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Abstract

Internet of Things (IoT) faces multiple challenges to achieve high reliability, low-latency
and low power consumption. Its performance is affected by many factors such as external
interference coming from other coexisting wireless communication technologies that are
sharing the same spectrum. To address this problem, we introduce a general approach
for the identification of poor-link quality channels. We formulate our problem as a multi-
player multi-armed bandit problem, where the devices in an IoT network are the players,
and the arms are the radio channels. For a realistic formulation, we do not assume that
sensing information is available or that the number of players is below the number of arms.
We develop and analyze a collaborative decentralized algorithm that aims to find a set
of m (ε,m)-optimal arms using an Explore-m algorithm (as denoted by Kalyanakrishnan
and Stone (2010)) as a subroutine, and hence blacklisting the suboptimal arms in order
to improve the QoS of IoT networks while reducing their energy consumption. We prove
analytically and experimentally that our algorithm outperforms selfish algorithms in terms
of sample complexity with a low communication cost, and that although playing a smaller
set of arms increases the collision rate, playing only the optimal arms improves the QoS of
the network.

Keywords: Multi-player multi-armed bandits, IoT, collisions

1. Introduction

1.1. Background and Motivation

We consider the Explore-m problem in stationary multi-player multi-armed bandit settings,
where the players’ goal is to efficiently select a set of m arms of the highest mean rewards
with as few samples as possible. We consider a set of players who share and play the
same set of arms with different active rates, that are different probabilities to be active
(a player being active means she is playing an arm). The arm rewards are independent
Bernoulli-distributed random variables whose expected values are unknown to the players.

In this paper, we assume internal collisions occur if more than one player play the same
arm at the same time, the reward of all colliding players then being 0. We do not consider
any type of sensing, so the players cannot observe the collisions but instead only observe
the outcome (1 or 0). In that case, collisions introduce biases in the observed average
rewards of the arms to estimate the real averages (without collisions). This type of setting
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corresponds to the problem of blacklisting radio channels in wireless communications, where
the network devices aim to blacklist the radio channels with the worst qualities, and just
send data through the optimal channels for high-quality communications Xue et al. (2018);
Kotsiou et al. (2017); Dakdouk et al. (2018); Du and Roussos (2011). We seek to find the
set of optimal channels while reducing the energy consumption of the devices.

Several Explore-m algorithms have been studied and investigated in the literature but
they are applicable on single-player multi-armed bandits only. In this work, we use those
algorithms as subroutines in a generalized algorithm where players collaborate to find m
of the best-performing arms. We build on the ability of the players to infer the correct
ranking of the arms according to their mean rewards even though they cannot observe the
correct ones due to collisions. Our algorithm reduces the sample complexity compared to
the selfish algorithms with a few exchanged messages between players.

1.2. Related Work

The problem of finding the best arms has been investigated thoroughly in the literature.
Even-Dar et al. (2006); Audibert et al. (2010); Féraud et al. (2019); Allesiardo et al. (2017)
study the case of Explore-1 that looks for one single optimal arm. In Even-Dar et al. (2006),
the authors present several algorithms that aim to find the best arm with one player. With
the Naive algorithm, the player plays each arm a specified number of times and takes the
one with the highest empirical average as the optimal arm with a certain confidence level.
Alternatively, the Successive and Median Elimination algorithms successively eliminate
arms identified as suboptimal according to their empirical averages until only one is left,
which is then labeled as the optimal one. The authors in Allesiardo et al. (2017) reformulate
the multi-armed bandit problem by generalizing it to the stationary stochastic, piecewise
stationary and adversarial bandit problems in order to take into account the cases where
the best arm changes over time. The decentralized problem that we build on is presented
in Féraud et al. (2019). In that work, a set of multiple players collaborate to find the
optimal arm by asynchronously interacting with the same stochastic environment, while
ensuring the privacy of players’ shared information and controlling the communication cost.
The authors’ Decentralized Elimination algorithm uses any of the aforementioned or other
Explore-1 algorithms as a subroutine, and the players share their decisions in a decentralized
manner to reach a global decision regarding the optimal arm.

