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1. Proof of Theorem 1

1.1. Rank consistency proof for l̃CE
We need to show that b1 ≥ b2 ≥ . . . ≥ bK−1 at the optimal solution. Let b = [b1, b2, .., bK−1]

T ,
and b∗ be the optimal value of b. Let (xi, ỹi), i = 1 . . . N be the training set. Let for some j
suppose bj < bj+1. Then we show that by replacing bj with bj+1 or replacing bj+1 with bj can

further decrease the loss L̃CE = N−1LCE , where L̃CE =


l̃CE(g(x),b, 1)

...
l̃CE(g(x),b, j + 1)

...
l̃CE(g(x),b,K)

 and LCE =


lCE(g(x),b, 1)

...
lCE(g(x),b, j + 1)

...
lCE(g(x),b,K)

. We see that the change in L̃CE depends on LCE as follows.

∆L̃CE = N−1∆LCE = N−1


∆lCE(g(x),b, 1)

...
∆lCE(g(x),b, j + 1)

...
∆lCE(g(x),b,K)


We now have to find the change ∆lCE(g(xi),b, k) for every i ∈ [N ] and every k ∈ [K − 1]. In
order to do that, we first consider the following three partitions of the training set.

A1 = {xi : yi < j + 1 =⇒ zjyi = zj+1
yi = 0}

A2 = {xi : yi > j + 1 =⇒ zjyi = zj+1
yi = 1}

A3 = {xi : yi = j + 1 =⇒ zjyi = 1, zj+1
yi = 0}
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The above three sets are mutually exclusive and exhaustive, i.e., A1 ∪A2 ∪A3 = {x1, . . . ,xN}. Let
hj(x) = σ(g(x) + bj). Now, we first find the change ∆lCE(g(xi),b, k) for every k ∈ [K − 1] in
these sets individually.

1. Change in lCE for xi ∈ A1: The change in lCE when replacing bj with bj+1 is,

∆alCE(g(xi),b, yi) = log(1− hj(xi))− log(1− hj+1(xi)).

The change in lCE when replacing bj+1 with bj is,

∆blCE(g(xi),b, yi) = log(1− hj+1(xi))− log(1− hj(xi)).

The total change in loss lCE after swapping bj and bj+1 is ∆lCE(g(x),b, yi) = (∆a +
∆b)lCE(g(x),b, yi) = 0.

2. Change in lCE for A2: The change in lCE when replacing bj with bj+1 is

∆alCE(g(x),b, yi) = log(hj(x))− log(hj+1(x)).

The change in lCE replacing bj+1 with bj

∆blCE(g(x),b, yi) = log(hj+1(x))− log(hj(x)).

The total change in loss LCE after swapping bj and bj+1 is (∆a + ∆b)lCE(g(x),b, yi) = 0.

3. Change in lCE for A3: The change in lCE when replacing bj with bj+1 is

∆alCE(g(x),b, yi) = log(hj(x))− log(hj+1(x)).

The change in lCE replacing bj+1 with bj

∆blCE(g(x),b, yi) = − log(1− hj(x))− log(1− hj+1(x)).

The total change in loss lCE after swapping bj and bj+1 and given that bj ≥ bj+1 is

(∆a + ∆b)lCE(g(x),b, yi) = log(hj(x))− log(hj+1(x))

− (log(1− hj+1(x))− log(1− hj(x)) < 0

Hence

(∆a + ∆b)lCE(g(x),b, yi) =

{
δ, if yi = j + 1

0, if yi 6= j + 1

for some δ < 0. Now consider the equations

(∆a + ∆b)L̃CE = N−1


(∆a + ∆b)lCE(g(x),b, 1)

...
(∆a + ∆b)lCE(g(x),b, j + 1)

...
(∆a + ∆b)lCE(g(x),b,K)



⇒


(∆a + ∆b)l̃CE(g(x),b, 1)

...
(∆a + ∆b)l̃CE(g(x),b, j + 1)

...
(∆a + ∆b)l̃CE(g(x),b,K)

 = N−1


0
...
δ
...
0
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The change in loss l̃CE is as follows.

