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1. Proof of Theorem 1
1.1. Rank consistency proof for log

We need to show that by > by > ... > bg_1 at the optimal solution. Let b = [by, by, .., b 1]%,
and b* be the optimal value of b. Let (x;,7;), ¢ = 1... N be the training set. Let for some j
suppose b; < bjy1. Then we show that by replacing b; with b;, 1 or replacing b;,1 with b; can
[ lCE(g(X)7b> 1) |

further decrease the loss Locg = N~ 'L¢ g, where Log = ZNCE(g(x), b,j7+1)| and Lcg =

L lNCE(g(X.)v b, K) J
lep(g(x),b, 1)

ler(g(x),b,j + 1) |. We see that the change in Log depends on Lo as follows.

| lon(9(x), b, K) |

Alcg(g9(x),b, 1)

ALcg = N 'ALcp = N7 [Algp(g(x),b,j + 1)

| Alep(g(x). b, K)

We now have to find the change Alcg(g(x;),b, k) for every ¢ € [N] and every k € [K — 1]. In
order to do that, we first consider the following three partitions of the training set.

Al={x:y<j+1 = zji:zijlz()}

Y
As={x:y; >j+1 = zii:zijlzl}
As=1{xyy=j+1 = zgizl,zijlz()}
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The above three sets are mutually exclusive and exhaustive, i.e., A; U A U A3 = {x1,...,xx}. Let
hj(x) = o(g(x) + b;j). Now, we first find the change Alcy(g(x;), b, k) forevery k € [K — 1] in
these sets individually.

1. Change in /o for x; € Aj: The change in ¢ when replacing b; with b; 11 is,
Alop(g(xi), b,yi) = log(1 — hj(x:)) —log(1 — hji1(xi)).
The change in [c g when replacing b; 1 with b; is,
A’lep(9(x), b, i) = log(L — hjr(x;)) —log(1 — hy(x:)).
The total change in loss lcp after swapping b; and b1 is Alcp(g9(x),b,y) = (A +
Ab)lCE(g(X)7 b7 yl) =0.
2. Change in [cg for A>: The change in [c g when replacing b; with b is
A%lep(g(x), b, yi) = log(h;(x)) — log(hj41(x)).
The change in l¢ g replacing b1 with b;
Alep(9(x), b, i) = log(hj+1(x)) —log(hj(x))-
The total change in loss Lc g after swapping bj and b; 1 is (A® + AY)lcg(g(x), b, y;) = 0.

3. Change in [cg for A3: The change in [cr when replacing b; with b; 1 is

A%lep(g(x), b, yi) = log(h;(x)) — log(hj11(x)).
The change in [cE replacing b;1 with b;
Alop(g(x),b,yi) = —log(1 — hyj(x)) —log(1 — hj1(x)).
The total change in loss Ic g after swapping b; and b;41 and given that b; > b;1 is
(A" + A")lop(9(x), b, i) = log(h;(x)) —log(hj41(x))
— (log(1 — hys1(x)) — log(1 — hj(x)) < 0
Hence
A%+ AbY x),b,y;) =
( )lor(9(x), b, yi) {0’ oyt

for some § < 0. Now consider the equations
(A% + A)leg(9(x), b, 1)

(Aa + Ab)fJCE =N! (Aa + Ab)lCE(g(X)> b,j + 1)

(A + AY)lep(g(x), b, K) |

(A + AY)ep(g(x),b, 1) 0

= | (A% + AY)icp(g(x),b,j+1)| = N1 [§

| (A% 1 AYien(g(x), b, K) | 0
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The change in loss ZCE is as follows.

K
= B3N] = 0Bg[NGL T = 0 P =kINGL
k=1
K K
=8y Nyl > Ply=5)P@G=kly=j)
k=1 j=1
K K K
= 5ZP(?J =) Zn(j,k)N(;cl,i_,_l) = 5ZP(?J = )jmiy1y =0P(y=i+1) <0
j=1 k=1 j=1

That means by swapping b; and bj; 1, we can further reduce the total loss Lcg, which is a
contradiction to the assumption that b is the optimal solution under Lo g. This completes the proof
that [~ is also rank consistent.

1.2. Rank consistency proof for live

We need to show that by > by > ... > by _1 at the optimal solution. We use a similar methodology
as Theorem 1 Section 1.1 to prove this. Let b = [by, ba, .., bK_l]T, and b* be the optimal value of b.

Let for some j suppose b; < bj;1. Then we show that by replacing b; with b, or replacing
bj+1 with b; can further decrease the loss L = N~'L. Consider the following sets.

