Conversion to a Compact Integer-Weighted Voting

Algorithm 1 Algorithm for Problem 3

Input: F = {(Vi, Ui,`) | Vi, Ui,` ⊆ {1, . . . ,m}, i = 1, . . . , N, ` = 1, . . . ,K − 1} that satisfies

Vi ∩ Ui,` = ∅ and Vi ∪
⋃K−1

`=1 Ui,` = {1, . . . ,m} for (Vi, Ui,1), . . . , (Vi, Ui,K−1) ∈ F
1: V(1), . . . , V(N) ← sorted list of V1, . . . , VN in descending order of #elements.
2: for i = 1 to N do
3: L← {1, . . . ,K − 1}
4: for i′ = N to i + 1 do
5: if V(i) ⊇ V(i′) then
6: for ` ∈ L do
7: if ∃`′ s.t. U(i′),`′ ⊇ U(i),` then
8: F ← F \ {(V(i), U(i),`)}, L← L \ {`}
9: if L = ∅ then break for-loop of Lines 4-9

Problem 3 Given a family of set pairs F = {(Vi, Ui,`) | Vi, Ui,` ⊆ {1, . . . ,m}, i = 1, . . . , N,

` = 1, . . . ,K−1} that satisfies Vi∩Ui,` = ∅ and Vi∪
⋃K−1

`=1 Ui,` = {1, . . . ,m} for (Vi, Ui,1), . . . ,
(Vi, Ui,K−1) ∈ F , remove all the pairs (Vi, Ui,`) from F that have i′ 6= i and `′ ∈ {1, . . . ,K−
1} such that Vi ⊇ Vi′ and Ui′,`′ ⊇ Ui,`.

To solve Problem 3, Vi ⊇ Vi′ is checked for every (i, i′) ∈ {1, . . . , N}2 with i 6= i′, so
the number of checked (i, i′) is N(N − 1) = O(N2). For every (i, i′) satisfying Vi ⊇ Vi′ ,
Ui′,`′ ⊇ Ui,` is checked for every (`, `′) ∈ {1, . . . ,K − 1}2, so at most (K − 1)2 pairs are
checked. Therefore, at most O((K − 1)2N2 + N2) set inclusion checks are necessary. Each
set inclusion check can be done by O(m) time, thus Problem 3 can be solved in O(mK2N2)
time. Since the relation A ⊇ B holds only when the number of elements in A is larger
than that of B, we only have to check pairs (A,B) that satisfy |A| ≥ |B| for the checks of
A ⊇ B. Furthermore, the larger the difference |A|−|B| is, the larger the chance that A ⊇ B
holds becomes. A simple algorithm taking account of this fact is Algorithm 1, which sorts1

{Vi | i = 1, . . . , N} by the number of elements, and then checks Vi ⊇ Vi′ for pairs (i, i′) with
|Vi| ≥ |Vi′ | only. Checking Vi ⊇ Vi′ in the order of decreasing in |Vi| and increasing in |Vi′ |
can increase the chance of fast finding of elements to remove, which results in reduction of
the number of set inclusion checks.

Example 3 In the problem of Example 1, set {(Vx(`x), Vx(`)) | x ∈ S} is

{({1, 2, 3}, {4}), ({1, 2}, {3, 4}), ({1, 3, 4}, {2}), ({2, 4}, {1, 3}), ({1, 2, 4}, {3}), ({1, 2, 3, 4}, ∅)}.

Then the answer of Problem 3 is {({1, 2}, {3, 4}), ({1, 3, 4}, {2}), ({2, 4}, {1, 3})}. Thus, the
ILP problem of Example 2 can be reduced to

minimize z1 + z2 + z3 + z4

subject to z1 + z2 > z3 + z4
z1 + z3 + z4 > z2

z2 + z4 > z1 + z3

z1, z2, z3, z4 ∈ N.
1. Note that time complexity of sorting (O(N logN)) is smaller than the number of set inclusion checks

((O(N2)).

