Supplementary File: Robust Deep Ordinal Regression under Label Noise

Bhanu Garg BHANUGARG05@GMAIL.COM and **Naresh Manwani** NARESH.MANWANI@IIIT.AC.IN International Institute of Information Technology, Hyderabad, India

Editors: Sinno Jialin Pan and Masashi Sugiyama

1. Proof of Theorem 1

1.1. Rank consistency proof for \tilde{l}_{CE}

We need to show that $b_1 \ge b_2 \ge ... \ge b_{K-1}$ at the optimal solution. Let $\mathbf{b} = [b_1, b_2, ..., b_{K-1}]^T$, and \mathbf{b}^* be the optimal value of \mathbf{b} . Let $(\mathbf{x}_i, \tilde{y}_i)$, i = 1...N be the training set. Let for some jsuppose $b_j < b_{j+1}$. Then we show that by replacing b_j with b_{j+1} or replacing b_{j+1} with b_j can $\begin{bmatrix} \tilde{l}_{CE}(q(\mathbf{x}), \mathbf{b}, 1) \end{bmatrix}$

further decrease the loss
$$\tilde{\mathbf{L}}_{\mathbf{CE}} = \mathbf{N}^{-1} \mathbf{L}_{CE}$$
, where $\tilde{\mathbf{L}}_{\mathbf{CE}} = \begin{bmatrix} \vdots \\ \tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, j+1) \\ \vdots \\ \tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, K) \end{bmatrix}$ and $\mathbf{L}_{CE} = \begin{bmatrix} \vdots \\ \vdots \\ \tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, K) \end{bmatrix}$

 $\begin{bmatrix} l_{CE}(g(\mathbf{x}), \mathbf{b}, 1) \\ \vdots \\ l_{CE}(g(\mathbf{x}), \mathbf{b}, j+1) \\ \vdots \\ l_{CE}(g(\mathbf{x}), \mathbf{b}, K) \end{bmatrix}$. We see that the change in $\tilde{\mathbf{L}}_{CE}$ depends on \mathbf{L}_{CE} as follows.

$$\Delta \tilde{\mathbf{L}}_{CE} = \mathbf{N}^{-1} \Delta \mathbf{L}_{CE} = \mathbf{N}^{-1} \begin{bmatrix} \Delta l_{CE}(g(\mathbf{x}), \mathbf{b}, 1) \\ \vdots \\ \Delta l_{CE}(g(\mathbf{x}), \mathbf{b}, j+1) \\ \vdots \\ \Delta l_{CE}(g(\mathbf{x}), \mathbf{b}, K) \end{bmatrix}$$

We now have to find the change $\Delta l_{CE}(g(\mathbf{x}_i), \mathbf{b}, k)$ for every $i \in [N]$ and every $k \in [K-1]$. In order to do that, we first consider the following three partitions of the training set.

$$\begin{aligned} A_1 &= \{ \mathbf{x}_i : y_i < j+1 \implies z_{y_i}^j = z_{y_i}^{j+1} = 0 \} \\ A_2 &= \{ \mathbf{x}_i : y_i > j+1 \implies z_{y_i}^j = z_{y_i}^{j+1} = 1 \} \\ A_3 &= \{ \mathbf{x}_i : y_i = j+1 \implies z_{y_i}^j = 1, z_{y_i}^{j+1} = 0 \} \end{aligned}$$

© 2020 B. Garg & N. Manwani.

The above three sets are mutually exclusive and exhaustive, i.e., $A_1 \cup A_2 \cup A_3 = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$. Let $h_j(\mathbf{x}) = \sigma(g(\mathbf{x}) + b_j)$. Now, we first find the change $\Delta l_{CE}(g(\mathbf{x}_i), \mathbf{b}, k)$ for every $k \in [K - 1]$ in these sets individually.