(∆a + ∆b)Rρ = (∆a + ∆b)Eỹ[l̃CE(g(x),b, ỹ)] = Eỹ[(∆a + ∆b)l̃CE(g(x),b, ỹ)]

= Eỹ[N−1(ỹ,i+1)δ] = δEỹ[N−1(ỹ,i+1)] = δ

K∑
k=1

P (ỹ = k)N−1(k,i+1)

= δ
K∑
k=1

N−1(k,i+1)

K∑
j=1

P (y = j)P (ỹ = k|y = j)

= δ

K∑
j=1

P (y = j)

K∑
k=1

η(j,k)N
−1
(k,i+1) = δ

K∑
j=1

P (y = j)I{j=i+1} = δP (y = i+ 1) ≤ 0

That means by swapping bj and bj+1, we can further reduce the total loss L̃CE , which is a
contradiction to the assumption that b is the optimal solution under L̃CE . This completes the proof
that l̃CE is also rank consistent.

1.2. Rank consistency proof for l̃IMC

We need to show that b1 ≥ b2 ≥ . . . ≥ bK−1 at the optimal solution. We use a similar methodology
as Theorem 1 Section 1.1 to prove this. Let b = [b1, b2, .., bK−1]

T , and b∗ be the optimal value of b.
Let for some j suppose bj < bj+1. Then we show that by replacing bj with bj+1 or replacing

bj+1 with bj can further decrease the loss L̃ = N−1L. Consider the following sets.

A1 = {i : yi < j + 1 =⇒ zjyi = zj+1
yi = −1}

A2 = {i : yi > j + 1 =⇒ zjyi = zj+1
yi = +1}

A3 = {i : yi = j + 1 =⇒ zjyi = −1, zj+1
yi = +1}

The above three sets are mutually exclusive and exhaustive, i.e., A1 ∪A2 ∪A3 = {1, 2, .., N}.

1. Change in lIMC for A1: The change in lIMC when replacing bj with bj+1 is

∆alIMC(f(x), yi) = max(0,−1(g(xi) + bj+1) + 1)−max(0,−1(g(xi) + bj) + 1)

The change in lIMC when replacing bj+1 with bj

∆blIMC(f(x), yi) = max(0,−1(g(xi) + bj) + 1)−max(0,−1(g(xi) + bj+1) + 1)

The total change in loss LIMC after swapping bj and bj+1 is (∆a + ∆b)lIMC(f(x), yi) = 0

2. Change in lIMC for A2: The change in lIMC when replacing bj with bj+1 is

∆alIMC(f(x), yi) = max(0,+1(g(xi) + bj+1) + 1)−max(0,+1(g(xi) + bj) + 1)

The change in lIMC replacing bj+1 with bj

∆blIMC(f(x), yi) = max(0,+1(g(xi) + bj) + 1)−max(0,+1(g(xi) + bj+1) + 1)

The total change in loss LIMC after swapping bj and bj+1 is (∆a + ∆b)lIMC(f(x), yi) = 0
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3. Change in lIMC for A3: The change in lIMC when replacing bj with bj+1 is

∆alIMC(f(x), yi) = max(0,−1(g(xi) + bj+1) + 1)−max(0,−1(g(xi) + bj) + 1)

= max(0,−bj+1 − g(xi) + 1)−max(0,−bj − g(xi) + 1 + 1) ≤ 0

The change in lIMC replacing bj+1 with bj

∆blIMC(f(x), yi) = max(0,+1(g(xi) + bj) + 1)−max(0,+1(g(xi) + bj+1) + 1)

= max(0, g(xi) + bj + 1)−max(0, g(xi) + bj+1 + 1) ≤ 0

Now suppose ∆alIMC(f(x), yi) = 0. Since bj < bj+1 we have

g(xi) + bj ≥ 1 and g(xi) + bj+1 > 1 (1)

From 1, we have in ∆blIMC(f(x), yi),

∆blIMC(f(x), yi) = max(0, g(xi) + bj + 1)−max(0, g(xi) + bj+1 + 1)

= bj+1 − bj < 0

Similarly, if ∆blIMC(f(x), yi) = 0, we will have ∆alIMC(f(x), yi) < 0. The total change
in loss lIMC after swapping bj and bj+1 and given that bj < bj+1 is

(∆a + ∆b)lIMC(f(x), yi) < 0

Hence

(∆a + ∆b)lIMC(f(x), yi) =

{
δ, if yi = j + 1

0, if yi 6= j + 1

for some δ < 0. Now using similar arguments as Theorem-1, Section 1.2 we get that l̃IMC is rank
consistent too.

