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Abstract

The Soft Affiliation Graph model (S-AGM) is a Bayesian generative model of overlapping
community structure in social networks. Inference on this model is challenging due to the
complexity of both the underlying network structure and the presence of non-conjugacy
in the model. Scalable MCMC on the model is possible through the use of Stochastic
Gradient Riemannian Langevin Dynamics (SGRLD). In this paper, we develop a novel and
scalable Stochastic Gradient Variational Inference (SG-VI) algorithm and compare it to
SGRLD inference. Similarly to MCMC inference, handling non-conjugacy in the S-AGM
is a significant challenge for developing an SG-VI and requires the application of stochastic
Monte Carlo estimation. We carry out a thorough empirical comparison of the SG-VI and
SGRLD approaches, and draw some general conclusions about scalable inference on the
S-AGM.

1. Introduction

Communities in social networks consist of clusters of nodes in which the edge density is
high, corresponding to groups of people who tend to have many mutual friendship links. It
may be observed that in real social networks communities tend to be overlapping and that
any individual node may belong to multiple communities, corresponding to the different so-
cial groupings that an individual may be part of. Hence, identifying overlapping community
structure is a problem with a lot of interest to social network analysts. The Affiliation Graph
Model (AGM) was introduced in (Yang and Leskovec, 2012), as an overlapping community
model, exhibiting pluralistic homophily, the characteristic that the probability that two
nodes are connected monotonically increases with the number of community memberships
that they share. In (Laitonjam et al., 2019), a first scalable yet fully Bayesian approach
to inference on the AGM was introduced. To obtain a tractable inference method, the
AGM was modified to allow for soft community memberships and the new model was called
soft-AGM (S-AGM). Given a node i and a community k, the latent binary membership
variable zik of the AGM was replaced with a degree of membership variable wik such that
0 ≤ wik ≤ 1. It was shown that the modified model maintained the pluralistic homophily
characteristics of the original model and inference on networks of > 106 nodes was demon-
strated, by using an algorithm implemented on a GPU, exploiting the inherent parallelism
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of the S-AGM. To achieve this scaling the MCMC inference was developed using Stochastic
Gradient Riemannian Langevin Dynamics (SGRLD).

In this paper, we follow this work to explore another scalable inference method using a
variational inference algorithm for the S-AGM. Because of the presence of non-conjugacy in
the model, the mean-field approach does not yield closed-form updates for the variational
parameters. Instead, we develop a stochastic gradient optimisation, which relies on re-
parameterisation to approximate some of the required expressions. The resulting algorithm
is compared with SGRLD inference. As well as examining its performance in the context of
the overlapping community problem, we make some general observations about these two
contrasting approaches to achieving scalable inference on real world networks.

2. Generative Model

The generative process of the S-AGM is presented in Algorithm 1 and its corresponding
graphical model is given in Figure 1. Assume there are N data points and K communities.
We define the following notation: πk is the probability of an edge between any pair of nodes
in community k; πε is a background probability of an edge between any node pairs regardless
of community membership, capturing noisy edges; wik is the probability of node i belonging
to community k; αk is a parameter that captures the node density within community k;
and W, π, α represent the matrix {wik} and the vectors πk, and αk, respectively; finally, pij
is the edge probability between nodes i and j. The functional form of this edge probability,
pij , distinguishes the S-AGM and AGM, and is defined as

pij = 1− (1− πε)
K∏
k=1

(1− πkwikwjk) . (1)

where, in the original AGM, rather than soft community affiliations wik, hard community
assignments zik ∈ {0, 1}, drawn from a Bernoulli distribution are used.

Representing the network of size N as an N × N adjacency matrix A with elements
aij = 1 when there is an edge between nodes i and j and 0 otherwise, then the likelihood
of an undirected network, given the model is

p(A |W, π) =
∏
ij:i<j

p(aij | wi, wj , π)

where p(aij | wi, wj , π) = p
aij
ij (1− pij)1−aij .