1. Change in l_{CE} for $\mathbf{x}_i \in A_1$: The change in l_{CE} when replacing b_j with b_{j+1} is,

$$\Delta^a l_{CE}(g(\mathbf{x}_i), \mathbf{b}, y_i) = \log(1 - h_j(\mathbf{x}_i)) - \log(1 - h_{j+1}(\mathbf{x}_i)).$$

The change in l_{CE} when replacing b_{j+1} with b_j is,

$$\Delta^{b}l_{CE}(g(\mathbf{x}_{i}), \mathbf{b}, y_{i}) = \log(1 - h_{j+1}(\mathbf{x}_{i})) - \log(1 - h_{j}(\mathbf{x}_{i})).$$

The total change in loss l_{CE} after swapping b_j and b_{j+1} is $\Delta l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = (\Delta^a + \Delta^b) l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = 0.$

2. Change in l_{CE} for A_2 : The change in l_{CE} when replacing b_j with b_{j+1} is

$$\Delta^a l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = \log(h_j(\mathbf{x})) - \log(h_{j+1}(\mathbf{x})).$$

The change in l_{CE} replacing b_{j+1} with b_j

$$\Delta^{b} l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = \log(h_{j+1}(\mathbf{x})) - \log(h_j(\mathbf{x})).$$

The total change in loss L_{CE} after swapping b_j and b_{j+1} is $(\Delta^a + \Delta^b)l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = 0$.

3. Change in l_{CE} for A_3 : The change in l_{CE} when replacing b_j with b_{j+1} is

$$\Delta^a l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = \log(h_j(\mathbf{x})) - \log(h_{j+1}(\mathbf{x})).$$

The change in l_{CE} replacing b_{j+1} with b_j

$$\Delta^b l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = -\log(1 - h_j(\mathbf{x})) - \log(1 - h_{j+1}(\mathbf{x})).$$

The total change in loss l_{CE} after swapping b_j and b_{j+1} and given that $b_j \ge b_{j+1}$ is

$$(\Delta^a + \Delta^b)l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = \log(h_j(\mathbf{x})) - \log(h_{j+1}(\mathbf{x})) - (\log(1 - h_{j+1}(\mathbf{x})) - \log(1 - h_j(\mathbf{x})) < 0$$

Hence

$$(\Delta^a + \Delta^b)l_{CE}(g(\mathbf{x}), \mathbf{b}, y_i) = \begin{cases} \delta, & \text{if } y_i = j+1\\ 0, & \text{if } y_i \neq j+1 \end{cases}$$

for some $\delta < 0$. Now consider the equations

$$(\Delta^{a} + \Delta^{b})\tilde{\mathbf{L}}_{CE} = \mathbf{N}^{-1} \begin{bmatrix} (\Delta^{a} + \Delta^{b})l_{CE}(g(\mathbf{x}), \mathbf{b}, 1) \\ \vdots \\ (\Delta^{a} + \Delta^{b})l_{CE}(g(\mathbf{x}), \mathbf{b}, j + 1) \\ \vdots \\ (\Delta^{a} + \Delta^{b})\tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, 1) \\ \vdots \\ (\Delta^{a} + \Delta^{b})\tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, j + 1) \\ \vdots \\ (\Delta^{a} + \Delta^{b})\tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, K) \end{bmatrix} = \mathbf{N}^{-1} \begin{bmatrix} 0 \\ \vdots \\ \delta \\ \vdots \\ 0 \end{bmatrix}$$

The change in loss l_{CE} is as follows.

$$\begin{split} (\Delta^{a} + \Delta^{b}) R_{\rho} &= (\Delta^{a} + \Delta^{b}) \mathbb{E}_{\tilde{y}} [\tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, \tilde{y})] = \mathbb{E}_{\tilde{y}} [(\Delta^{a} + \Delta^{b}) \tilde{l}_{CE}(g(\mathbf{x}), \mathbf{b}, \tilde{y})] \\ &= \mathbb{E}_{\tilde{y}} [\mathbf{N}_{(\tilde{y}, i+1)}^{-1} \delta] = \delta \mathbb{E}_{\tilde{y}} [\mathbf{N}_{(\tilde{y}, i+1)}^{-1}] = \delta \sum_{k=1}^{K} P(\tilde{y} = k) \mathbf{N}_{(k, i+1)}^{-1} \\ &= \delta \sum_{k=1}^{K} \mathbf{N}_{(k, i+1)}^{-1} \sum_{j=1}^{K} P(y = j) P(\tilde{y} = k | y = j) \\ &= \delta \sum_{j=1}^{K} P(y = j) \sum_{k=1}^{K} \eta_{(j,k)} \mathbf{N}_{(k, i+1)}^{-1} = \delta \sum_{j=1}^{K} P(y = j) \mathbb{I}_{\{j=i+1\}} = \delta P(y = i+1) \le 0 \end{split}$$

That means by swapping b_j and b_{j+1} , we can further reduce the total loss L_{CE} , which is a contradiction to the assumption that **b** is the optimal solution under \tilde{L}_{CE} . This completes the proof that \tilde{l}_{CE} is also rank consistent.