On the other hand, Kalyanakrishnan and Stone (2010); Kaufmann and Kalyanakrish-
nan (2013); Kalyanakrishnan et al. (2012); Jun and Nowak (2016) focus on the Explore-m
problems. In Kalyanakrishnan and Stone (2010) the authors extend the Naive algorithm
to find the m best arms and call it Direct algorithm. The Incremental algorithm uses
the Median Elimination algorithm as a subroutine, and Halving modifies it to be suited to
the Explore-m problem. A more powerful algorithm with a lower sample complexity called
LUCB, that relies on the comparison of the lower and upper confidence bounds of the
empirical averages of the arms is presented in Kalyanakrishnan et al. (2012). Along with a
similar algorithm (Racing) the authors in Kaufmann and Kalyanakrishnan (2013) propose
the use of the KL-Divergence confidence bounds in these algorithms for a lower sample
complexity. Although the sample complexity is lower, the computation of these confidence
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bounds is complex (time and memory consuming) which makes them inappropriate for
low-complexity devices (IoT devices).

Our work is built on the method presented in Féraud et al. (2019), where a collaborative,
generic and decentralized algorithm is proposed to find an ε-approximation of the best arm,
while protecting the privacy of players’ information contained in their shared messages
against any adversary and controlling the communication cost. However, the problem that
we address in this paper is different, since we are looking for m of the best arms (up to some
ε > 0) instead of one, and privacy is not a requirement. We use this last constraint relaxation
to improve the performance in terms of sample complexity. Finally here, collisions occur,
which was not considered by Féraud et al. (2019).

The remainder of this paper is organized as follows. In Section 2 we introduce the
m-best arm identification problem, and we present the collaborative setting we consider.
Section 3 presents in details our collaborative algorithm that aims to find a set of m ε-
optimal arms, and we provide a performance analysis by studying its sample complexity and
communication cost in Section 4. We complete and illustrate the analysis of our proposed
algorithm in Section 5 with some experiments, and we conclude the paper in Section 6 by
suggesting directions for future work.

2. Collaborative Exploration Problem in Multi-Player Multi-Armed
Bandits

Stochastic Multi-Player Multi-Armed Bandits. Let N be a set of N asynchronous
players, such that at each time slot t each player n has a constant probability pn > 0
to be active, i.e. to play an arm at time t. Equivalently, at each time step t, the set of
active players Nt is sampled by N successive Bernoulli samples: Nt := {n ∈ N : an =
1 where an ∼ B(pn)}. Let K be the set of K arms, and for a given time slot t, let kt,n (or
kn when no confusion is possible) denote the arm played by player n. The reward (without
collisions) of each arm Xk is assumed to follow a Bernoulli distribution, Xk ∼ B(θk), where
θk is the mean reward of arm k (the quality of the arm). When two or more players play
the same arm at the same time, a collision (internal collision) happens and the reward of
all colliding players is 0. Let Yn,k be the outcome of player n after playing arm k, and Ck
be a binary random variable, that takes the value 1 if a collision occurs on arm k. The
assumptions we make in this paper are formalized below.

Assumption 1 Stationary Environment The mean reward of each arm is constant
over time.

Assumption 2 Multi-Player Multi-Armed Bandits with Collisions The reward of
each player n is Yn,kn = (1−Ckn)Xkn. In particular, when more than one player chooses the
same arm k at the same time, a collision happens (Ck = 1), and the reward of all colliding
players is zero.

Assumption 3 No Sensing Each player n can only observe her received rewards Yn,kn,
but not collisions Ckn nor the actual reward of the played arm Xkn.

Assumption 4 Large number of players The number of players N can be greater than
the number of arms K.
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Assumption 5 Socratic Players1 Each player knows her own probability to be active pn.

Assumption 6 Active Players All the players are potentially active: ∀n ∈ N , pn > 0.

Assumption 2 corresponds to the multi-player multi-armed bandit problem with
Bernoulli distributions. Assumption 3 is known to be a difficult case for multi-player multi-
armed bandits, however it is realistic for IoT networks, where sensing information is too
costly in terms of energy consumption. Moreover, notice that Assumption 4 is unusual in
multi-player bandits, where the players are generally assumed to be active at each time step
and hence are assumed to be less numerous than there are channels, which is totally unreal-
istic for IoT networks. Assumption 5 is realistic for IoT, where the probability of sending a
packet depends mainly on the type of the connected device. Assumption 6 defines a player
as a device which may send a packet. Finally Assumption 1 restricts the scope of this paper
to stationary stochastic multi-armed bandits.

The players’ behavior will be described by a policy, denoted by π = (π1, ..., πN ), where
πn = (π1

n, ..., π
K
n ) is the arm-choice policy of player n: πkn denotes the probability that player

n plays arm k when active. The expected reward µkn(π) of the active player n playing arm
k, while the other players follow policy π, is then given by:

µkn(π) = θk

N∏
n′=1,n′ 6=n

(1− pn′πkn′). (1)

which is the mean reward of arm k multiplied with the probability that no other device
plays the same arm k.