Given the hyperparameters η and β, the joint probability of the model is,

p(A,W, α, π | η, β) =
∏
ij:i<j

p(aij | wi, wj , π)

∏
i

∏
k

p(wik | αk)
∏
k

p(πk | ηk0, ηk1)
∏
k

p(αk | β0, β1) .

This equation will be used to derive the SG-VI approach.
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Algorithm 1 Generative process model

1: for k = 1 : K do
2: πk ∼ Beta(ηk0, ηk1)

3: for k = 1 : K do
4: αk ∼ Gamma(β0, β1)
5: for i = 1 : N do
6: wik ∼ Beta(αk, 1)

7: for i = 1 : (N − 1) do
8: for j = (i+ 1) : N do

9: pij = 1− (1− πε)
K∏
k=1

(1− πkwikwjk)

10: aij ∼ Bernoulli(pij)

πk ηk

k = 1, . . . ,K

πε

aij

ahi

ajl

N(N−1)
2 node pairs

whK

wiK

wjK

wlK

wh1

wi1

wj1

wl1

NK soft
community
assignments

αKα1
K community
densities

β

Figure 1: Graphical Model of S-AGM (with 1 ≤ h < i < j < l ≤ N).

3. Inference

SGRLD (Patterson and Teh, 2013) is a scalable MCMC algorithm for Bayesian models.
The SGRLD algorithm of the S-AGM developed in (Laitonjam et al., 2019) is summarised
in Algorithm 2. It relies on mini-batch samples of nodes Vti and edges E t on each round t,
to update re-parameterisations w′ikm and π′km of the model parameters wik and πk, through
a stochastic gradient update. The αk parameter is updated using Gibbs sampling. In
particular, for each node i and community k, the re-parameterisations are defined as:

πk =
π′k0

π′k0 + π′k1

, wik =
w′ik0

w′ik0 + w′ik1

,

where, for m ∈ {0, 1}, π′km ∼ Gamma(ηkm, 1) , w′ikm ∼ Gamma(γkm, 1) and γk0 = αk and
γk1 = 1. The update formulae depend on the preconditioning matrices G−1(π′) = diag(π′)
andG−1(W′) = diag(W′), where π′ = {π′k0, π

′
k1}k=1,...,K and W′ = {w′ik0, w

′
ik1}i=1,...,N ;k=1,..,K .
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Algorithm 2 MCMC for the S-AGM using SGRLD

1: Sample a mini-batch E t of node pairs.
2: for Each node i in E t do
3: Sample a mini-batch of nodes Vti .
4: for k = 1 : K do . utilizing the sampled Vti
5: w

′∗
ikm =

∣∣∣∣w′ikm + ρ
(t)
w
2 × g̃(w′ikm) + b(w′ikm)

∣∣∣∣
6: for k = 1 : K do . utilizing the sampled E t

7: π
′∗
km =

∣∣∣∣π′km + ρ
(t)
π
2 × g̃(π′km) + b(π′km)

∣∣∣∣
8: for k = 1 : K do
9: αk|w·k ∼ Gamma (N + β0, β1 −

∑
i log(wik))

To summarise the notation of Algorithm 2:

• g̃(w′ikm) is the gradient of the log posterior of W′ wrt w′ikm in the Riemannian manifold
with tensor metric G(W′),

• b(w′ikm) is the corresponding term related to the Browning motion in the Riemannian
manifold with tensor metric G(W′),

• g̃(π′km) is the gradient of the log posterior of π′ wrt π′km in the Riemannian manifold
with tensor metric G(π′),

• b(π′km) is the corresponding term related to the Browning motion in the Riemannian
manifold with tensor metric G(π′),

• ρw, ρπ are the step-sizes.