247

Maekawa Nakamura Kudo

Table 1: UCI Machine Learning Repository datasets (Dua and Karra Taniskidou, 2017)
used in our experiments

dataset #data #feature #class dataset name

Blood 748 4 2 Blood Transfusion Service Center (Yeh et al., 2009)
cancer 569 30 2 Breast Cancer Wisconsin (Diagnostic)
MAGIC 19020 10 2 MAGIC Gamma Telescope
MUSK 476 166 2 Musk (Version 1)
Parkinson 756 753 2 Parkinson’s Disease Classification (Sakar et al., 2019)
spam 4601 57 2 Spambase
iris 150 4 3 Iris
digits 1797 64 10 Optical Recognition of Handwritten Digits (Testing)

3.3. Simple Exploitation of Class Labels

Our formalization of the problem does not need class labels of points in a given set S, but
the most natural candidate of set S for a real-weighted voting classifier F is the training
dataset T used to learn F . Points in training dataset T have class labels, so we can make
use of them. The simplest way to exploit class labels is to remove points wrongly-predicted
by F from {x | (x, y) ∈ T}, that is, to use S defined as S = {x | (x, y) ∈ T, F (x) = y}. In
our problem formulation, the classification results of F need to be kept, but its incorrect
classifications do not have to be kept. are unnecessary. Using the correctly-predicted points
only, prediction performance can be also expected to be improved.

4. Experiments

In this section, we check effectiveness of our method by applying it to voting classifiers
learned from several real-world datasets in UCI Machine Learning Repository (Dua and
Karra Taniskidou, 2017). We empirically investigate effectiveness of the followings: (E1)
application to real-weighted voting classifiers learned by AdaBoost, (E2) the proposed con-
straint reduction algorithm, (E3) using correctly predicted training data only, and (E4)
application to simple voting classifiers learned by a random forest learning algorithm.

4.1. Experimental Settings

Datasets used in our experiments are shown in Table 1. Note that the number of classes is
more than 2 for 2 datasets, Iris and digits datasets. Performance was evaluated by 5-fold
cross validation keeping class ratio. For each dataset, training set T ⊆ X ×L was inputted
to an ensemble learning algorithm to create a real-weighted voting classifier F [f ,w] with
a list of 100 component classifiers f . Then, for F [f ,w] and S = {x ∈ X | (x, `) ∈ T},
the ILP problem (Problem 2) was solved to obtain a list of integer weights z by using
PULP CBC CMD solver2. Finally, performance for F [f , z] was evaluated using the test set.

2. https://pythonhosted.org/PuLP/solvers.html

248

Conversion to a Compact Integer-Weighted Voting

We use AdaBoost-SAMME (Zhu et al., 2009) as a learning algorithm for real-weighted
voting classifiers with decision stump component classifiers in Experiments E1-3, and use
random forest as that for simple voting classifiers in Experiment E4. AdaBoost-SAMME
and random forest that we ran in our experiments are sklearn.ensemble.AdaBoostClassifier
and sklearn.ensemble.RandomForestClassifier of scikit-learn machine learning library3.

As a baseline comparison method, we adopt simple quantization that converts positive
real weights to non-negative integers by simply partitioning the range between the minimum
and maximum values into the intervals of equal length. Thus, in conversion from w to z
of r bit non-negative integers, wi is converted to zi = max{0, d(wi −minj wj)/((maxj wj −
minj wj)/2r)e − 1) by simple quantization.

Compactness of weights v (v = w, z) is measured by their total bit size, which is denoted
by wsize(v). Then, effectiveness of conversion on weight compactness is evaluated by bit
size ratio of weights z to w which is defined by wsize(z)/wsize(w). The total bit size of z is
calculated as wsize(z) = dlog2(maxi zi+1)e×|{zi | zi > 0}|. The bit size of a real number is
assumed to be 32 bits, so the total bit size of real weights w of 100 component classifiers is
calculated as wsize(w) = 32× 100 = 3200. Note that bit size of weights for a simple voting
classifier is calculated as 0 though all the weights can be regarded as 1. We also evaluate
compactness of whole ensemble classifier F [f ,v] (v = w, z) by its total bit size, which is the
sum of wsize(v) and the size of component classifiers f , denoted by fsize(f ,v). In the case
that component classifiers are decision trees, let nodes(f ,v) denote the sum of the number of
nodes in all the component decision trees fi with vi > 0. Then, the number of bits needed for
one node of component decision trees f with weights v is assumed to be the sum of feature
id size dlog2 de for d dimensional features, threshold size (32 bits) of a real number, the size
of pointers to two child nodes 2dlog2 nodes(f ,v)e and class label size dlog2Ke needed for
a leaf node. Therefore, the size of component classifiers f with weights v is calculated as
fsize(f ,v) = nodes(f ,v)× (dlog2 de+ 32 + 2dlog2 nodes(f ,v)e+ dlog2Ke). Bit size ratio of
classifier F (f , z) to F (f ,w) is defined by (wsize(z) + fsize(f , z))/(wsize(w) + fsize(f ,w)).

