
Appendix A. Proofs of Loss Function Properties

As stated in Section 4, if we define a loss function L in an additive form by (12), there
exist constants ⇠1 and ⇠2 which satisfy (10) and (11). We first describe proof of (10). The
following formulation holds in accordance with ` (z) + ` (�z) = a.
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Next, we describe proof of (11). Similar to the above formulation, in accordance with
` (z) + ` (�z) = a,
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The third and fourth equality hold due to ` (0) = a/2.

Appendix B. Property of the Data-Generation Probability Model

In this section, we describe proof of (15). To begin with, we introduce the following lemma.

Lemma 5 Let any finite sets be X with size of K, and any elements of the N -size power
set PN (X) be A. Then, the following equation holds for any function f and g over X.
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Proof The left-hand side can be formulated as:
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For the first term, any A can be chosen from PN (X) in KCN patterns, and any
a1, a2 (a1 6= a2) can be chosen from A in NP2 patterns. Because f(a1)g(a2) with any
a1, a2 (a1 6= a2) can be chosen from X in KP2 patterns, the first term in (23) holds due to

K�2CN�2 = KCN ·NP2

KP2
. Similar for the second term.

Here, we prove (15). Let P (↵ 2 Y |x) be the probability where a set of candidate labels
Y includes a label ↵ 2 Y. Denoting I as an indicator function, then
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The fourth equality holds due to lemma 5. In the fifth equality, the second term holds
because y2 6= ↵ holds if y1 = ↵. Therefore,

Q(yo = ↵|x) = Q(yo = ↵|x,↵ 2 Y )Q(↵ 2 Y |x) +Q(yo = ↵|x,↵ /2 Y )Q(↵ /2 Y |x)

=
1

N

K �N

N � 1
P (↵|x) +

1

N

N � 1

K � 1

= �P (↵|x) + (1� �)
1

K

The second equality holds due to the assumption where Q(yo = ↵|x,↵ 2 Y ) = 1/N and
Q(yo = ↵|x,↵ /2 Y ) = 0 hold.

Appendix C. Proof of Theorem 1

We first derive the expectation of the sum of loss for all the ordinary labels.
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The second equality holds due to the definition of PN (Y |x). The third equality holds due
to Lemma 5. Thus, the following formulation holds due to (12).
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Appendix D. Proof of Lemma 2

According to the duality described in (12) and (13), loss function L can be formulated by
L (f(x), y) for N candidate labels y 2 Y , or L (f(x), y) for K � N complementary labels
y 2 Y . Thus, we can redefine loss function L as the following:
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where eL and eY denote L and Y respectively if N  K/2, otherwise L, Y respectively.
Therefore, given eN := |eY | it always satisfies eN  K/2. Note that ⇠2 = ⇠2 = 0 due to the
assumption of a = 0, as discussed in Section 4.1. Similarly, è(z) denotes è : z 7! ` (z) if
N  K/2 otherwise è : z 7! ` (�z). For the rest of this work, we prove Lemma 2 according
to those definitions.

First we describe proof for one-versus-all classification. Under the assumption of a = 0,
the following formulation holds.
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è(gy(x)) +

1

K � 1

X

y02Y
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è(gy(x))� inf
g1,··· ,gK

X

y02eY 0
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The second inequality holds because supremum and infimum of ` are 1/2 and �1/2 respec-
tively.

We further describe proof for pairwise classification. Under the assumption of a = 0,
the following formulation holds.
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è�gy(x)� gy0(x)
�

Thus,

kLPCk1 = sup
g1,··· ,gK2G

0

@
X

y02eY

eLPC

�
f(x), y0

�
�

X

y2eY 0

eLPC (f(x), y)

1

A

= sup
g1,··· ,gK2G

X

y2eY

X

y0 /2eY
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Appendix E. Proof of Lemma 3

We decribe proof for one-versus-all classification. Under the assumption that h 2 HOVA is
equivalent to LOVA, the following formulation holds due to the definition of HOVA.
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Let I(y 2 eYi) be an indicator function and define ↵i := 2I(y 2 eYi) � 1, then for the first
term,
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è(g(xi))

3

5

= KRn

⇣
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The second equality from the last holds because �i and ↵i�i are drawn from the same
probabilistic distribution. For the second term,
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traction lemma (Ledoux and Talagrand, 2013).

Note that ` (z)� ` (�z) = a is incorrectly assumed in (Ishida et al., 2017), which causes
miscalculation in proof of Lemma 3.

We further describe proof for pairwise classification. Under the assumption that h and
LPC are equivalent,
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The third equality holds because �i and ��i are drawn from the same probabilistic distri-
bution. Then,
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Appendix F. Proof of Theorem 4

We only describe proof for one-versus-all classification; proof for pairwise classification is
similar. We substitute the j th data (xj , Yj) in S with any data (x0j , Y

0

j ), and define the
data set as S 0. Let a set of empirical discrimination functions and empirical risk for S 0 be
G
0 := {g0} and R̂0(f) respectively. Then the following formulation holds due to Lemma 2.
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According to McDiarmid’s inequality(McDiarmid, 1989), for any integer � > 0 the following
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The second equality holds because L (f(xi, Yi)) and �iL (f(xi, Yi)) are drawn from the
same probabilistic distribution; similar for L (f(x0i, Y
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i )). The last inequality holds due to
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Appendix G. Comparison with Existing Work

Our major contribution is the finding that loss functions reflecting the properties of label
space naturally bridge ordinary-label learning and complementary-label learning. However,
unlike (Ishida et al., 2019; Feng et al., 2020), it is also true that satisfaction of additivity and
duality is a strict limitation. In this section we present an experiment with a loss function
which does not satisfy the assumption to evaluate the limitation of our work.