3.1. Stochastic Gradient Variational Inference (SG-VI)

Variational inference infers a Bayesian model by proposing a variational distribution that
approximates the target posterior well while being easier to compute. To achieve the com-
putational simplicity, it is common to apply the mean field assumption to relax the variable
dependence within the variational distribution. For Bayesian models with conditionally
conjugate parts only, the update of the variational parameter is possible through a tradi-
tional coordinate ascent algorithm or using Stochastic Variational Inference (SVI) (Hoffman
et al., 2013) that exploits the natural gradient of the variational parameter. For S-AGM,
due to the presence of non-conjugacy in the model, SVI is not possible for all variational
parameters.

3.1.1. SG-VI for S-AGM

With the mean field assumption, we consider the variational distribution for πk, wik and
αk as

q(W, π, α) =
∏
i

∏
k

q(wik | φik0, φik1)
∏
k

q(πk | λk0, λk1)
∏
k

q(αk | τk0, τk1)
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where the variational distributions of πk and wik are set as Beta distributions and that
of αk as a Gamma distribution. The variational parameters, λ = {λk0, λk1}k=1,...,K , τ =
{τk0, τk1}k=1,...,K , φ = {φik0, φik1}i=1,...,N ;k=1,...,K of the these distributions are chosen so
that the KL-divergence between q and the true posterior is minimised. This is equivalent
to maximizing the following evidence lower bound (ELBO) (Blei et al., 2017) over the
variational parameters:

L(φ, λ, τ) = Eq[log p(A,W, α, π | η, β)]− Eq[log q(W, π, α)]

=
∑
ij:i<j

Eq[log p(aij | wi, wj , π)] +
∑
i

∑
k

Eq[log p(wik | αk)]

+
∑
k

Eq[log p(πk | ηk0, ηk1)] +
∑
k

Eq[log p(αk | β0, β1)]

−
∑
i

∑
k

Eq[log q(wik | φik0, φik1)]

−
∑
k

Eq[log q(πk | λk0, λk1)]−
∑
k

Eq[log q(αk | τk0, τk1)] (2)

3.2. Optimisation Strategy

To maximise Equation (2), we would like to solve for values of the variational parameters
at which the gradient vanishes. Unfortunately, a closed form solution is not possible and
we resort instead to a stochastic gradient ascent algorithm. This in turn poses significant
challenges which must be addressed in order to develop a tractable solver. A gradient ascent
algorithm requires that the variational parameters are updated at each step in the direction
of the gradient of the objective, which requires the computation of gradients of the form:

∇θEq(z|θ)[f(z)] .

However, some of the expectations in Equation (2), in particular Eq[log p(aij | wi, wj , π)],
are not tractably solvable and so the gradients for the updates of π and w are intractable.
The solution is to resort to estimating the gradient instead.

An unbiased estimate of the gradient can be computed with Monte Carlo estimation
using the “REINFORCE” or score function method (Williams, 1992; Glynn and L’ecuyer,
1995; Ranganath et al., 2013; Titsias and Lázaro-Gredilla, 2014), such that, for any random
number z drawn from the distribution q(z | θ), the score gradient of a function f(z) is

∇θEq(z|θ)[f(z)] = Eq(z|θ)[f(z)∇θ log q(z | θ)] .

However, this method suffers from high variance, requiring a variance reduction tech-
nique, such as Rao-Blackwellization or designing an appropriate control variate (Ranganath
et al., 2013), to ensure the convergence of the algorithm. The variance of the Monte Carlo
estimate of the gradient could instead be reduced with the re-parameterisation trick (Price,
1958; Kingma and Welling, 2013; Salimans et al., 2013). Here, z is re-parameterised as
t(ε; θ) where ε is drawn from some distribution r(ε) which is independent of θ. The re-
parameterisation gradient can then be written as

∇θEq(z|θ)[f(z)] = Er(ε)[∇θf(t(ε; θ))] = Er(ε)[∇zf(z)∇θt(ε; θ)] . (3)
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However, as πk ∼ Beta(λk0, λk1), wik ∼ Beta(φik0, φik1) and since there is no such
re-parameterisation of the Beta distribution, we cannot use this approach. Instead, as the
intractable gradients can be expressed in terms of an expectation of Gamma distributions, by
re-parameterisation of the corresponding Beta distributions, we can apply the generalised re-
parameterisation gradient (g-rep) (Ruiz et al., 2016) method for the Gamma distribution.
For a variational parameter θ, this amounts to writing the gradient of the expectation as