Definition 1 (ε,m)-best arms. Considering that the arms are indexed in the decreasing
order of their average rewards: θ1 ≥ θ2 ≥ .. ≥ θK , an arm k is an (ε,m)-best arm if:

θk ≥ θm − ε

We denote by Km,ε the set of (ε,m)-best arms in K.

Definition 2 Sample Complexity. For a given δ ∈ (0, 1), sample complexity is the total
number of samples (or pulls) needed by all players to find a set of m (ε,m)-best arms with
a confidence level 1− δ.

The goal of the collaborative exploration problem is to design an algorithm that min-
imizes the sample complexity to find a set of m (ε,m)-best arms, while controlling the
number of exchanged messages between the players. Algorithm 1 formalizes the explo-
ration problem. The players (i.e. the nodes in a network) are assumed to share some
information through a single gateway (no direct node-to-node communication). By play-
ing the arms and observing the corresponding rewards, the players decide what arms are
optimal and eliminate the sub-optimal arms, then they share this information through the
gateway. Although sharing information would add more cost on the players, this should
help decrease the sample complexity. In the next section, we propose an algorithmic so-
lution for exchanging information for collaborative best arms identification while reducing
the sample complexity.

1. from the ancient Greek aphorism ”know thyself” attributed to Socrates.
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Algorithm 1 Collaborative Exploration in Multi-Player Multi-Armed Bandits

1: Inputs: a set of arms K, a set of players N , ε ∈ [0, 1], m ∈ {1, ...,K}
2: Output: a set K̃n of m estimated (ε,m)-best arms for each player n ∈ N
3: Initialization: ∀n ∈ N , K̃n := K
4: repeat
5: each player n ∈ N receives messages from the gateway if any, and accordingly updates

K̃n (removing some arms)
6: a set of players Nt is sampled from N successive Bernoulli samples: Nt := {n ∈

N , an ∼ B(pn), an = 1}
7: each player n ∈ Nt selects an arm kn ∈ K̃n
8: each player n ∈ Nt uses arm kn to either share information about the arms with the

gateway or to transmit data otherwise
9: each player n ∈ Nt receives a reward Yn,kn := (1 − Ckn)Xkn (corresponding to the

reception of an acknowledgment)
10: until ∀n ∈ N , |K̃n| = m

3. Collaborative Best Arms Identification

The basic idea behind our approach is that in order to get a set of optimal arms with a
low failure probability δ, each player finds a set of optimal arms but with a higher failure
probability β > δ so the required number of samples by each player decreases. The players
send to the gateway the set of arms they suggest to eliminate of the candidate m-best arms.
However, the suboptimal arms are only really eliminated when at least a group of α players
vote to eliminate them by sending “vote” messages, so an arm is really eliminated with the
group probability of failure βα that is needed to be equal to δ. Consequently, the required

number of players to eliminate an arm should be at least α =
log δ

log β
.

3.1. Communication Protocol

The devices need to exchange some information in order to collaborate in our proposed
approach. In order to share information, the players send messages directly to the gateway,
and the latter will send usable information to all players.

In practice, a “vote” message can for example be of the form of a binary string λn =
(λn1 , ..., λ

n
K) of length K, sent by player n, indicating the indices of the arms player n would

like to eliminate: λnk = 1 means player n suggests to eliminate arm k. A “vote” message is
sent to the gateway, that waits until enough players vote to eliminate the same arms, then
sends the indices of the arms to be globally eliminated to all players.

The communication protocol that is used in the following is based on the same principle
as ALOHA, i.e. when a collision occurs the message is resent the next time the player is
active.

3.2. ArmSelection Subroutine

We will use in our proposed collaborative algorithm the Explore-m algorithms as subrou-
tines. Those algorithms determine the players’ sampling strategy of the arms, i.e. the
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exploration policy. Since players cannot observe the real rewards of the played arms (be-
cause of internal collisions), we introduce a new constraint on the used subroutines.