All the experiments were done using iMac (27-inch, Late 2013) with macOS Catalina10.15.5,
which has 3.2 GHz Intel Core i5 CPU and 32 GB 1600 MHz DDR3 memory.

4.2. Results

4.2.1. (E1) Effectiveness for Voting Classifiers Learned by AdaBoost

Table 2 shows Weight compactness and prediction accuracy for integer-weighted voting
classifiers obtained by our method from real-weighted voting classifiers learned by AdaBoost.

The averaged number of nonzero weights becomes less than half except for digits datasets.
The averaged maximum integer weights are at most 57.4, which can be represented by 6
bits. Assuming that a real weight is represented by 32 bits, the bit representation size is
reduced to 3/16. By converting w to z, bit size ratio of weights is reduced to 0.66 ∼ 7.76%,
and bit size ratio of a classifier is reduced to 5.23 ∼ 33.41% except digits dataset. Reducing
the number of nonzero weights is more effective to reduce the total memory size needed
for the ensemble classifier, and in digits dataset, more than 86% weights remain nonzero
after conversion, which results in large bit size ratio of the classifier. Our conversion keeps

3. https://scikit-learn.org/stable/index.html

249

Maekawa Nakamura Kudo

Table 2: Size and prediction performance for integer weight list z obtained from a w-
weighted voting classifier with 100 decision stumps learned by AdaBoost-SAMME.
The results are averaged over 5 runs in 5-fold cross validation.

dataset
compactness accuracy

#non-
max zi

bit size ratio (%)
training

test

zero z F (f , z) w 1© z 2© 2©/ 1©

Blood 10.6 2.6 0.6625 7.6031 0.8095 0.7861 0.7861 1.000
cancer 14.8 1.4 0.9250 11.2480 1.0000 0.9574 0.9543 0.978
MAGIC 41.4 57.4 7.7625 33.4142 0.8409 0.8364 0.8365 1.000
MUSK 27.0 15.4 4.2188 21.9617 0.9485 0.8509 0.8424 0.990
Parkinson 40.04 2.2 2.5250 32.2182 1.0000 0.8837 0.8506 0.963
spam 35.0 13.8 4.3750 28.1034 0.9423 0.9341 0.9333 0.999
iris 7.2 3.4 0.6750 5.2330 0.9950 0.9467 0.9400 0.993
digits 86.4 15.8 13.50 75.3962 0.8304 0.8051 0.8013 0.995

accuracy for training datasets and you can see that test accuracy degrade is also within
3.7% from the table.

Comparison with the weights obtained by simple quantization is shown in Table 3. The
number of bits r for simple quantization is set to dmaxi zi + 1e for z obtained by proposed
method so as to have the same number of bits per weight in calculation of bit size ratio.
The proposed method reduces the number of nonzero weights more than quantization, as a
result, it has smaller bit size ratio in 6 among 8 datasets. Accuracy of proposed method is
also higher than quantization in 6 among the 8 datasets.

4.2.2. (E2) Effectiveness of Constraint Reduction

The results for the experiments on the effect by constraint reduction using4 Algorithm 1 is
shown in Table 4. Deleting unnecessary constraints reduces the number of constraints by
37 ∼ 97% in our datasets except Parkinson dataset. The total running time is also improved,
and the improvements are significant for the datasets with large constraint reduction.