∇θEq(z|θ)[f(z)] = grep
θ + gcorr

θ ,

where,

grep
θ = Eq(z|θ)[∇zf(z)h(ε; θ)] (4)

gcorr
θ = Eq(z|θ)[f(z){∇z log q(z | θ)h(ε; θ) +∇θ log q(z | θ) + u(ε; θ)}] (5)

and ε = t−1(z; θ) for some invertible transformation that is weakly dependent on θ; h(ε; θ) =
∇θt(ε; θ); and u(ε; θ) = ∇θ log J(ε; θ), where J is the Jacobian of the transformation. Here,
grep
θ corresponds to the re-parameterization term as in eq. (3) and gcorr

θ corresponds to the
correction term for sampling ε from a distribution depended on θ. In this form, the above
expectations can be estimated as ĝrep

θ and ĝcorr
θ , with the Monte Carlo method by using

sampling from the distribution q(z | θ).
In the case of τ , we can exploit conditional conjugacy to compute the natural gradient

exactly as in SVI.

Mini-batch Stochastic Gradient Ascent: Again for tractability, we adopt a mini-
batch stochastic gradient (SG) ascent algorithm, to estimate the gradients. In fact, we
apply pre-conditioned SG ascent, so that the general update rule for parameters θ is given
by

θ′ = θ + ρG−1(θ)ĝ(θ)

where ρ is the learning rate, ĝ is an unbiased estimate of the gradient at θ and G(θ) is a
symmetric, positive-definite pre-conditioner. In the case of τ , we choose G(τ) to be the
Fisher Information matrix, thus using the natural gradient as the ascent direction of this
parameter. In the case of φ and λ, we take G−1(λ) = diag(λ) and G−1(φ) = diag(φ).

The mini-batch is selected in the same manner as for the SGRLD algorithm of (Laiton-
jam et al., 2019). On each iteration, a mini-batch of node pairs Et is selected. The selection is
carried out using a stratified sampling strategy (Gopalan et al., 2012) that prioritises linked
pairs. The gradients wrt φik0, φik1 are approximated for all i ∈ Et, using another mini-batch
of nodes Vi sampled for each i, to select node pairs (i, j) with which the gradients are esti-
mated. In the case of λk0, λk1, they are estimated using the node pairs (i, j) ∈ Et. We note
that this strategy implies a doubly stochastic unbiased estimation (mini-batch with Monte
Carlo estimation) of the ascent step for the parameters λ and φ.

3.3. Parameter Updates

As a first step, since φ and λ are restricted to positive values only, to allow for unconstrained
optimisation, we make a change of variables to φ and λ using

φ = log(exp(φ)− 1) λ = log(exp(λ)− 1) , (6)
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where φ, λ ∈ (−∞,∞). The optimisation is carried out wrt φ and λ.
We also use the fact that, due to independence, the full expectation over q can be de-

composed as Eq[f ] = Eq(v)

[
Eq−v [f ]

]
, where q−v represents the distribution over all variables

except v.

3.3.1. Gradient wrt φ :

The gradient of ELBO wrt φ with the preconditioner is

G−1(φ)ĝ(φ(t−1))

where ĝ(φ) is the estimate of the gradient of the ELBO wrt φ. Using the fact that q(wik)
is a Beta distribution, for m ∈ {0, 1}, the partial derivative wrt φikm of the component due
to term

∑
i

∑
k Eq[log q(wik | φik0, φik1)], can be computed exactly, as

(φikm − 1)Ψ′(φikm)− (φik0 + φik1 − 2)Ψ′(φik0 + φik1) .