1.2. Rank consistency proof for \tilde{l}_{IMC}

We need to show that $b_1 \ge b_2 \ge ... \ge b_{K-1}$ at the optimal solution. We use a similar methodology as Theorem 1 Section 1.1 to prove this. Let $\mathbf{b} = [b_1, b_2, ..., b_{K-1}]^T$, and \mathbf{b}^* be the optimal value of \mathbf{b} .

Let for some j suppose $b_j < b_{j+1}$. Then we show that by replacing b_j with b_{j+1} or replacing b_{j+1} with b_j can further decrease the loss $\tilde{\mathbf{L}} = \mathbf{N}^{-1}\mathbf{L}$. Consider the following sets.

$$A_{1} = \{i : y_{i} < j+1 \implies z_{y_{i}}^{j} = z_{y_{i}}^{j+1} = -1\}$$

$$A_{2} = \{i : y_{i} > j+1 \implies z_{y_{i}}^{j} = z_{y_{i}}^{j+1} = +1\}$$

$$A_{3} = \{i : y_{i} = j+1 \implies z_{y_{i}}^{j} = -1, z_{y_{i}}^{j+1} = +1\}$$

The above three sets are mutually exclusive and exhaustive, i.e., $A_1 \cup A_2 \cup A_3 = \{1, 2, .., N\}$.

1. Change in l_{IMC} for A_1 : The change in l_{IMC} when replacing b_j with b_{j+1} is

$$\Delta^a l_{IMC}(f(\mathbf{x}), y_i) = \max(0, -1(g(\mathbf{x}_i) + b_{j+1}) + 1) - \max(0, -1(g(\mathbf{x}_i) + b_j) + 1)$$

The change in l_{IMC} when replacing b_{j+1} with b_j

$$\Delta^{b} l_{IMC}(f(\mathbf{x}), y_{i}) = \max(0, -1(g(\mathbf{x}_{i}) + b_{j}) + 1) - \max(0, -1(g(\mathbf{x}_{i}) + b_{j+1}) + 1)$$

The total change in loss L_{IMC} after swapping b_j and b_{j+1} is $(\Delta^a + \Delta^b) l_{IMC}(f(\mathbf{x}), y_i) = 0$

2. Change in l_{IMC} for A_2 : The change in l_{IMC} when replacing b_j with b_{j+1} is

$$\Delta^a l_{IMC}(f(\mathbf{x}), y_i) = \max(0, +1(g(\mathbf{x}_i) + b_{j+1}) + 1) - \max(0, +1(g(\mathbf{x}_i) + b_j) + 1)$$

The change in l_{IMC} replacing b_{j+1} with b_j

$$\Delta^{b} l_{IMC}(f(\mathbf{x}), y_{i}) = \max(0, +1(g(\mathbf{x}_{i}) + b_{j}) + 1) - \max(0, +1(g(\mathbf{x}_{i}) + b_{j+1}) + 1)$$

The total change in loss L_{IMC} after swapping b_j and b_{j+1} is $(\Delta^a + \Delta^b)l_{IMC}(f(\mathbf{x}), y_i) = 0$

3. Change in l_{IMC} for A_3 : The change in l_{IMC} when replacing b_j with b_{j+1} is

$$\Delta^a l_{IMC}(f(\mathbf{x}), y_i) = \max(0, -1(g(\mathbf{x}_i) + b_{j+1}) + 1) - \max(0, -1(g(\mathbf{x}_i) + b_j) + 1)$$

= $\max(0, -b_{j+1} - g(\mathbf{x}_i) + 1) - \max(0, -b_j - g(\mathbf{x}_i) + 1 + 1) \le 0$