Let ρn,k,π be the probability that no collision happens on arm k for player n when all
players follow policy π:

ρn,k,π =
∏
n′ 6=n

(1− pn′ .πkn′)

In order to get the same collision rate on all arms for all players, we start with a uniform
exploration policy π̃, i.e., with ∀n ∈ N , ∀k ∈ K, π̃kn = 1/K, then for every player n we have:

ρn,k,π̃ = ρn,π̃ :=
∏

n′∈N\{n}

(
1− pn′

K

)
With that uniform exploration policy π̃, we have, for each player n, µkn(π̃) = θkρn,π̃, so from
(1)

θm − θk ≤ ε⇔ µmn (π̃)− µkn(π̃) ≤ ρn,π̃.ε (2)

As (2) illustrates, each player n can use her observed values Yn,k to estimate µkn, so as
to find the set of (ε,m)-best arms by looking for (ε.ρn,π̃,m)-best arms. But this requires
the knowledge of ρn,π̃ and hence the values of the players’ active rates. Therefore, we will
impose that during a first phase, the players exchange their active rates by sending them to
the gateway, and the latter calculates and sends the value ε′ = ρπ̃.ε :=

∏
n∈N

(
1− pn

K

)
.ε to

all players. When player n receives the value of ε′, she calculates her value ε′n = ρn,π̃.ε :=∏
n′∈N/{n}

(
1− pn′

K

)
.ε = ε′/

(
1− pn

K

)
.

Our algorithm will work in epochs, we distinguish between two types of epochs:
• Local elimination epoch ln Using the ArmSelection subroutine every player n finds a
set of sub-optimal arms (once or iteratively), and locally eliminates them. Let Kn(ln)and
Kn(ln) be the set of arms the player has locally eliminated and the set of remaining arms
of player n at epoch ln respectively. After each local elimination the epoch ln ends by the
player’s vote to eliminate this set of arms by sending messages.
• Global elimination epoch l When enough players vote to eliminate the same arms, the
arms are globally eliminated by all players at epoch l and the set K(l) of arms remains.

Definition 3 ArmSelection subroutine A. An ArmSelection subroutine A is an (ε,m)-
best arms identification algorithm that takes an approximation factor ε > 0, a confidence
level 1 − β < 1 and a set of remaining arms K(l) as inputs. It is run by every player n:
at every time slot it selects a remaining (not globally eliminated in K(l)) arm to be played.
Under specific conditions (depending on the subroutine used) it returns a set of suboptimal
arms Kn(ln) locally eliminated by player n, so player n votes to eliminate them and her
epoch ln ends.

Using the ArmSelection subroutine, a device selects an arm and plays it by sending data
to the gateway using the selected arm. Let tn be the total number of plays of player n.
We denote by Htn the sequence of played arm indices and rewards for player n up to play
tn, Htn = {(k1, y

n
k1

), (k2, y
n
k2

), .., (ktn , y
n
ktn

)}. Let f ∈ (0, 1], and L be the total number of
local eliminations of a single player, i.e. the value of ln when player n finds a set of m local
optimal arms with failure probability β. We list below two properties that the ArmSelection
subroutines should satisfy.
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Property 1 (remaining (m, ε)-optimal arms) For each player n, at each local elimi-
nation epoch ln the probability that there remain less than m of the (ε,m)-best arms (the
arms in Km,ε) in Kn(ln) is small. More specifically,

∀ln ∈ {1, .., L},P({|Kn(ln) ∩ Km,ε| < m},Kn(ln − 1) ∩ Km,ε ≥ m) ≤ βf,

with β the probability of failure of the used subroutine.

Property 2 (finite sample complexity) For any confidence level 1−β < 1 and approxi-
mation factor ε > 0, the ArmSelection subroutine finds in a finite time a set of (m, ε)-optimal
arms. Formally,

∀β ∈ (0, 1), ∀ε > 0, ∃tn ≥ 1 s.t. P({Kn(L) ⊂ Km,ε}|Htn) ≥ 1− β

All the best-arms identification algorithms listed below satisfy the two properties. We
consider three classes of (ε,m)-best arms identification algorithms:
• The fixed-design algorithms use uniform sampling during a predetermined number of
samples, such as Direct algorithm in Kalyanakrishnan and Stone (2010) (L = 1 and f = 1)
that eliminates the k −m sub-optimal arms at the end of the sampling phase.
• The successive elimination algorithms are based on uniform sampling and arm
eliminations. The arm, which cannot be an (ε,m)-optimal arm with a high probability, is
discarded from Kn(ln). Racing in Kaufmann and Kalyanakrishnan (2013) is a successive
elimination algorithm (L = K −m and f = 1/(K −m)).
• The explore-then-commit algorithms are based on adaptive sampling and a stopping
rule. We focus on those of uniform sampling strategies. The stopping rule simply tests if
the difference, between the maximum of upper confidence bound of suboptimal arms and
the lower confidence bound of the empirical best arm, is higher than the approximation
factor ε. When the algorithm stops it eliminates the set of sub-optimal arms. LUCB in
Kalyanakrishnan et al. (2012) is an explore-then-commit algorithm (L = 1 and f = 1).