Here we introduce a loss function LCE as follows:

LCE (f(x), Y ) = �
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log

0

B@
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y02Y
exp(gy0(x))
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LCE is represented as an additive form of cross entropy loss, the most commonly used
loss function. Unlike LOVA or LPC, learning with LCE is outside the scope of our framework
because additivity and duality are not satisfied.

We performed an experiment with LCE on the same dataset described in Section 6.1 to
evaluate the classification accuracy and error. We set the batch size as 64 and the number
of epochs as 300. MLP was adopted for MNIST, Fashion-MNIST, and Kuzushiji-MNIST
datasets; Adam was used for optimization with weight decay of 10�4 and learning rate of
5 ⇥ 10�5. DenseNet was adopted for CIFAR-10 dataset; stochastic gradient descent was
used for optimization with weight decay of 5 ⇥ 10�4 and initial learning rate of 5 ⇥ 10�2



Table 4: Experimental classification accuracies for 10 and 5 class classification (%). The
experiments were performed 5 times for each case; the mean accuracy and standard devi-
ation are presented by the upper and lower values, respectively. The highest accuracy is
boldfaced.

K = 10 K = 5
N 1 2 3 4 5 6 7 8 9 1 2 3 4

MNIST 94.69 93.70 93.1 92.17 91.11 89.60 86.42 80.99 71.33 98.05 97.05 96.02 94.28
(CE) (±0.13) (±0.19) (±0.25) (±0.50) (±0.35) (±0.73) (±0.79) (±0.81) (±0.78) (±0.10) (±0.14) (±0.52) (±0.49)

Fashion 86.81 85.34 84.97 83.75 82.93 80.60 77.89 73.83 63.05 87.21 85.91 84.16 81.63
(CE) (±0.43) (±0.23) (±0.36) (±0.36) (±0.30) (±0.66) (±0.35) (±0.63) (±1.91) (±0.27) (±0.65) (±0.45) (±0.66)

Kuzushiji 77.19 71.38 69.22 66.43 63.05 57.31 51.62 42.25 30.99 82.01 78.23 73.84 65.58
(CE) (±0.53) (±0.60) (±0.53) (±0.76) (±0.36) (±0.36) (±1.13) (±1.22) (±0.51) (±0.48) (±0.77) (±1.12) (±2.91)

CIFAR-10 73.23 56.84 43.00 36.03 32.57 35.47 40.18 40.88 29.70 74.81 64.69 58.54 49.43
(CE) (±0.20) (±0.52) (±0.55) (±0.77) (±1.25) (±1.76) (±0.45) (±0.89) (±0.53) (±0.36) (±0.93) (±0.80) (±1.97)

Table 5: Experimental classification errors for 10 and 5 class classification (⇥10�3). The
experiments were performed 5 times for each case; the mean error and standard deviation
are presented by the upper and lower values, respectively. The highest error is boldfaced.

K = 10 K = 5
N 1 2 3 4 5 6 7 8 9 1 2 3 4

MNIST 0.07 0.40 0.49 0.49 0.61 0.68 0.51 0.46 0.86 0.02 0.43 0.51 0.33
(CE) (±0.01) (±0.16) (±0.22) (±0.23) (±0.18) (±0.11) (±0.27) (±0.23) (±0.26) (±0.02) (±0.12) (±0.15) (±0.20)

Fashion 0.08 0.39 0.39 0.41 0.34 0.52 0.42 0.38 0.75 0.05 0.22 0.30 0.48

(CE) (±0.06) (±0.22) (±0.13) (±0.23) (±0.19) (±0.22) (±0.16) (±0.29) (±0.49) (±0.02) (±0.14) (±0.04) (±0.24)
Kuzushiji 0.33 0.36 0.27 0.23 0.28 0.28 0.23 0.65 0.92 0.18 0.26 0.27 0.46

(CE) (±0.13) (±0.07) (±0.14) (±0.14) (±0.13) (±0.09) (±0.10) (±0.30) (±0.36) (±0.12) (±0.15) (±0.16) (±0.30)
CIFAR-10 1.31 1.34 1.49 1.55 1.72 1.01 0.28 0.08 0.07 0.04 0.25 0.22 0.13

(CE) (±0.21) (±0.17) (±0.15) (±0.14) (±0.08) (±0.10) (±0.08) (±0.03) (±0.02) (±0.03) (±0.07) (±0.06) (±0.02)

which was halved every 30 epochs. The results of accuracy and error are listed in Table 4
and 5 correspondingly.

Compared with the results in Table 2 and 3, the classifier with LCE tends to perform
better than those of LOVA and LPC. This shows that although the assumption of additivity
and duality naturally reflects the relationship between ordinary-label and complementary-
label, it could be a limitation on performance in a context of practical use.
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