The remaining part of the gradient can be written

∇φikmEq(wik|φ)

[
f1(wik) + f2(wik)

]
(7)

with

f1(wik) =
∑
i6=j

Eq−wik [log p(aij | wi, wj , π)]

and, computing the expected value of log p(wik | αk) over q(αk | τ),

f2(wik) = Ψ(τk0)− log(τk1) +
(
τk0/τk1 − 1

)
logwik .

We resort to g-rep to approximate Equation (7). Here, Ψ and Ψ′ are the digamma function
and polygamma function of order 1 respectively.

3.3.2. Gradient wrt λ :

The gradient of ELBO wrt λ with the preconditioner is

G−1(λ)ĝ(λ(t−1))

where ĝ(λ) is the estimate of the gradient of the ELBO wrt λ. Using the fact that q(πk) is
a Beta distribution, for m ∈ {0, 1}, the partial derivative wrt λkm of the component due to
term

∑
k Eq[log q(πk | λk0, λk1)], can be computed exactly, as

(λkm − 1)Ψ′(λkm)− (λk0 + λk1 − 2)Ψ′(λk0 + λk1)

The remaining part of the gradient can be written as

∇λkmEq(πk|λ)

[
f(πk)

]
(8)

where

f(πk) =
∑
i6=j

Eq−πk [log p(aij | wi·, wj·, π)] + log p(πk | ηk0, ηk1)

Again g-rep is used to get an unbiased estimate of Equation (8).
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3.3.3. Update equations for τ

τ
(t)
k = τ

(t−1)
k + ρ(t)

τ G−1(τk)ĝ(τ
(t−1)
k )

where ĝ(τk) is the estimated gradient wrt τk = {τk0, τk1} , which can be evaluated us-
ing conditional conjugacy. Following (Hoffman et al., 2013), with G chosen as the Fisher
Information matrix, we can obtain an exact expression for the natural gradient as:

G−1(τk0, τk1)

[
∇τk0L
∇τk1L

]
=

[
N + β0 − τk0

β1 −
∑

i(Ψ(φik0)−Ψ(φik0 + φik1))− τk1

]
.

Finally, the estimators ĝ(τk) are obtained from the mini-batch E t by summing in the above
expression only over nodes i ∈ E t, and scaling the sum by N/|i ∈ E t|.

Algorithm 3 SG-VI for the S-AGM at iteration t

1: Sample a mini-batch E t of node pairs.
2: for Each node i in E t do
3: Sample a mini-batch of nodes Vti .
4: for k = 1 : K do . utilizing the sampled Vti
5: φ

(t)
ik0 = φ

(t−1)
ik0 + ρ

(t)
φ × ĝ(φik0)

6: φ
(t)
ik1 = φ

(t−1)
ik1 + ρ

(t)
φ × ĝ(φik1)

7: for k = 1 : K do . utilizing the sampled E t

8: λ
(t)
k0 = λ

(t−1)
k0 + ρ

(t)
λ × ĝ(λk0)

9: λ
(t)
k1 = λ

(t−1)
k1 + ρ

(t)
λ × ĝ(λk1)

10: for k = 1 : K do . utilizing the sampled E t

11: τ
(t)
k0 = τ

(t−1)
k0 + ρ

(t)
τ × ĝ(τk0)

12: τ
(t)
k1 = τ

(t−1)
k1 + ρ

(t)
τ × ĝ(τk1)

The pseudo code for one iteration of the update algorithm is given in Algorithm 3. Here
ĝ(x) represents the mini-batch stochastic estimates and ρ represents the step size. The
detailed derivation of the gradients is given in supplemental material.

4. Experiments

We are interested in understanding the convergence characteristics of the SG-VI algorithm
and in comparing it to SGRLD inference. In particular, we identify the following research
questions in relation to the SG-VI algorithm:

R1 : Is preconditioning necessary for SG-VI convergence?

R2 : How does SG-VI convergence depend on the number of Monte Carlo estimations
carried out to compute ĝ(φ) and ĝ(λ)?

R3 : How does SG-VI convergence depend on the mini-batch size?