3.3. Collaborative Best Arms Identification in Multi-Player Bandits

The Collaborative Best Arms Identification algorithm (see Algorithm 2) works as follows: it
takes as inputs, the approximation factor ε, the global failure probability δ, the ArmSelection
subroutine failure probability β, and the number of nearly-optimal arms to find m. Every
player n will run the ArmSelection subroutineA with an approximation factor ε′n,l = ρn,l.ε =∏
n′∈N/{n}

(
1− pn′

|K(l)|

)
.ε at global elimination epoch l in order to end up with a set of (ε,m)-

optimal arms. It outputs a common set of m (ε,m)-best arms for all players. The step
ackn := send(s, kn) used in our algorithm 2 means that the message s is sent on channel
kn to the gateway, and that a binary acknowledgement is waited for a given duration. It
returns the value of the acknowledgement to player n (ackn = 1 if the message has been
sent successfully and 0 otherwise).
The main steps of Algorithm 2 are the following:

• The players receive the gateway’s messages even if they are not active and update
their current sets of arms (line 2).
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Algorithm 2 Collaborative Best Arms Identification in Multi-Player Bandits:
CBAIMPB(K,N ,A,ε,δ,β,m)

Inputs: K, N , ε ∈ (0, 1], δ ∈ (0, 1), β ∈ (0, 1), m, an ArmSelection subroutine A
Output: a set of m arms K(l)
Initialization: t := 1, l := 1, K(l) := K, ∀n ∈ N ε′n := 0, tn := 1, ln := 1,Kn(ln) :=
K,ack1n := 0, ack2l

n

n := 0, ∀(n, k)λnk := 0

1: repeat
2: every player n ∈ N gets the messages from the gateway if any and updates Kn(ln)
3: for n ∈ N do
4: if player n receives ε′ from the gateway then

5: ε′n,l :=
ε′(

1− pn
|K(l)|

)
6: end if
7: end for
8: Nt is sampled from successive Bernoulli samples: Nt := {n ∈ N : an = 1 where an ∼

B(pn)}.
9: for n ∈ Nt do

10: if ack1n = 0 then
11: kn ∼ U(1, |K(l)|)
12: ack1n = send(pn, kn) // ack1n indicates if n has sent her active rate

successfully

13: else if ack2l
n

n = 0 and |Kn(ln)| > 1 and |Kn(ln)| > m then
14: kn ∼ U(1, |K(l)|)
15: ∀k ∈ Kn(ln) λnk := 1
16: ack2l

n

n = send(λn, kn) // ack2n indicates if n has sent her last

message ln successfully

17: if |Kn(ln)| > m then ln := ln + 1
18: else
19: Kn(ln) := A(ε′n,l, β,K(l)) // if an active player has no information

to send, she runs the ArmSelection subroutine and finds a set of

non-optimal arms

20: Kn(ln) := Kn(ln) \ Kn(ln)
21: end if
22: if |K(l)| > m then
23: for all k ∈ K(l) do

24: if
∑N

j=1 λ
j
k ≥ b

logδ

logβ
c then

25: K(l) := K(l) \ {k}, l := l + 1 // eliminate arm k if enough players

vote to eliminate it

26: end if
27: end for
28: the gateway sends K(l) to all players
29: end if
30: if |Kn(ln)| = m and |K(l)| > m then
31: tn := 1, ln := 1,Kn(ln) := K, Kn(ln) := ∅ // resetting player n
32: end if
33: end for
34: until ∀n ∈ N |Kn(ln)| = m
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• The first time a player is active she sends her active rate to the gateway, and keeps
sending it by selecting channels uniformly whenever she is active until she receives an
acknowledgment (lines 10,12).

• Whenever a player n receives the value of ε′ from the gateway, she calculates her value
of ε′n,l (line 5).

• If an active player n has sent her active rate successfully and has no new information to
share with the gateway, she runs an ArmSelection subroutine with a failure probability
β, and her approximation factor ε′n,l when she is active. (line 19).