2. Proof of Theorem 2

We are given that Eỹ[bti − bti+1] ≥ 0, i ∈ [K − 1]. Let at the tth iteration example (xt, ỹt) is being
presented to the network. Loss l̃CE corresponding to (xt, ỹt) is as follows.

l̃CE(g(xt),b, ỹt) =

K∑
j=1

N−1(ỹt,j)lCE(g(xt),b, j)

= −
K∑
j=1

N−1(ỹt,j)

K−1∑
i=1

(
log hi(x

t)z
j
i + log(1− hi(xt))(1−z

j
i )
)

For every j = 1 . . .K − 1, zji are defined as follows. zji = 1, ∀i < j and zji = 0, ∀i ≥ j. The
update equation using SGD requires to compute the partial derivative of the parameters with respect
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to the loss function l̃CE . We see the following.

∂l̃CE(g(xt),b, ỹt)

∂bi
= −

K∑
j=1

N−1(ỹt,j)

[
zji
∂ log(hi(x

t))

∂bi
+ (1− zji )

∂ log(1− hi(xt))
∂bi

]

= −
K∑
j=1

N−1(ỹt,j)

(
zji

hi(xt)
−

1− zji
1− hi(xt)

)
∂hi(x

t)

∂bi

= −
K∑
j=1

N−1(ỹt,j)

(
zji (1− hi(x

t))− (1− zji )hi(x
t)
)

The update equations for thresholds b1, . . . , bK−1 using SGD are as follows. Let α be the learning
rate.

bt+1
i = bti − α

∂l̃CE(gt(xt),bt, ỹt)

∂bi

= bti + α
K∑
j=1

N−1(ỹt,j)

(
zji (1− σ(gt(xt) + bti)− (1− zji )σ(gt(xt) + bti)

)
Using the above equation, we compute the following.

bt+1
i − bt+1

i+1 = bti − bti+1 + α
K∑
j=1

N−1(ỹt,j)

(
zji (1− h

t
i(x

t))− (1− zji )h
t
i(x

t)− zji+1(1− h
t
i+1(x

t))

+ (1− zji+1)h
t
i+1(x

t)
)

= bti − bti+1 + α
K∑
j=1

N−1(ỹt,j)

[
zji − h

t
i(x

t)− zji+1 + hti+1(x
t)
]

For every j ∈ {1, . . . ,K}, there can be three possibilities as follows. (a) zji = zji+1 = 0, (b)
zji = zji+1 = 1 and (c) zji = 1, zji+1 = 0. Thus, we can rewrite bt+1

i − bt+1
i+1 as follows.

bt+1
i − bt+1

i+1 = bti − bti+1 + α
∑

zji=z
j
i+1

N−1(ỹt,j)

[
hti+1(x

t)− hti(xt)
]

+ α
∑

zji=1,zji+1=0

N−1(ỹt,j)

[
1 + hti+1(x

t)− hti(xt)
]

= bti − bti+1 + α
K∑
j=1

N−1(ỹt,j)

[
hti+1(x

t)− hti(xt)
]

+ α
∑

zji=1,zji+1=0

N−1(ỹt,j)

Using properties of noise matrix, we know that
∑K

j=1N
−1
(ỹt,j) = 1. Thus,

bt+1
i − bt+1

i+1 = bti − bti+1 − α
[
hti(x

t)− hti+1(x
t)
]

+ α
∑

zji=1,zji+1=0

N−1(ỹt,j)
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The only possibility for zji = 1, zji+1 = 0 is j = i+ 1. Thus,

bt+1
i − bt+1

i+1 = bti − bti+1 − α
[
hti(x

t)− hti+1(x
t)
]

+ αN−1(ỹt,i+1).