Finally, we have the research question relating to the two algorithms:
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R4 : With which algorithm, SGRLD or SG-VI, can most scalable performance be
achieved?

We report comparisons between SGRLD and SG-VI on a number of different synthetic
and real-world networks. For both SGRLD and SG-VI, we set the step-size schedule as
ρ(t) = a(1 + t/b)−c where b = 1, 000 and c = 0.55 and a is varied depending on the
experiment. For all experiments, we fix the background edge probability πε as 1e−5. All
the experiments are run on a 2.2 GHz Intel Core i7 processor. Both the algorithms are
implemented in Tensorflow (Abadi et al., 2015). 1

For networks with ground-truth communities, the overlapping Normalised Mutual In-
formation (NMI) (Lancichinetti et al., 2009) is used to measure the closeness of the found
communities to the ground-truth. Note that since the S-AGM outputs soft community
assignments wik, we must threshold in order to obtain the hard community assignment
required by the NMI. We also compare solutions using missing link prediction on a hold-out
set of link and non-link pairs and computing the AUC of the ROC. Finally, we compute
the perplexity score on the hold-out set of test node pairs.

4.1. Synthetic Networks

Firstly, we consider synthetic networks. For both SGRLD and SG-VI, we use a mini-batch
size of |Et| = |Vi| = 20. When Et corresponds to a link set, its size is the degree of the
randomly selected node. To compute performance metrics, we hold out a test set consisting
of 10% of the number of links in the network and an equal number of non-link node pairs.
For SG-VI, Monte Carlo estimates are computed using 5 samples and each run is over
10, 000 iterations. For SGRLD, after a burn-in of 5, 000 iterations, samples are collected
from the next 5, 000 iterations with a lag of 100.

We consider two different synthetic networks:

• Net-AGM : Since S-AGM is a soft community assignment version of the Affiliation
Graph Model (AGM), we generate a network with 75 nodes and K = 4 (overlapping
communities) using the generative process of the AGM.

• Net-aMMSB : We consider the synthetic network used in (Gopalan et al., 2012; Li et al.,
2016) which has 75 nodes and is generated from the assortative Mixed Membership
Stochastic Blockmodel (aMMSB).

Preconditioning in the SG-VI For K = {10, 20, 30, 40} and Net-AGM, we plot the
histogram of AUC-ROC of predicting missing links of the validation node pairs after 2, 000
iterations for various initial step-sizes by varying a over the values {1, 0.1, 0.01, 0.001}, using
SG-VI with and without the preconditioner of λ and φ. From Figure 2, we can see that by
using the preconditioner the convergence is faster. The AUC-ROC score is above 0.8 for
many initial step-sizes after 2, 000 iterations. However, without the preconditioner, most
initial step-sizes have only obtained an AUC-ROC of around 0.5 at this point.

Similarly, for Net-aMMSB, preconditioning is necessary to boost performance. From Fig-
ure 3, the portion of initial step-size converting to an AUC-ROC of greater than 0.8 after
2, 000 iterations is higher with the preconditioner, than without.

1. The codes to reproduce the results are available in https://github.com/apple-apple-star/SG-VI-for-
SAGM.
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Figure 2: Convergence comparison on Net-AGM.
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Figure 3: Convergence comparison on Net-aMMSB.

Performance comparison with SGRLD The initial parameter a of the step size for
each parameter is selected by a line search over the values {1, 0.1, 0.01, 0.001}, choosing
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Figure 4: AUC-ROC and perplexity on Net-AGM.

the combination that gives best performance on a validation set and may be different for

ρ
(t)
φ , ρ

(t)
λ , and ρ

(t)
τ .

We compare the missing links prediction with AUC-ROC and perplexity score on the
hold-out test node pairs. The results for Net-AGM are shown in Figure 4 and for Net-
aMMSB in Figure 5. The performance of both inference algorithms is similar. For Net-
AGM, the AUC-ROC is above 0.9 and the perplexity between 1.2 and 1.5. There is a slight
improvement in terms of predicting missing links for SGRLD while in terms of perplexity,
SG-VI is performing better. We also observe for Net-aMMSB that the performance of
SGRLD and SG-VI for S-AGM is similar. It is interesting to note that this is different to
the results obtained in (Li et al., 2016), where an SGRLD inference on the aMMSB model
clearly out-performs an SVI inference on this network.