There is a tendency that, the smaller the number of features is, the larger the number
of removed constraints is. The reason of the tendency is explained as follows. In this
experiment, base classifiers are decision stumps f [i, a, `], which classifies point x into class
` if and only if the value of the ith feature xi is less than a, that is, xi < a. Let Fi,` =
{f [i, a, `] | f [i, a, `] is a base classifier}. Since f [i, a, `](x) = ` implies f [i, b, `](x) = ` if
a ≤ b, {f ∈ Fi,` | f(x) = `} ⊇ {f ∈ Fi,` | f(x′) = `} for all x, x′ ∈ S with xi ≤ x′i. Thus, the
possibility that set inclusion Vx(`) ⊇ Vx′(`) holds, increases if, the number of base decision
stumps with branching conditions of the same feature, increases, where Vx(`) = {i | fi(x) =
`} defined in Sec. 3.2. The number of features in Parkinson dataset is significantly large

4. In our current implementation, Vi ⊇ Vi′ is checked in the order of decreasing in |Vi′ |.

250

Conversion to a Compact Integer-Weighted Voting

Table 3: Compactness and accuracy comparison of weights z obtained by proposed and
quantization methods.

dataset method #nonzero max zi bit size ratio of z (%) accuracy

Blood
proposed 10.6 2.6 0.6625 0.7861

quantization 5.6 4.6 0.525 0.7607

cancer
proposed 14.8 1.4 0.9250 0.9543

quantization 13.2 2.6 0.825 0.9366

MAGIC
proposed 41.4 57.4 7.7625 0.8365

quantization 68.4 75.8 14.9625 0.8277

MUSK
proposed 27.0 15.4 4.2188 0.8424

quantization 71.6 23.0 11.1875 0.8572

Parkinson
proposed 40.4 2.2 2.5250 0.8506

quantization 53.4 5.4 5.0063 0.8344

spam
proposed 35.0 13.8 4.3750 0.9333

quantization 70.6 24.6 11.0313 0.9324

iris
proposed 7.2 3.4 0.6750 0.9400

quantization 57.8 4.6 2.8688 0.9800

digits
proposed 86.4 15.8 13.5000 0.8013

quantization 98.6 27.8 15.4063 0.7677

(753), which causes the failure of constraint reduction. In fact, the number of distinct
branching condition features in the ensemble of 100 decision stumps is 66.8 on average.

Our constraint reduction does not change the feasible solution space of our ILP problem,
but ILP solver’s approximate solution may change slightly. In fact, we observed slightly dif-
ferent ensemble classifiers whose accuracy for test datasets, the number of non-zero weights
and maximum weight are almost similar.

4.2.3. (E3) Effectiveness of Using Correctly Predicted Training Data only

Results on effect by using correctly-predicted training data only is shown in Table 5. In
the table, the results for 3 datasets are not shown because all or almost all the training
data are predicted correctly for them. Compared to the results using all the training data,
the number of nonzero weights decreases by 2 ∼ 14%, max zi decreases by 0 ∼ 39%, as a
result, bit size ratio decreases by 2 ∼ 31%. Accuracy increases by 0 ∼ 2%, and running
time is reduced by 2 ∼ 59% except MAGIC dataset. Note that accuracy exceeds that of the
original real-weighted ensemble classifiers for 4 among the 5 datasets, and 2% improvement

251

Maekawa Nakamura Kudo

Table 4: Experimental results on effect by constraint reduction. Columns of “w/o CR” and
“w/ CR” show the results without and with constraint reduction, respectively. The
time column of “w/ CR” shows the total running times in addition to constraint
reduction times first and ILP solving times second in the parentheses.

dataset
#constraint time (sec)

w/o CR 1© w/ CR 2© 2©/ 1© w/o CR 3© w/ CR 4© (CR,ILP) 4©/ 3©

Blood 598.4 16.6 0.0277 0.2535 0.0275(0.0088, 0.0186) 0.1085
cancer 455.2 286.2 0.6287 0.2507 0.1958(0.0278, 0.1680) 0.7814
MAGIC 15216 546.2 0.0359 9.5337 2.8492(2.5382, 0.3110) 0.2989
MUSK 380.8 152.0 0.3992 0.1984 0.1109(0.0123, 0.0986) 0.5590
Parkinson 604.8 590.4 0.9762 17.7434 14.2195(0.0469,14.1726) 0.8014
spam 3680.8 490.0 0.1332 3.2347 0.7086(0.4433, 0.2653) 0.2191
iris 240.0 28.6 0.1192 0.0927 0.0222(0.0018, 0.0204) 0.23.95
digits 12938.4 3343.2 0.2584 133.8033 31.2425(0.4626,30.7799) 0.2335