Since N−1(ỹt,i+1) updates depend on ỹt, we take the expectation on both sides with respect to ỹ, we
get the following.

Eỹ[bt+1
i − bt+1

i+1] ≥ Eỹ
[
bti − bti+1 − α

(
hti(x

t)− hti+1(x
t)
)]

+ αEỹ[N−1(ỹt,i+1)]

We know that, hti(x
t) = σ(gt(xt) + bti). Also, bti ≥ bti+1. Using the Mean-Value Theorem,

∃θ ∈ (bti+1, b
t
i) such that

hti(x
t)− hti+1(x

t)

bti − bti+1

=
∂σ(gt(xt) + b)

∂b |θ

= σ(gt(xt) + θ)(1− σ(gt(xt) + θ)).

We know that 0 < σ(gt(xt) + θ)(1− σ(gt(xt) + θ)) ≤ 0.25, ∀θ ∈ R. Using this, we get,

bti − bti+1 − α(σ(gt(xt) + bti)− σ(gt(xt) + bti+1)) = (1− α∂σ(gt(xt) + b′)

∂b
)(bti − bti+1)

≥ (1− 0.25α)(bti − bti+1) ≥ 0

where the last inequality holds when α ≤ 4. Thus for bti ≥ bti+1, we get

bti − bti+1 − α
[
hi(x

t)− hi+1(x
t)
]
≥ 0, ∀α ≤ 4. (2)

We know that

Eỹ[bt+1
i − bt+1

i+1] ≥ Eỹ
[
bti − bti+1 − α

(
hti(x

t)− hti+1(x
t)
)]

+ αEỹ[N−1(ỹt,i+1)].

Now, we using the result in eq.(2), we get the following.

Eỹ[bt+1
i − bt+1

i+1] ≥ αEỹ[N−1(ỹt,i+1)] = α
K∑
k=1

P (ỹ = k)N−1(k,i+1)

= α

K∑
k=1

N−1(k,i+1)

K∑
j=1

P (y = j)P (ỹ = k|y = j) = α

K∑
j=1

P (y = j)

K∑
k=1

η(j,k)N
−1
(k,i+1)

= α
K∑
j=1

P (y = j)I{j=i+1} = αP (y = i+ 1) ≥ 0.

Thus, we have shown that Eỹ[bt+1
i − bt+1

i+1] ≥ 0. This completes our proof that SGD gives the optimal
solution maintaining rank consistency.
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3. Proof of Theorem 3

Let at tth iteration example (xt, ỹt) is being presented to the network. Loss l̃IMC corresponding to
(xt, ỹt) is described as follows.

l̃IMC(g(xt),b, ỹt) =
K∑
j=1

N−1(ỹt,j)

K−1∑
i=1

[
0, 1− zji

(
g(xt) + bi

)]
+

Where zji = 1, ∀i < j and zji = −1, ∀i ≥ j. We first find the sub-gradient of l̃IMC w.r.t bi.

∂l̃IMC(g(xt),b, ỹt)

∂bi
= −

K∑
j=1

N−1(ỹt,j)z
j
i I[z

j
i (g(xt) + bi) < 1]

Hence the SGD based update equation for bi (with step size α) is as follows.

bt+1
i = bti + α

K∑
j=1

N−1(ỹt,j)z
j
i I[z

j
i (g

t(xt) + bti) < 1]

= bti + α
∑
j≤i

N−1(ỹt,j)z
j
i I[z

j
i (g

t(xt) + bti) < 1] + α
∑
j>i

N−1(ỹt,j)z
j
i I[z

j
i (g

t(xt) + bti) < 1]

= bti − α
∑
j≤i

N−1(ỹt,j)I[g
t(xt) + bti > −1] + α

∑
j>i

N−1(ỹt,j)I[g
t(xt) + bti < 1]

Where we used the definition of zji . Now, we take the expectation with respect to ỹt on both size,
and using the fact that Eỹt [N−1(ỹt,j)] = P (y = j), we get the following.