The change in l_{IMC} replacing b_{j+1} with b_j

$$\Delta^{b} l_{IMC}(f(\mathbf{x}), y_{i}) = \max(0, +1(g(\mathbf{x}_{i}) + b_{j}) + 1) - \max(0, +1(g(\mathbf{x}_{i}) + b_{j+1}) + 1)$$

= max(0, g(\mathbf{x}_{i}) + b_{j} + 1) - max(0, g(\mathbf{x}_{i}) + b_{j+1} + 1) \le 0

Now suppose $\Delta^a l_{IMC}(f(\mathbf{x}), y_i) = 0$. Since $b_j < b_{j+1}$ we have

$$g(\mathbf{x}_i) + b_j \ge 1 \quad \text{and} \quad g(\mathbf{x}_i) + b_{j+1} > 1 \tag{1}$$

From 1, we have in $\Delta^b l_{IMC}(f(\mathbf{x}), y_i)$,

$$\Delta^{b} l_{IMC}(f(\mathbf{x}), y_{i}) = \max(0, g(\mathbf{x}_{i}) + b_{j} + 1) - \max(0, g(\mathbf{x}_{i}) + b_{j+1} + 1)$$
$$= b_{j+1} - b_{j} < 0$$

Similarly, if $\Delta^b l_{IMC}(f(\mathbf{x}), y_i) = 0$, we will have $\Delta^a l_{IMC}(f(\mathbf{x}), y_i) < 0$. The total change in loss l_{IMC} after swapping b_j and b_{j+1} and given that $b_j < b_{j+1}$ is

$$(\Delta^a + \Delta^b) l_{IMC}(f(\mathbf{x}), y_i) < 0$$

Hence

$$(\Delta^a + \Delta^b) l_{IMC}(f(\mathbf{x}), y_i) = \begin{cases} \delta, & \text{if } y_i = j+1\\ 0, & \text{if } y_i \neq j+1 \end{cases}$$

for some $\delta < 0$. Now using similar arguments as Theorem-1, Section 1.2 we get that \tilde{l}_{IMC} is rank consistent too.

2. Proof of Theorem 2

We are given that $\mathbb{E}_{\tilde{y}}[b_i^t - b_{i+1}^t] \ge 0$, $i \in [K-1]$. Let at the t^{th} iteration example $(\mathbf{x}^t, \tilde{y}^t)$ is being presented to the network. Loss \tilde{l}_{CE} corresponding to $(\mathbf{x}^t, \tilde{y}^t)$ is as follows.

$$\tilde{l}_{CE}(g(\mathbf{x}^{t}), \mathbf{b}, \tilde{y}^{t}) = \sum_{j=1}^{K} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} l_{CE}(g(\mathbf{x}^{t}), \mathbf{b}, j)$$
$$= -\sum_{j=1}^{K} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \sum_{i=1}^{K-1} \left(\log h_{i}(\mathbf{x}^{t})^{z_{i}^{j}} + \log(1 - h_{i}(\mathbf{x}^{t}))^{(1-z_{i}^{j})} \right)$$

For every $j = 1 \dots K - 1$, z_i^j are defined as follows. $z_i^j = 1$, $\forall i < j$ and $z_i^j = 0$, $\forall i \ge j$. The update equation using SGD requires to compute the partial derivative of the parameters with respect

to the loss function \tilde{l}_{CE} . We see the following.

$$\begin{aligned} \frac{\partial \tilde{l}_{CE}(g(\mathbf{x}^t), \mathbf{b}, \tilde{y}^t)}{\partial b_i} &= -\sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \left[z_i^j \frac{\partial \log(h_i(\mathbf{x}^t))}{\partial b_i} + (1 - z_i^j) \frac{\partial \log(1 - h_i(\mathbf{x}^t))}{\partial b_i} \right] \\ &= -\sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \left(\frac{z_i^j}{h_i(\mathbf{x}^t)} - \frac{1 - z_i^j}{1 - h_i(\mathbf{x}^t)} \right) \frac{\partial h_i(\mathbf{x}^t)}{\partial b_i} \\ &= -\sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \left(z_i^j (1 - h_i(\mathbf{x}^t)) - (1 - z_i^j) h_i(\mathbf{x}^t) \right) \end{aligned}$$