Table 5: Size and prediction performance by the converted integer weighted voting classifier
using correctly predicted training data only. Numbers in the parentheses are ratio
compared to those using all training data. The percentage bit size ratio of z to w
for each dataset is shown in the column of ‘bit size ratio’.

dataset tr err #nonzero max zi bit size ratio accuracy time (sec)

Blood 0.1905 10.4(0.98) 2.6(1.00) 0.6500(0.98) 0.7874(1.00) 0.2089(0.82)
MAGIC 0.1591 40.6(0.98) 37.8(0.66) 7.6125(0.98) 0.8370(1.00) 9.8724(1.04)
MUSK 0.0515 25.6(0.95) 10.4(0.68) 3.2000(0.76) 0.8446(1.00) 0.1935(0.98)
spam 0.0577 32.4(0.93) 9.2(0.67) 4.0500(0.93) 0.9350(1.00) 1.9244(0.59)
digits 0.1696 74.4(0.86) 9.6(0.61) 9.3000(0.69) 0.8286(1.02) 55.1099(0.41)

was observed for digits dataset. Totally, we can conclude that using correctly predicted
training data only is effective to some extent.

4.2.4. (E4) Effectiveness for Voting Classifiers Learned by Random Forest

Simple voting scheme is adopted in bagging-typed ensemble learners, and random forest
is one of most popular bagging-typed ensemble learners. In this experiment, we check
effectiveness of our weight conversion method in application to such simple voting classifiers.
In Table 6, our experimental result on weight compactness and prediction performance are
shown for integer-weighted voting classifiers converted from simple voting classifiers learned
by random forest. The number of nonzero weights is reduced to 1/100 ∼ about 1/4, which
leads to small bit size ratio (1.6 ∼ 31.9%) of a classifier. Accuracy degradation is at most
4.9%. Bit size ratio of a classifier is smaller than that for AdaBoost, but the bit size of
a random forest is still larger than that of AdaBoost even after weight conversion because

252

Conversion to a Compact Integer-Weighted Voting

Table 6: Size and prediction performance for integer weight list z obtained from a random
forest classifier with 100 decision trees.

dataset
compactness accuracy

#non-
max zi

bit size ratio
training

test

zero of F (f , z) (%) w 1© z 2© 2©/ 1©

Blood 9.6 1.2 7.7369 0.9375 0.7313 0.7259 0.993
cancer 3.2 1.2 2.8008 1.0000 0.9631 0.9508 0.987
MAGIC 27.6 2.0 31.8809 1.0000 0.8789 0.8741 0.995
MUSK 5.0 1.2 5.3915 1.0000 0.9014 0.8570 0.951
Parkinson 7.0 1.4 6.2532 1.0000 0.8730 0.8373 0.959
spam 9.8 1.0 10.2264 0.9995 0.9526 0.9439 0.991
iris 1.0 1.0 1.6272 1.0000 0.9467 0.9467 1.000
digits 7.6 1.2 10.0264 1.0000 0.9772 0.9343 0.956

a component classifier of a random forest is a decision tree while that of AdaBoost in our
experiment is a decision stump.

5. Discussion

5.1. Interpretability

In ensemble classifier, simple component classifiers such as decision stumps are often used,
and most such simple classifiers are easy to interpret. However, even though interpretabil-
ity of component classifiers are high, the total decision rule of the ensemble classifier is
not easy to interpret due to large number of component classifiers and their real-weighted
voting. Since our method reduces the number of component classifiers and converts their
real weights to integer weights, its total decision rule becomes more interpretable.