• If Kn(ln) 6= ∅, player n keeps trying to send the indexes of the arms in Kn(ln) to the
gateway until she succeeds (lines 13-17).

• If enough players want to eliminate an arm, it is eliminated from the global set of
arms K(l) with a low probability of failure δ, and the gateway sends the updated set
K(l) to all players (lines 24-28).

• When a player has found her set of m optimal arms while the global set of optimal
has not been found yet, she is reset and restarts exploring the arms again so she can
then vote as a new player (line 31).

• When there are only m arms left in K(l), they are (ε,m)-optimal arms with a high
probability 1− δ, and the algorithm terminates (line 34).

4. Analysis of the Algorithm

Theorem 1 states the upper bound of the communication cost (total number of sent messages
for sharing information by all players) with a confidence level 1 − η for obtaining a set of
(ε,m)-optimal arms with a high confidence level 1 − δ. Due to collisions, the players need
to send their messages several times until they succeed. In the ideal case when no collisions

happen the players need to send at least α := b log δ

log β
cK − m + N messages. Theorem 1

takes into account the number of re-transmissions when collisions happen.

Theorem 1 Low Communication Cost. Using an ArmSelection subroutine with a
uniform sampling exploration strategy, the total number of sent messages by algorithm
CBAIMPB to find a set of (ε,m)-optimal arms is with a probability of failure η less than:

α

⌈ log(
1− η/α∑K

k=1

ρn(πu)

K
θk

)

log(1−
∑K

k=1

ρn(πu)

K
θk)

+ 1

⌉
messages. (3)

For the analysis of the sample complexity of our algorithm, let TA be the number of
samples needed by the ArmSelection subroutine A to find a set of (ε′,m)-best arms with
probability of failure β, and T ∗ be the total number of samples at stopping time. Let NS
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be the set of the S = b log δ

log β
c most likely players, and let p∗ = minn∈NS pn. Theorem 2

provides the sample complexity of the algorithm CBAIMPB. This value depends on the
ArmSelection subroutine used. Corollary 1 states the sample complexity of CBAIMPB
when Direct Kalyanakrishnan and Stone (2010) algorithm is used as an ArmSelection
subroutine.

Theorem 2 (Sample Complexity) Using an ArmSelection(β, δ,m, ε) subroutine with a
uniform sampling exploration strategy, with a probability at least (1 − δ)(1 − I1−p∗(T

∗ −

TA, 1 + TA))
b
log δ

log β
c

CBAIMPB terminates after:

O

(
1

p∗

(
TA +

√
1

2
log

S

δ

))
samples (4)

where Ia(b, c) denotes the incomplete beta function evaluated at a with parameters b and c.

Corollary 1 With a probability at least (1 − δ)(1 − I1−p∗(T
∗ − TA, 1 + TA))

b
log δ

log β
c
, the

collaborative direct algorithm stops after:

O

(
1

p∗

(
K

ε′
n†

2 log(
K

β
) +

√
1

2
log

S

δ

))
samples (5)

where n† = argminn∈N pn.

5. Simulation Results

In order to illustrate and complete the analysis of our algorithm CBAIMPB, we compare
its performance using the Explore-m algorithms Direct, LUCB and Racing as subroutines
with their selfish versions. We run the algorithms with different values of N and K = 10,
such that ∀k, θk ∼ U(0, 1). Each player n has a probability to be active pn equal to 1/N .
We consider δ = 0.1, β = 0.9, ε = 0.2 and m = 4. We study the sample complexity as well
as the communication cost of our algorithm with different ArmSelection subroutines. The
results are averaged over 30 experiments and the figures show 95% confidence intervals.

Figure 1 (a) clearly shows that our cooperative algorithm with any ArmSelection sub-
routine outperforms the selfish versions of them in terms of sample complexity. Regarding
the subroutines, Racing outperforms LUCB and the latter has a lower sample complexity
than Direct algorithm in either the cooperative or the selfish versions. On the other hand,
Racing has the highest communication cost among the three algorithms as shown in Fig-
ure 1 (b). This is because it is a successive elimination algorithm where the players eliminate
one arm successively and they send one message after each elimination, while LUCB and
Direct algorithms are of the explore-then-commit and fixed-design algorithms respectively
and they eliminate all the suboptimal arms when the stopping condition is provided so one
message is then sent.
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Figure 1: (a) Sample Complexity (Cooperation vs Selfishness), (b) Communication Cost as
a function of the number of players N