The update equations for thresholds b_1, \ldots, b_{K-1} using SGD are as follows. Let α be the learning rate.

$$\begin{aligned} b_i^{t+1} &= b_i^t - \alpha \frac{\partial \tilde{l}_{CE}(g^t(\mathbf{x}^t), \mathbf{b}^t, \tilde{y}^t)}{\partial b_i} \\ &= b_i^t + \alpha \sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \Big(z_i^j (1 - \sigma(g^t(\mathbf{x}^t) + b_i^t) - (1 - z_i^j) \sigma(g^t(\mathbf{x}^t) + b_i^t) \Big) \end{aligned}$$

Using the above equation, we compute the following.

$$\begin{split} b_i^{t+1} - b_{i+1}^{t+1} &= b_i^t - b_{i+1}^t + \alpha \sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \Big(z_i^j (1 - h_i^t(\mathbf{x}^t)) - (1 - z_i^j) h_i^t(\mathbf{x}^t) - z_{i+1}^j (1 - h_{i+1}^t(\mathbf{x}^t)) \\ &+ (1 - z_{i+1}^j) h_{i+1}^t(\mathbf{x}^t) \Big) \\ &= b_i^t - b_{i+1}^t + \alpha \sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \Big[z_i^j - h_i^t(\mathbf{x}^t) - z_{i+1}^j + h_{i+1}^t(\mathbf{x}^t) \Big] \end{split}$$

For every $j \in \{1, \ldots, K\}$, there can be three possibilities as follows. (a) $z_i^j = z_{i+1}^j = 0$, (b) $z_i^j = z_{i+1}^j = 1$ and (c) $z_i^j = 1$, $z_{i+1}^j = 0$. Thus, we can rewrite $b_i^{t+1} - b_{i+1}^{t+1}$ as follows.

$$\begin{split} b_{i}^{t+1} - b_{i+1}^{t+1} &= b_{i}^{t} - b_{i+1}^{t} + \alpha \sum_{z_{i}^{j} = z_{i+1}^{j}} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \Big[h_{i+1}^{t}(\mathbf{x}^{t}) - h_{i}^{t}(\mathbf{x}^{t}) \Big] + \alpha \sum_{z_{i}^{j} = 1, z_{i+1}^{j} = 0} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \Big[1 + h_{i+1}^{t}(\mathbf{x}^{t}) - h_{i}^{t}(\mathbf{x}^{t}) \Big] \\ &= b_{i}^{t} - b_{i+1}^{t} + \alpha \sum_{j=1}^{K} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \Big[h_{i+1}^{t}(\mathbf{x}^{t}) - h_{i}^{t}(\mathbf{x}^{t}) \Big] + \alpha \sum_{z_{i}^{j} = 1, z_{i+1}^{j} = 0} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \Big] \end{split}$$

Using properties of noise matrix, we know that $\sum_{j=1}^{K} \mathbf{N}_{(\tilde{y}^{t},j)}^{-1} = 1$. Thus,

$$b_i^{t+1} - b_{i+1}^{t+1} = b_i^t - b_{i+1}^t - \alpha \Big[h_i^t(\mathbf{x}^t) - h_{i+1}^t(\mathbf{x}^t) \Big] + \alpha \sum_{\substack{z_i^j = 1, z_{i+1}^j = 0}} \mathbf{N}_{(\tilde{y}^t, j)}^{-1}$$

The only possibility for $z_i^j = 1, z_{i+1}^j = 0$ is j = i + 1. Thus,

$$b_i^{t+1} - b_{i+1}^{t+1} = b_i^t - b_{i+1}^t - \alpha \left[h_i^t(\mathbf{x}^t) - h_{i+1}^t(\mathbf{x}^t) \right] + \alpha \mathbf{N}_{(\tilde{y}^t, i+1)}^{-1}$$

Since $\mathbf{N}_{(\tilde{y}^t, i+1)}^{-1}$ updates depend on \tilde{y}^t , we take the expectation on both sides with respect to \tilde{y} , we get the following.