Figure 2 shows one of the converted integer-weighted voting classifier and its decision
boundary for iris dataset. This ensemble classifier is very simple; composed of four decision
stumps only and refers to two features only. Integer weights are also very simple; three
1 and one 2. As a result, the total decision rule of this ensemble classifier looks easy to
understand.

5.2. Margin Analysis of Original and Converted Ensemble Classifier

By our method, a real-weighted voting classifier can be simplified to an integer-weighted
voting classifier with compact integer weights. Compact representation itself has merits
such as enabling implementation on devices with small computational resource. In the past
research, the main purpose of simplification for classifiers learned from a training data is,
however, to improve generalization performance by correcting the overfitting. According to
the experimental results in Sec. 4, our conversion keeps prediction accuracy to some extent
but it is decreased slightly when all the training data are used as a given set of points S.

253

Maekawa Nakamura Kudo

Setosa

1 1 2 1

Weighted Voting

petal length	≤ 2.45 petal length	≤ 4.85 petal width	≤ 1.35 petal width	≤ 1.65

Virginica Versicolor VirginicaSetosa Versicolor Versicolor Virginica

 1.35

 1.65

 2.45 4.85

3,2,0 2,3,0 2,2,1

1,2,2 0,3,2 0,2,3

1,1,3 0,2,3 0,1,4

p
e

ta
l
w

id
th

petal length

Setosa
Versicolor

Virginica

Figure 2: Example of the converted integer-weighted voting classifier (left) and its decision
boundary (right) for iris dataset. The classifier is composed of four decision
stumps. A split condition and a class label are assigned to each root and leaf
node of each decision stump, respectively. In the right figure, R2 is partitioned
into 9 regions by the decision boundaries of the decision stumps in the obtained
voting classifier. The weighted sums of votes to Setosa, Versicolor and Virginica
are shown in each region. The color of each region indicates the predicted class
label by the obtained integer-weighted voting: pink – Setosa, green – Versicolor,
cyan – Virginica, gray – Setosa or Versicolor, magenta – Versicolor or Virginica.

To further analyze the causes of prediction accuracy decrease by converted weights, we
introduce margin which is used for evaluating the generalization performance of ensemble
classifiers. The margin of a data point is defined as the distance between decision boundary
and the data point. In multi-class ensemble classifier F [f ,w], the margin definition of some
data point x with label y is formulated as follows (Breiman, 1999).

margin(x) =

∑
i:fi(x)=y wi −max`6=y

(∑
i:fi(x)=`wi

)
∑m

i=1wi

To evaluate the generalization performance of trained classifier, we calculated the minimum
and mean margins among all training data points.

Table 7 shows the margins of weighted voting classifiers with original real weights w
and those with the two lists of integer weights, weights obtained using all the training data
z(E1) and weights obtained using only correctly predicted training data z(E3), as a given
set of points S. From the result, we can know that our conversion to integer weights tends
to increase mean margins but decrease minimum margins.

Mean margin increase seems good for generalization performance improvement, and
minimum margin decrease seems not serious because minimum margin is easy to be affected
by noise. Further investigation is necessary to analyze the reason why our simplification
cannot improve generalization performance for the datasets.

254

Conversion to a Compact Integer-Weighted Voting

Table 7: Margin of the ensemble classifier

dataset
minimum margin mean margin

w(original) z(E1) z(E3) w(original) z(E2) z(E3)

Blood -0.4484 -0.6389 -0.6148 0.1710 0.2030 0.2149
cancer 0.1081 0.0639 – 0.3692 0.4074 –
MAGIC -0.4515 -0.4760 -0.4825 0.1430 0.1505 0.1513
MUSK -0.0634 -0.2352 -0.1223 0.1186 0.1494 0.1416
Parkinson 0.0149 0.0218 – 0.1797 0.1831 –
spam -0.2687 -0.3462 -0.3561 0.2026 0.2354 0.2394
iris 0.0065 -0.0613 – 0.1306 0.2063 –
digits -0.0573 -0.0580 -0.0747 0.0238 0.0235 0.0263

6. Conclusion

Our conversion method enables not only significant space reduction for weights but also
sparse representation, and totally at least 66.5% bit size reduction has been observed for
AdaBoost with decision stump base classifiers in 7 of 8 datasets of the UCI Machine Learning
Repository. Given training data with a voting classifier trained from them, we obtained a
simplified classifier with almost the same classification performance without using the label
information of the training data. Simple exploitation of class labels is experimentally shown
to be effective for improvement of generalized classification performance. We would like to
develop more sophisticated way of exploiting them in the future.