Ar={ity <j+1 = 2z =2 =-1}

Y Y
A={ityy>j+1 = zii:zijlz-f—l}

As={ityi=j+1 = zii:—l,zijlz—i-l}
The above three sets are mutually exclusive and exhaustive, i.e., A3 U Ay U A3 = {1,2,..,N}.
1. Change in [;5/c for A1: The change in l;y/c when replacing b; with bj 1 is
A (f(x),yi) = max(0, —1(g(x;) + bj11) + 1) — max(0, —1(g(x;) + bj) + 1)
The change in [;);c when replacing b; 1 with b;
Ao (f(x), yi) = max(0, =1(g(x:) + bj) + 1) — max (0, —=1(g(x:) + bj1) + 1)
The total change in loss Lyysc after swapping b; and b1 is (A% + A®) e (f(x),y:) = 0
2. Change in [75/c for Ay: The change in l7y/¢ when replacing b; with bj4 1 is
A (f(x),y:) = max(0, +1(g(x;) + bj11) + 1) — max(0, +1(g(x;) + b;) + 1)
The change in [ )s¢ replacing b; 1 with b;
Ao (f(x), yi) = max(0, +1(g(x:) + by) + 1) — max(0, +1(g(x:) + bj1) + 1)

The total change in loss Lasc after swapping b; and ;1 is (A + Ao (f(x),y:) =0
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3. Change in /¢ for A3: The change in l; /¢ when replacing b; with b is
Alyve(f(x),yi) = max(0, —=1(g(x;) + bj+1) + 1) — max(0, —1(g(x;) + bj) + 1)
=max(0, —bj+1 — g(x;) + 1) — max(0,—b; — g(x;) +14+1) <0
The change in [ )s¢ replacing b; 1 with b;

Abl[Mc(f(x),yi) = max(0, +1(g(x;) + bj) + 1) — max(0, +1(g(x;) + bj+1) + 1)
= max(0, g(x;) + b; + 1) — max(0, g(x;) + bj+1+1) <0

Now suppose A% e (f(x),y:) = 0. Since b; < b1 we have

g(xi)+b;>1 and g(x;)+bj1 > 1 (1)

From 1, we have in Ablch(f(x), Yi)s

Allryie(f(x), 4:) = max(0, g(x;) + bj + 1) — max(0, g(x;) + bj1 + 1)
=041 — bj <0

Similarly, if Ao (f(x),y;) = 0, we will have A% y0(f(x),y:) < 0. The total change
in loss [7pr¢ after swapping b; and b;11 and given that b; < bj41 is

(A" + Ao (f(x),9:) < 0

Hence
5, ify=j+1

a b )
(A +A)ZIMC(f(X)7yz)_{O’ ifyi#j—i-l

for some § < 0. Now using similar arguments as Theorem-1, Section 1.2 we get that I is rank
consistent too.

2. Proof of Theorem 2

We are given that E5[bf — b ;] > 0, i € [K — 1]. Let at the ¢'" iteration example (x', §') is being
presented to the network. Loss los corresponding to (xt, 7!) is as follows.

K
ZCE( 7 ZN lCE t)ab7j)

K

- ZN@ ) Z (1og Ri(x") +10g(1 — hi(x)) 1 =)
=1

Forevery j =1... K — 1, zzj are defined as follows. zzj =1, Vi < j and zlj =0, Vi > j. The
update equation using SGD requires to compute the partial derivative of the parameters with respect
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to the loss function l~c £. We see the following.

BZCE(g( ),b 1 8log(h( ) j dlog(1 — h;(xh))
ob; Z Nt { o, (A b, ]
- i A 12\ o)
Nigta) hod)  T= () | b
K

== 2N (A= ) = (1= ()

The update equations for thresholds by, ..., bx_1 using SGD are as follows. Let a be the learning
rate.

dlor(g'(x'). b, 7)
+1 _ gt CE\Y
b,"" =b;, —« an;

— bt aZN (0= o) +8) = (1= D)o lg (<) + 1)

Using the above equation, we compute the following.

= b = 0 b+ aZN (0= RGN = (= 2Dt = 2 (1= b ()
+01- Zz‘+1)hz’+1(Xt))

K
=bl—bl,, + aZN(;’j) [zf — hi(x") =zl + h§+1(xt)]
j=1

For every Jj e {1,. K s there can be three possibilities as follows. (a) z] = f +1 = 0,(b)

zJ =z ,=1and (c) zl =1, le = 0. Thus, we can rewrite b"' — th as follows.
B b = b ba D0 NG [ () — k)] o NGt [1 b () = RG]
zf—z I Z=1 Zz+1 =0

—b—bz+1+aZN(y P CORNAICS] RO S

1
Jj= zfle_l =0

Using properties of noise matrix, we know that Z N(_y L= = 1. Thus,

bt+1 - bﬁj - bt - bl+1 a|:hz( ) hl+1( )} ta Z N&%:j)

=1 zl+1—0
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The only possibility for 2/ = 1,2/ | = 0is j =i + 1. Thus,

pitt — btﬂ =bl—bl,, — oz[h (x") = hiy(x )} + O‘N(_y tit1)"

Since N(y i+1) updates depend on ¢, we take the expectation on both sides with respect to 7, we
get the followmg.