$$\mathbb{E}_{\tilde{y}}[b_i^{t+1} - b_{i+1}^{t+1}] \ge \mathbb{E}_{\tilde{y}}\left[b_i^t - b_{i+1}^t - \alpha \left(h_i^t(\mathbf{x}^t) - h_{i+1}^t(\mathbf{x}^t)\right)\right] + \alpha \mathbb{E}_{\tilde{y}}[\mathbf{N}_{(\tilde{y}^t, i+1)}^{-1}]$$

We know that, $h_i^t(\mathbf{x}^t) = \sigma(g^t(\mathbf{x}^t) + b_i^t)$. Also, $b_i^t \ge b_{i+1}^t$. Using the Mean-Value Theorem, $\exists \theta \in (b_{i+1}^t, b_i^t)$ such that

$$\begin{aligned} \frac{h_i^t(\mathbf{x}^t) - h_{i+1}^t(\mathbf{x}^t)}{b_i^t - b_{i+1}^t} &= \frac{\partial \sigma(g^t(\mathbf{x}^t) + b)}{\partial b}_{|\theta} \\ &= \sigma(g^t(\mathbf{x}^t) + \theta)(1 - \sigma(g^t(\mathbf{x}^t) + \theta))\end{aligned}$$

We know that $0 < \sigma(g^t(\mathbf{x}^t) + \theta)(1 - \sigma(g^t(\mathbf{x}^t) + \theta)) \le 0.25, \ \forall \theta \in \mathbb{R}.$ Using this, we get,

$$\begin{aligned} b_i^t - b_{i+1}^t - \alpha(\sigma(g^t(\mathbf{x}^t) + b_i^t) - \sigma(g^t(\mathbf{x}^t) + b_{i+1}^t)) &= (1 - \alpha \frac{\partial \sigma(g^t(\mathbf{x}^t) + b')}{\partial b})(b_i^t - b_{i+1}^t) \\ &\ge (1 - 0.25\alpha)(b_i^t - b_{i+1}^t) \ge 0 \end{aligned}$$

where the last inequality holds when $\alpha \leq 4$. Thus for $b_i^t \geq b_{i+1}^t$, we get

$$b_i^t - b_{i+1}^t - \alpha \Big[h_i(\mathbf{x}^t) - h_{i+1}(\mathbf{x}^t) \Big] \ge 0, \ \forall \alpha \le 4.$$

$$(2)$$

We know that

$$\mathbb{E}_{\tilde{y}}[b_{i}^{t+1} - b_{i+1}^{t+1}] \ge \mathbb{E}_{\tilde{y}}\left[b_{i}^{t} - b_{i+1}^{t} - \alpha \left(h_{i}^{t}(\mathbf{x}^{t}) - h_{i+1}^{t}(\mathbf{x}^{t})\right)\right] + \alpha \mathbb{E}_{\tilde{y}}[\mathbf{N}_{(\tilde{y}^{t}, i+1)}^{-1}].$$

Now, we using the result in eq.(2), we get the following.

$$\begin{split} \mathbb{E}_{\tilde{y}}[b_{i}^{t+1} - b_{i+1}^{t+1}] &\geq \alpha \mathbb{E}_{\tilde{y}}[\mathbf{N}_{(\tilde{y}^{t}, i+1)}^{-1}] = \alpha \sum_{k=1}^{K} P(\tilde{y} = k) \mathbf{N}_{(k, i+1)}^{-1} \\ &= \alpha \sum_{k=1}^{K} \mathbf{N}_{(k, i+1)}^{-1} \sum_{j=1}^{K} P(y = j) P(\tilde{y} = k | y = j) = \alpha \sum_{j=1}^{K} P(y = j) \sum_{k=1}^{K} \eta_{(j,k)} \mathbf{N}_{(k, i+1)}^{-1} \\ &= \alpha \sum_{j=1}^{K} P(y = j) \mathbb{I}_{\{j=i+1\}} = \alpha P(y = i+1) \geq 0. \end{split}$$

Thus, we have shown that $\mathbb{E}_{\tilde{y}}[b_i^{t+1} - b_{i+1}^{t+1}] \ge 0$. This completes our proof that SGD gives the optimal solution maintaining rank consistency.