In the case of Net-AGM, where the ground truth communities are known, we can measure
performance with the NMI. We set K = 4, and set various thresholds on the values of wik
to compute the hard community assignments required for the NMI. The best NMI over 5
random runs is considered. From Figure 6, we see that both algorithms obtain a perfect
NMI score for an appropriate setting of the threshold. The NMI decreases more sharply for
SGRLD when the threshold is high.
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Figure 5: AUC-ROC and perplexity on Net-aMMSB.
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Figure 6: Best NMI of 5 random runs for various threshold on Net-AGM.
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Figure 7: AUC-ROC vs iterations on real world networks with SG-VI and SGRLD

4.2. Real world networks

In this section, we examine performance on a number of real world networks that have more
than 10, 000 nodes; namely ca-HepPh (Leskovec and Krevl, 2014) (12,008 nodes and 118,521
edges), FA (Nelson et al., 2004) (10,299 nodes and 61,677 edges), Reuters (Corman et al.,
2002) (13,314 nodes and 148,038) and Enron (Leskovec and Krevl, 2014) (36,692 nodes and
183,831 edges). For the experiments, we take K = 50 and use a hold out test set consisting
of 10% of the links in the network with an equal number of non-links.
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Table 1: Comparison of time taken (in sec) for fixed number of iterations between SGRLD
and SG-VI.

#Iterations
(Mini-Batch)

60,000
(10)

50,000
(50)

40,000
(100)

30,000
(150)

20,000
(200)

ca-HepPh
SGRLD 629.48 600.17 621.76 641.46 573.68
SG-VI 821.20 1158.11 1834.25 2569.99 2919.47

FA
SGRLD 587.91 533.74 558.08 574.50 526.14
SG-VI 726.64 1013.15 1742.50 2354.10 2747.16

Reuters
SGRLD 691.95 665.90 672.03 670.97 596.79
SG-VI 970.09 1326.09 1981.01 2693.40 2945.52

Enron
SGRLD 1393.75 1256.64 1150.45 1029.25 848.63
SG-VI 1757.21 1964.01 2410.69 2923.33 3281.47
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Figure 8: AUC-ROC vs iterations on Enron network with SG-VI

Monte Carlo Estimation in SG-VI We use Enron to examine the impact of the Monte
Carlo sample size used in estimating ĝ(φ) and ĝ(λ). For this experiment we fix the mini-
batch size to 50. In Figure 8, the convergence plot of AUC-ROC over 10, 000 iterations
with the AUC-ROC computed every 100 iterations is shown, where the estimation has been
carried out using a single sample and using 50 samples. We can see that for a network of this
size, a single sample is sufficient (note that with a single sample per estimate the simulation
takes 378.87 sec, while with 50 samples, it takes 3226.82 sec). Hence, for the remaining
experiments using SG-VI, we consider single Monte Carlo estimates in Generalized Re-
parameterization for updating λ and φ.

Impact of Mini-batch Size For the SG-VI algorithm, we adjust the number of iterations
according to mini-batch size as follows. The number of iterations is chosen as 60, 000 for
mini-batch size 10; 50, 000 iterations for batch size 50; 40, 000 iterations for batch size 100;
30, 000 iterations for batch size 150; and 20, 000 iterations for batch size 200; as convergence
occurs with fewer iterations as the mini-batch size increases. For this experiment, we have
chosen the initial step-size as a = 1.0 for λ, φ and τ .
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Table 2: AUC-ROC score for various mini-batch sizes with SG-VI.
Mini-Batch size 10 50 100 150 200

ca-HepPh 0.8295 0.8610 0.8653 0.8674 0.8646

FA 0.6960 0.8172 0.8238 0.8357 0.8213

Reuters 0.8839 0.9093 0.9190 0.9105 0.9068

Enron 0.7865 0.9161 0.9302 0.9348 0.9333

In Table 2, the AUC-ROC of missing links prediction of the final iteration by SG-VI
is given for various mini-batch sizes. We can see there is an increase in AUC-ROC with
increase in mini-batch sizes with the smallest AUC-ROC scores occurring at mini-batch size
of 10 and mini-batch sizes above 100 having similar AUC-ROC scores.