Acknowledgments

We would like to thank Prof. Hiroki Arimura of Hokkaido University and anonymous
reviewers for helpful comments to improve this research. This work was supported by JST
CREST Grant Number JPMJCR18K3, Japan.

References

Robert E. Banfield, Lawrence O. Hall, Kevin W. Bowyer, and W. Philip Kegelmeyer. En-
semble diversity measures and their application to thinning. Information Fusion, 6(1):
49–62, 2005.

Leo Breiman. Prediction games and arcing algorithms. Neural Comput., 11(7):1493–1517,
October 1999. ISSN 0899-7667.

Dheeru Dua and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

Josep Freixas and Sascha Kurz. On minimum integer representations of weighted games.
Mathematical Social Sciences, 67:9 – 22, 2014. ISSN 0165-4896.

255

http://archive.ics.uci.edu/ml

Maekawa Nakamura Kudo

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Rubén Ruiz-Torrubiano, and
Ángel Valle. Pruning adaptive boosting ensembles by means of a genetic algorithm. In
Intelligent Data Engineering and Automated Learning, pages 322–329, 2006.

Dragos Margineantu and Thomas Dietterich. Pruning adaptive boosting. In Proceedings of
the Fourteenth International Conference on Machine Learning, page 211–218, 1997.

Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez. An analysis of
ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal.
Mach. Intell., 31(2):245–259, 2009.

Koichi Mitsunari and Jaehoon Yu. Influence of numerical precision on machine learning and
embedded systems. In International Workshop on Smart Info-Media Systems in Asia,
page 164–169, 2016.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Pareto ensemble pruning. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, page 2935–2941, 2015.

C. Okan Sakar, Gorkem Serbes, Aysegul Gunduz, Hunkar C. Tunc, Hatice Nizam, Betul Er-
dogdu Sakar, Melih Tutuncu, Tarkan Aydin, M. Erdem Isenkul, and Hulya Apaydin. A
comparative analysis of speech signal processing algorithms for parkinson’s disease clas-
sification and the use of the tunable q-factor wavelet transform. Applied Soft Computing,
74:255–263, 2019. ISSN 1568-4946.

Yuehua Shi, Feng Zhao, and Zhong Zhang. Hardware implementation of adaboost algorithm
and verification. In International Conference on Advanced Information Networking and
Applications Workshops, 2008.

Grigorios Tsoumakas, Lefteris Angelis, and Ioannis Vlahavas. Selective fusion of heteroge-
neous classifiers. Intelligent Data Analysis, 9(6):511–525, 2005.

Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas. An Ensemble Pruning
Primer, pages 1–13. Springer Berlin Heidelberg, 2009.

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. Accelerating a random
forest classifier: Multi-core, gp-gpu, or fpga? In Proceedings of the 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines, pages
232–239, 2012.

I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. Knowledge discovery on rfm model
using bernoulli sequence. Expert Syst. Appl., 36(3):5866–5871, 2009.

Yi Zhang, Samuel Burer, and W. Nick Street. Ensemble pruning via semi-definite program-
ming. J. Mach. Learn. Res., 7:1315–1338, 2006.

Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie. Multi-class adaboost. Statistics and
Its Interface, 2(3):349 – 360, 2009.

256

	Introduction
	Problem Setting
	Proposed Method
	Weight Conversion by Integer Linear Programming
	Consideration of Effective Constraints
	Simple Exploitation of Class Labels

	Experiments
	Experimental Settings
	Results
	(E1) Effectiveness for Voting Classifiers Learned by AdaBoost
	(E2) Effectiveness of Constraint Reduction
	(E3) Effectiveness of Using Correctly Predicted Training Data only
	(E4) Effectiveness for Voting Classifiers Learned by Random Forest

	Discussion
	Interpretability
	Margin Analysis of Original and Converted Ensemble Classifier

	Conclusion