3. Proof of Theorem 3

Let at t^{th} iteration example $(\mathbf{x}^t, \tilde{y}^t)$ is being presented to the network. Loss \tilde{l}_{IMC} corresponding to $(\mathbf{x}^t, \tilde{y}^t)$ is described as follows.

$$\tilde{l}_{IMC}(g(\mathbf{x}^{t}), \mathbf{b}, \tilde{y}^{t}) = \sum_{j=1}^{K} \mathbf{N}_{(\tilde{y}^{t}, j)}^{-1} \sum_{i=1}^{K-1} \left[0, 1 - z_{i}^{j} \left(g(\mathbf{x}^{t}) + b_{i} \right) \right]_{+}$$

Where $z_i^j = 1, \ \forall i < j \text{ and } z_i^j = -1, \ \forall i \geq j$. We first find the sub-gradient of \tilde{l}_{IMC} w.r.t b_i .

$$\frac{\partial \tilde{l}_{IMC}(g(\mathbf{x}^t), \mathbf{b}, \tilde{y}^t)}{\partial b_i} = -\sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} z_i^j \mathbb{I}[z_i^j(g(\mathbf{x}^t) + b_i) < 1]$$

Hence the SGD based update equation for b_i (with step size α) is as follows.

$$\begin{split} b_i^{t+1} &= b_i^t + \alpha \sum_{j=1}^K \mathbf{N}_{(\tilde{y}^t, j)}^{-1} z_i^j \mathbb{I}[z_i^j(g^t(\mathbf{x}^t) + b_i^t) < 1] \\ &= b_i^t + \alpha \sum_{j \le i} \mathbf{N}_{(\tilde{y}^t, j)}^{-1} z_i^j \mathbb{I}[z_i^j(g^t(\mathbf{x}^t) + b_i^t) < 1] + \alpha \sum_{j > i} \mathbf{N}_{(\tilde{y}^t, j)}^{-1} z_i^j \mathbb{I}[z_i^j(g^t(\mathbf{x}^t) + b_i^t) < 1] \\ &= b_i^t - \alpha \sum_{j \le i} \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \mathbb{I}[g^t(\mathbf{x}^t) + b_i^t > -1] + \alpha \sum_{j > i} \mathbf{N}_{(\tilde{y}^t, j)}^{-1} \mathbb{I}[g^t(\mathbf{x}^t) + b_i^t < 1] \end{split}$$

Where we used the definition of z_i^j . Now, we take the expectation with respect to \tilde{y}^t on both size, and using the fact that $\mathbb{E}_{\tilde{y}^t}[\mathbf{N}_{(\tilde{y}^t,j)}^{-1}] = P(y=j)$, we get the following.

$$\begin{split} \mathbb{E}_{\tilde{y}^{t}}[b_{i}^{t+1} - b_{i}^{t}] &= -\alpha \sum_{j \leq i} \mathbb{E}_{\tilde{y}^{t}}[\mathbf{N}_{(\tilde{y}^{t}, j)}^{-1}]\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] + \alpha \sum_{j > i} \mathbb{E}_{\tilde{y}^{t}}[\mathbf{N}_{(\tilde{y}^{t}, j)}^{-1}]\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \\ &= -\alpha \sum_{j \leq i} P(y = j)\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] + \alpha \sum_{j > i} P(y = j)\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \\ &= -\alpha P(y \leq i)\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] + \alpha P(y > i)\mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \end{split}$$

Using this, we now compute the following.

$$\begin{split} \mathbb{E}_{\tilde{y}^{t}}[b_{i}^{t+1} - b_{i+1}^{t} - b_{i}^{t} + b_{i+1}^{t}] &= \mathbb{E}_{\tilde{y}^{t}}[b_{i}^{t+1} - b_{i}^{t}] - \mathbb{E}_{\tilde{y}^{t}}[b_{i}^{t+1} - b_{i}^{t}] \\ &= -\alpha P(y \leq i) \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] + \alpha P(y > i) \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \\ &+ \alpha P(y \leq i+1) \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] - \alpha P(y > i+1) \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \\ &= \alpha [P(y \leq i+1) - P(y \leq i)] \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} > -1] + \alpha [P(y > i) - P(y > i+1)] \mathbb{I}[g^{t}(\mathbf{x}^{t}) + b_{i}^{t} < 1] \end{split}$$