Eỹt [bt+1
i − bti] = −α

∑
j≤i

Eỹt [N−1(ỹt,j)]I[g
t(xt) + bti > −1] + α

∑
j>i

Eỹt [N−1(ỹt,j)]I[g
t(xt) + bti < 1]

= −α
∑
j≤i

P (y = j)I[gt(xt) + bti > −1] + α
∑
j>i

P (y = j)I[gt(xt) + bti < 1]

= −αP (y ≤ i)I[gt(xt) + bti > −1] + αP (y > i)I[gt(xt) + bti < 1]

Using this, we now compute the following.

Eỹt [bt+1
i −b

t+1
i+1 − b

t
i + bti+1] = Eỹt [bt+1

i − bti]− Eỹt [bt+1
i − bti]

= −αP (y ≤ i)I[gt(xt) + bti > −1] + αP (y > i)I[gt(xt) + bti < 1]

+ αP (y ≤ i+ 1)I[gt(xt) + bti > −1]− αP (y > i+ 1)I[gt(xt) + bti < 1]

= α[P (y ≤ i+ 1)− P (y ≤ i)]I[gt(xt) + bti > −1] + α[P (y > i)− P (y > i+ 1)]I[gt(xt) + bti < 1]

But, we know that

P (y > i)− P (y > i+ 1) ≥ 0, ∀i ∈ [K − 1]

P (y ≤ i+ 1)− P (y ≤ i) ≥ 0, ∀i ∈ [K − 1]
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and I[.] ∈ {0, 1}. Thus,

Eỹ[(bt+1
i − bt+1

i+1)− (bti − bti+1)] ≥ 0

⇒Eỹ[bt+1
i − bt+1

i+1] ≥ Eỹ[bti − bti+1] = bti − bti+1 ≥ 0

This completes the proof.

4. Generalisation bounds

Using unbiased estimator, we have

l̃(g(x),b, y) =

K∑
j=1

N−1(y,j)l(g(x),b, j) =

K∑
j=1

N−1(y,j)

K−1∑
i=1

li(g(x),b, zji )

=
K−1∑
i=1

(

K∑
j=1

N−1(y,j)l
i(g(x),b, zji )) =

K−1∑
i=1

l̃i(g(x),b, i)

For any i, if li is L−Lipschitz, then l̃i is L̃ = (
∑K

j=1 |N
−1
(y,j)|)L ≤ ML Lipschitz constant,

where M = maxy
∑K

j=1 |N
−1
(y,j)|. Using Lipschitz composition property of basic Rademacher

generalisation bounds on ith binary classifier, with probability atleast 1− δ

Rl̃i,Dρ(f
i) ≤ R̂l̃i,S(f i) + 2MLR(F) +

√
log(1/δ)

2n
(3)

where f i is the ith binary classifier. Adding the maximal deviations between expected risk and
empirical risk for all the K − 1 classifiers,

Rl̃,Dρ(f) ≤ R̂l̃,S(f) + 2ML(K − 1)R(F) + (K − 1)

√
log(1/δ)

2n
(4)

which if true for any f . Let f̂ ←− arg minf∈F R̂l̃,S(f) and f∗ ←− arg minf∈F Rl,D(f). Following
Theorem 3 from Natarajan et al. (2013),

Rl,D(f̂)−Rl,D(f∗) = Rl̃,Dρ(f̂)−Rl̃,Dρ(f
∗)

= R̂l̃,S(f̂)− R̂l̃,S(f∗) + (Rl̃,Dρ(f̂)− R̂l̃,S(f̂)) + (R̂l̃,S(f∗)−Rl̃,Dρ(f
∗))

≤ 2 max
f∈F
|Rl̃,Dρ(f)− R̂l̃,S(f)| (5)

From 4 and 5, we get,

Rl,D(f̂) ≤ Rl,D(f∗) + 4ML(K − 1)R(F) + 2(K − 1)

√
log(1/δ)

2n
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