We also compare SGRLD with varying mini-batch sizes. Here, again accounting for
faster convergence when the mini-batch size is larger, we adjust the length of burn in with
the mini-batch size. In particular, we have a burn-in of 50, 000 iterations for mini-batch
size 10; 40, 000 iterations for mini-batch size 50; 30, 000 iterations for mini-batch size 100;
20, 000 iterations for mini-batch size 150; and 10, 000 iterations for mini-batch size 200.
After burn-in we collect 10, 000 samples with a lag of 100. An initial step size of a = 0.001
is chosen for sampling both π and w.

In Table 3, the AUC-ROC of missing links prediction from the samples collected after
burn-in at lags of 100 by SGRLD is given for various mini-batch sizes. Again, we can
see that there is a slight increase in AUC-ROC with increase in mini-batch size with the
smallest AUC-ROC observed at mini-batch size of 10 and largest at mini-batch size of 200.

Comparison between SG-VI and SGRLD In Figure 7, the convergence of AUC-ROC
for missing links prediction on real world networks after every 100 iterations is shown for
SG-VI and SGRLD. From Figure 7, we can see that although both the algorithms converge
to the same value, the convergence of SGRLD is faster than SG-VI. From the figure we can
see that choosing a mini-batch size of 100 is almost same as choosing larger mini-batch size.

Since SG-VI is computationally more expensive than SGRLD, from Table 1, the time
taken for a fixed number of iterations is less for SGRLD than SG-VI. With the increase in
mini-batch size, SG-VI takes much more time when compared to SGRLD.

5. Discussion

The goal of this paper has been to compare two approaches to scalable inference on a com-
plex Bayesian model, which exhibits non-conjugacy. A general conclusion can be reached

Table 3: AUC-ROC score for various mini-batch sizes with SGRLD.
Mini-Batch size 10 50 100 150 200

ca-HepPh 0.8195 0.8762 0.8969 0.8938 0.8990

FA 0.7222 0.8470 0.8541 0.8550 0.8616

Reuters 0.8942 0.9208 0.9231 0.9275 0.9306

Enron 0.8908 0.9336 0.9445 0.9489 0.9513
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that, for this model, SGRLD is a better option than SG-VI. This agrees to some extent with
the findings of (Li et al., 2016) who developed an SGRLD inference for the aMMSB model.
However, we do not see the general superiority of the SGRLD over SG-VI in terms of qual-
ity upon convergence. It is noteworthy that both approaches have a similar computational
framework, requiring parameter updates over mini-batches of nodes and edges, which we
have constructed in the same way for each approach. For SG-VI, there is the additional
task of selecting the number of Monte-Carlo samples in the gradient estimation and our
results show that even a single sample is sufficient. Although there is no such sampling in
SGRLD, an appropriate burn-in must be chosen.

6. CONCLUSION

We have presented a scalable inference algorithm for the Soft-Affiliation Graph Model (S-
AGM) using stochastic gradient variational inference (SG-VI) which maximizes the evi-
dence lower bound of the model. For the non-conditional conjugate terms of the model, we
have introduced a preconditioner for the update which improves convergence and developed
a generalised re-parameterisation scheme to estimate the required gradients. This scalable
variational inference has been compared with a scalable MCMC inference that uses Stochas-
tic Gradient Riemannian Langevin Dynamics (SGRLD). Both algorithms converge similarly
for various real world and synthetic networks, although for larger networks, convergence of
SGRLD is faster than SG-VI.
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