But, we know that

$$P(y > i) - P(y > i + 1) \ge 0, \ \forall i \in [K - 1]$$

$$P(y \le i + 1) - P(y \le i) \ge 0, \ \forall i \in [K - 1]$$

and $\mathbb{I}[.] \in \{0, 1\}$. Thus,

$$\mathbb{E}_{\tilde{y}}[(b_i^{t+1} - b_{i+1}^{t+1}) - (b_i^t - b_{i+1}^t)] \ge 0$$

$$\Rightarrow \mathbb{E}_{\tilde{y}}[b_i^{t+1} - b_{i+1}^{t+1}] \ge \mathbb{E}_{\tilde{y}}[b_i^t - b_{i+1}^t] = b_i^t - b_{i+1}^t \ge 0$$

This completes the proof.

4. Generalisation bounds

Using unbiased estimator, we have

$$\begin{split} \tilde{l}(g(\mathbf{x}), \mathbf{b}, y) &= \sum_{j=1}^{K} \mathbf{N}_{(y,j)}^{-1} l(g(\mathbf{x}), \mathbf{b}, j) = \sum_{j=1}^{K} \mathbf{N}_{(y,j)}^{-1} \sum_{i=1}^{K-1} l^{i}(g(\mathbf{x}), \mathbf{b}, z_{i}^{j}) \\ &= \sum_{i=1}^{K-1} (\sum_{j=1}^{K} \mathbf{N}_{(y,j)}^{-1} l^{i}(g(\mathbf{x}), \mathbf{b}, z_{i}^{j})) = \sum_{i=1}^{K-1} \tilde{l}^{i}(g(\mathbf{x}), \mathbf{b}, i) \end{split}$$

For any *i*, if l^i is L-Lipschitz, then \tilde{l}^i is $\tilde{L} = (\sum_{j=1}^K |\mathbf{N}_{(y,j)}^{-1}|)L \leq ML$ Lipschitz constant, where $M = \max_y \sum_{j=1}^K |\mathbf{N}_{(y,j)}^{-1}|$. Using Lipschitz composition property of basic Rademacher generalisation bounds on i^{th} binary classifier, with probability at least $1 - \delta$

$$R_{\tilde{l}^{i},D_{\rho}}(f^{i}) \leq \hat{R}_{\tilde{l}^{i},S}(f^{i}) + 2ML\Re(\mathcal{F}) + \sqrt{\frac{\log(1/\delta)}{2n}}$$
(3)

where f^i is the i^{th} binary classifier. Adding the maximal deviations between expected risk and empirical risk for all the K - 1 classifiers,

$$R_{\tilde{l},D_{\rho}}(f) \leq \hat{R}_{\tilde{l},S}(f) + 2ML(K-1)\Re(\mathcal{F}) + (K-1)\sqrt{\frac{\log(1/\delta)}{2n}}$$

$$\tag{4}$$

which if true for any f. Let $\hat{f} \leftarrow \arg \min_{f \in \mathcal{F}} \hat{R}_{\tilde{l},S}(f)$ and $f^* \leftarrow \arg \min_{f \in \mathcal{F}} R_{l,D}(f)$. Following Theorem 3 from Natarajan et al. (2013),

$$R_{l,D}(\hat{f}) - R_{l,D}(f^*) = R_{\tilde{l},D_{\rho}}(\hat{f}) - R_{\tilde{l},D_{\rho}}(f^*)$$

= $\hat{R}_{\tilde{l},S}(\hat{f}) - \hat{R}_{\tilde{l},S}(f^*) + (R_{\tilde{l},D_{\rho}}(\hat{f}) - \hat{R}_{\tilde{l},S}(\hat{f})) + (\hat{R}_{\tilde{l},S}(f^*) - R_{\tilde{l},D_{\rho}}(f^*))$
 $\leq 2 \max_{f \in \mathcal{F}} |R_{\tilde{l},D_{\rho}}(f) - \hat{R}_{\tilde{l},S}(f)|$ (5)

From 4 and 5, we get,

$$R_{l,D}(\hat{f}) \le R_{l,D}(f^*) + 4ML(K-1)\Re(\mathcal{F}) + 2(K-1)\sqrt{\frac{\log(1/\delta)}{2n}}$$

References

Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Learning with noisy labels. In NIPS, pages 1196–1204, 2013.