Eglb = o] 2 By [0 — by — a(h(x) = by (x)) | + aB5INGL L, )

We know that, hf(x") = o(g'(x") + bl). Also, b > b’ ,. Using the Mean-Value Theorem,
30 € (b, ,bt) such that

hi(x') = hi 3 (x') _ do(g'(x") +b)
b0, b
o(g'(x") +0)(1 — a(g"(x") +0)).
We know that 0 < o(g(x') + 0)(1 — o(g*(x") + 0)) < 0.25, V8 € R. Using this, we get,

b~ b — (oo ) +6) — (g () + 81) = (1 - 27Oy gy

> (1 —0.250) (b — bl 1) >0

where the last inequality holds when o < 4. Thus for b} > b! 11, We get
bt — b, — a[hi(xt) - hiﬂ(xt)} >0, Yo < 4. 2)
We know that
Eglb = b 2 By [0 — by — a(h(x) = by (x)) | + 0B[N,

Now, we using the result in eq.(2), we get the following.

%@“»bﬁﬂ>ﬂHN;H1—a§jP@ NG

K
—042:N1,“Jr1 ZP(ij)P@:k\yzj): Z Zn(Jk kz+1
=1 j=1

Z y=j)jmiy1y =aP(y=i+1)>0.
=1

Thus, we have shown that Ej [bf“ — bfﬂ] > (. This completes our proof that SGD gives the optimal
solution maintaining rank consistency.
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3. Proof of Theorem 3

Let at #* iteration example (x?, §*) is being presented to the network. Loss lrve corresponding to
(xt, ) is described as follows.

K-1

Inve(g(xh), b iN [0 12 )+b)]

7j=1 =1 +

Where zg =1, Vi < jand zf = —1, Vi > 7. We first find the sub-gradient of Lrvic wrth;.

K
8l1MC(ga(bl ZN ‘. (o) 4 ) < 1)

Jj=1

Hence the SGD based update equation for b; (with step size «) is as follows.

th—bt"‘O‘ZN(y tj)% 2 (o' (x') + b)) < 1]

—bt+aZN(y AT (9" () + b)) < 1] +aZN(g1,j)z£H[z5(gt(xt)+b§) <1]

7<i >t
:bg_a;N(—;J)H[g (x) +bf > —1] + o) Ny g (x") + b} < 1]
It 7>

Where we used the definition of zf . Now, we take the expectation with respect to ' on both size,
and using the fact that £ [N(_g% j)] = P(y = j), we get the following.

Eg b — b)) = —a ) By [N(_gltyj)]]l[gt(xt) +b) > 1] +a) Eg [N(;J)]H[gt(xt) + bt < 1]

1<t Jj>i
=—aY Ply=NIg'x") +bf>—1]+a ) Ply=lg'(x")+b) <1]
1<t 7>t

= —aP(y <DI[g"(x") + b > —1] + aP(y > i)l[¢g'(x") + bl < 1]
Using this, we now compute the following.

Ege b0l 1 — 0f + bl 1] = Ege [T — bl — Ege [T — 0]
= —aP(y < )l[g"(x") + b > —1] + aP(y > i)l[g"(x") + b} < 1]
+ aP(y <i+ DIg'(x") + b > —1] — aP(y > i + DI[g"(x") 4 b} < 1]

=a[P(y <i+1) = P(y <)l[g"(x") + b > —1] + a[P(y > 1) — P(y > i + D]I[g"(x") + b] < 1]
But, we know that

Ply>i)—Ply>i+1)>0, Vie [K—-1]
Ply<i+1)—P(y<i)>0, Vie[K-1]
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and I[.] € {0,1}. Thus,
Eg[(b5 ! — bif1) — (0 —bf41)] 2 0
=E b — bl > Eylbl — bl ] =bl —bl,, >0

This completes the proof.

4. Generalisation bounds

Using unbiased estimator, we have

K K K-1
l(9(x),b,y) = > N LU(g(x),b,j) = D N > I(g(x),b,2])
j=1 j=1 i=1
K-1 K ) K-1
=D O N g(x),b,2)) =Y I(g(x),b,i)
=1 j=1 =1

For any i, if I' is L—Lipschitz, then [’ is [ = (ZJ 1 ]N(y ])\)

where M = max, Zfil |N(;j)|. Using Lipschitz composition property of basic Rademacher

L < ML Lipschitz constant,

generalisation bounds on i binary classifier, with probability atleast 1 — &

log(1/9)

Ry p, (f) < Ry g(f) + 2MLR(F) + | =~

3)

where f? is the i*" binary classifier. Adding the maximal deviations between expected risk and
empirical risk for all the K — 1 classifiers,

, log(1/5)

R, (f) < Ry g(f) + 2ML(K = DR(F) + (K - 1) . (4)

which if true for any f. Let f « arg mingycr R[S(f) and f* < argminscr Ry p(f). Following
Theorem 3 from Natarajan et al. (2013),

Rip(f) = Rip(f*) = By (f) - le(f )
= R (f) = Ry s(F*) + (R p, () = R 5 (/) + (R 5(f*) — Ry p, (F))
<2 I}lax |Rl D, (f) - R[,S(fﬂ ®)

From 4 and 5, we get,

log(1/4)

Rip(f) < Rup(f*) + AML(K — )R(F) +2(K — 1)1/ 2
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