On the other hand, after the players find the set of optimal arms, they need to exploit
this set so that they increase their successful communication rate, i.e. the fraction of the
successfully sent messages with respect to the total number of messages. The change in the
successful communication rate depends on the value of m that should be carefully tuned
and the exploitation policy the players follow. In order to study the advantage of playing
a set of optimal arms instead of playing all the arms (that would increase the collision
rate), we compare the successful communication rate and the collision rate of all the players
achieved by the two scenarios. For simplicity, the exploitation policy we use is the uniform
policy. We run the exploitation phase with various values of N , such that the distribution of
players is uniform and the upper bound of the distribution is chosen such that the internal
collision rate does not exceed 0.2 when the number of players reaches 1300 and play the
arms uniformly, so ∀n, pn ∼ U(5.4.10−4, 3.8.10−3). In scenario 1, the players share a set
of K = 10 arms, such that ∀k, θk ∼ U(0, 1). In scenario 2, the players play a set of
(ε = 0.1,m = 4)-optimal arms of the 10 previously played arms. The exploitation phase
lasts for a time horizon T = 106 time slots. The results are averaged over 30 trials and the
figures show 95% confidence intervals.

Figure 2 (a) clearly shows the advantage of playing a set of optimal arms instead of
playing all available arms. Although with a smaller set of arms the internal collision rate
increases as shown in Figure 2 (b), but playing less number of arms of the highest qualities
significantly increases the successful communication rate.

6. Conclusions and Perspectives

For the problem of Decentralized Exploration in Multi-Player Multi-Armed Bandits, we
have designed and analyzed a new approach that aims to find a set of m optimal arms
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Figure 2: (a) Successful Communication Rate, (b) Internal Collision Rate as a function of
the number of players N

by running Explore-m algorithms that sample the arms uniformly as subroutines. Our
approach takes into account collisions between players and does not assume any type of
sensing or constraints on the number of players. The players collaborate by sharing some
information, and we show that the communication cost is relatively low. We have also
proved experimentally that our algorithm outperforms the selfish versions in terms of sample
complexity, and that although playing a smaller set of arms increases the collision rate,
playing only the optimal arms increases the successful communication rate.

Our algorithm is to be tested and evaluated on IoT networks using a LoRa network
simulator presented by Varsier and Schwoerer (2017), and real-world experimentation by
implementing our algorithm in LoRa devices and study how to improve their performance
while minimizing energy consumption. In the future, this work can be extended to focus
on user-dependent best arms, where the players do not experience the same qualities of the
arms using linear bandits. It may be also extended to cover non-stationary environments
where the arms’ qualities could change with time.
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Appendix A. Proofs

A.1. Proof of Theorem 1

Low Communication Cost. Using an ArmSelection subroutine with a uniform sampling
exploration strategy, the total number of sent messages by algorithm CBAIMPB to find a
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set of (ε,m)-optimal arms is with a probability of failure η less than:

α

⌈ log(
1− η/α∑K

k=1

ρn(πu)

K
θk

)

log(1−
∑K

k=1

ρn(πu)

K
θk)

+ 1

⌉
messages (6)

where α = b log δ

log β
c.K −m+N .

Proof An arm is eliminated when b logδ
logβ

c players vote to eliminate it. Hence, the number

of sent messages to eliminate K − m arms is at least b logδ
logβ

c(K − m). Considering the

settings of no collisions at most (b logδ
logβ

c − 1).m messages are sent to vote to eliminate

the remaining m arms (but they are not globally eliminated) and one extra message per

player to share the active rates . Consequently at most b logδ
logβ

c.K −m + N messages are

sent by all players using any ArmSelection subroutine if no collisions are taken into account.

On the other hand, considering the settings of collisions and re-transmissions, let C(α)
be the random variable corresponding to the number of trials of player n to send α mes-
sages. C(1) follows a geometric distribution with a probability of success p = µn(πu) =∑K

k=1

ρn(πu)

K
θk, and probability of failure q = 1− p.

We know that P(C(1) = F + 1) = qF .p, where F is the number of failures before the
success. Then with P(C(1) = F + 1) = 1 − η, we know with a probability 1 − η that the
number of trials of player n to send a message is:

C(1) ≤

⌈ log
1− η
p

log q
+ 1

⌉
(7)

Similarly, we know with a probability 1− η/α that the number of trials of player n to send
a message is:

C(1) ≤

⌈ log
1− η/α

p

log q
+ 1

⌉
(8)

Sending one message is independent from others, so using the addition rule of the union
of independent events and knowing the values of p and q, we get that for sending α messages,
with a probability 1− η player n needs at most :

C(α) ≤ α

⌈ log(
1− η/α∑K

k=1

ρn(πu)

K
θk

)

log(1−
∑K

k=1

ρn(πu)

K
θk)

+ 1

⌉
(9)
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Substituting α by b logδ
logβ

c.K −m + N , we get an upper bound on the total number of

sent messages by the players using CBAIMPB algorithm and an ArmSelection subroutine
of uniform sampling strategy.

A.2. Proof of Theorem 2

Sample Complexity Using an ArmSelection(β, δ,m, ε) subroutine of uniform sampling

strategy, with a probability at least (1− δ)(1− I1−p∗(T
∗ − TA, 1 + TA))

b
logδ

logβ
c

CBAIMPB
terminates after:

O

(
1

p∗

(
TA +

√
1

2
log

S

δ

))
samples (10)

where Ia(b, c) denotes the incomplete beta function evaluated at a with parameters b and
c.
Proof Let T ∗ and Tn respectively be the total number of samples and the number of
samples of player n when the algorithm stops. Tn is a binomial random variable with
parameters pn and T ∗. Then we have:

E[Tn] = pn.T
∗ (11)

Let TA be the number of samples needed by the ArmSelection subroutine to find a set

of (ε′,m)-best arms, and let Bδ,β be the set of the S = b logδ
logβ

c players that have the highest

Tn. The algorithm does not stop if the following event occurs: E1 = {∃n ∈ Bδ,β, Tn < TA}.
Applying Hoeffding’s inequality, we get:

P(Tn − pn.T ∗ ≤ −ε) ≤ exp−2ε2 =
δ

S
(12)

Then, when E1 does not occur, ∀n ∈ Bδ,β, Tn ≥ TA, so we get that with a probability
at most δ every player n ∈ Bδ,β has:

TA − pn.T ∗ ≤ −
√

1

2
log

S

δ
(13)

Then, when E1 does not occur we have with a probability at most δ:

T ∗ ≥ 1

pδ,β
.(TA +

√
1

2
log

S

δ
) (14)

where pδ,β = minn∈Bδ,β pn
Equivalently, if E1 does not occur we have with a probability at least 1− δ:

T ∗ ≤ 1

pδ,β
.(TA +

√
1

2
log

S

δ
) (15)
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Let NS be the set of the S most likely players. Let n∗ = argminn∈NS pn, and p∗ =
minn∈NS pn. We consider the following event: E2 = {n∗ /∈ Bδ,β}. E2 is equivalent to the
event {Tn∗ < TA}. Then we have:

P(Tn∗ < TA) = I1−p∗(T
∗ − TA, 1 + TA), (16)

where Ia(b, c) denotes the incomplete beta function evaluated at a with parameters b and
c. Equation (16) comes from the relation between the incomplete beta function and the
cumulative binomial distribution.
We have, P(pδ,β = p∗) = P(∀n ∈ NS ,P(Tn ≥ TA)).

Finally, knowing |NS | = S = b logδ
logβ

c, with a probability at least (1 − I1−p∗(T
∗ − TA, 1 +

TA))
b
logδ

logβ
c
, we have pδ,β = p∗.

A.3. Proof of Corollary 1

With a probability at least (1 − δ)(1 − I1−p∗(T
∗ − TA, 1 + TA))

b
logδ

logβ
c
, the collaborative

direct algorithm stops after:

O

(
1

p∗

(
K

ε′
n†

2 log(
K

β
) +

√
1

2
log

S

δ

))
samples (17)

where n† = argminn∈N pn.
Proof The Direct algorithm in Kalyanakrishnan and Stone (2010) finds with a probability
at least 1− β a set of m (ε′,m)-optimal arms with:

O

(
K

ε′2
log(

K

β
)

)
samples

Let n† = argminn∈N pn, so for every player n ∈ N , we have:

ρn†,π̃ =
∏

n′∈N/{n†}

(
1− pn′

|K|

)
≤ ρn,π̃ =

∏
n′∈N/{n}

(
1− pn′

|K|

)
=⇒ ε′n† ≤ ε

′
n

Hence we get that every player n finds with a probability at least 1− β a set of m (ε′,m)-
optimal arms with:

O

(
K

ε′n
2 log(

K

β
)

)
≤ O

(
K

ε′
n†

2 log(
K

β
)

)
samples

Then, by substitution Theorem 2 completes the proof.
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