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Abstract
Recent works using deep learning to solve the Traveling Salesman Problem (TSP) have
focused on learning construction heuristics. Such approaches find TSP solutions of good
quality but require additional procedures such as beam search and sampling to improve
solutions and achieve state-of-the-art performance. However, few studies have focused on
improvement heuristics, where a given solution is improved until reaching a near-optimal
one. In this work, we propose to learn a local search heuristic based on 2-opt operators via
deep reinforcement learning. We propose a policy gradient algorithm to learn a stochastic
policy that selects 2-opt operations given a current solution. Moreover, we introduce a
policy neural network that leverages a pointing attention mechanism, which unlike previous
works, can be easily extended to more general k-opt moves. Our results show that the
learned policies can improve even over random initial solutions and approach near-optimal
solutions at a faster rate than previous state-of-the-art deep learning methods.
Keywords: Deep Reinforcement Learning, Combinatorial Optimization, Traveling Sales-
man Problem.

1. Introduction

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem.
In the TSP, given a set of locations (nodes) in a graph, we need to find the shortest tour that
visits each location exactly once and returns to the departing location. The TSP is NP-hard
(Papadimitriou, 1977) even in its Euclidean formulation, i.e., nodes are points in the 2D
space. Classic approaches to solve the TSP can be classified in exact and heuristic methods.
The former have been extensively studied using integer linear programming (Applegate et al.,
2006) which are guaranteed to find an optimal solution but are often too computationally
expensive to be used in practice. The latter are based on (meta)heuristics and approximate
algorithms (Arora, 1998) that find solutions requiring less computational time, e.g., edge
swaps such as k-opt (Helsgaun, 2009). Nevertheless, designed heuristics require specialized
knowledge and their performances are often limited by algorithmic design decisions.

Recent works in machine learning and deep learning have focused on learning heuristics for
combinatorial optimization problems (Bengio et al., 2018; Lombardi and Milano, 2018). For
the TSP, both supervised learning (Vinyals et al., 2015; Joshi et al., 2019) and reinforcement

c© 2020 P.R.d.O. da Costa, J. Rhuggenaath, Y. Zhang & A. Akcay.



da Costa Rhuggenaath Zhang Akcay

learning (Bello and Pham, 2017; Wu et al., 2019; Kool et al., 2019; Deudon et al., 2018; Khalil
et al., 2017) methods have been proposed. The idea is that a machine learning method could
potentially learn better heuristics by extracting useful information directly from data, rather
than having an explicitly programmed behavior. Most approaches to the TSP have focused
on learning construction heuristics, i.e., methods that can generate a solution sequentially
by extending a partial tour. These methods employed sequence representations (Vinyals
et al., 2015; Bello and Pham, 2017), graph neural networks (Khalil et al., 2017; Joshi et al.,
2019) and attention mechanisms (Kool et al., 2019; Deudon et al., 2018; Wu et al., 2019)
resulting in high-quality solutions. However, construction methods still require additional
procedures such as beam search, classical improvement heuristics and sampling to achieve
such results. This limitation hinders their applicability as it is required to revert back to
handcrafted improvement heuristics and search algorithms for state-of-the-art performance.
Thus, learning improvement heuristics, i.e., when a solution is improved by local moves that
search for better solutions, remains relevant. Here the idea is that if we can learn a policy
to improve a solution, we can use it to get better solutions from a construction heuristic or
even random solutions. Recently, a deep reinforcement learning method (Wu et al., 2019)
has been proposed for such task, achieving near-optional results using node swap and 2-opt
moves. However, the architecture has its output fixed by the number of possible moves,
making it less favorable to expand to more general k-opt moves.

In this work, we propose a deep reinforcement learning algorithm trained via Policy
Gradient to learn improvement heuristics based on 2-opt moves. Our architecture is based
on a pointer attention mechanism (Vinyals et al., 2015) that outputs nodes sequentially for
action selection. We introduce a reinforcement learning formulation to learn a stochastic
policy of the next promising solutions, incorporating the search’s history information by
keeping track of the current best-visited solution. Our results show that we can learn policies
for the Euclidean TSP that achieve near-optimal solutions even when starting from solutions
of poor quality. Moreover, our approach can achieve better results than previous deep
learning methods based on construction (Vinyals et al., 2015; Joshi et al., 2019; Kool et al.,
2019; Deudon et al., 2018; Khalil et al., 2017; Bello and Pham, 2017) and improvement (Wu
et al., 2019) heuristics. Compared to Wu et al. (2019), our method can be easily adapted to
general k-opt and it is more sample efficient. In addition, policies trained on small instances
can be reused on larger instances of the TSP. Lastly, our method outperforms other effective
heuristics such as Google’s OR-Tools (Perron and Furnon) and are close to optimal solutions.

2. Related Work

In machine learning, early works for the TSP have focused on Hopfield networks (Hopfield
and Tank, 1985) and deformable template models (Angeniol et al., 1988). However, the
performance of these approaches has not been on par with classical heuristics (La Maire and
Mladenov, 2012). Recent deep learning methods have achieved high performance learning
construction heuristics for the TSP. Pointer Networks (PtrNet) (Vinyals et al., 2015) learned
a sequence model coupled with an attention mechanism trained to output TSP tours using
solutions generated by Concorde (Applegate et al., 2006). In Bello and Pham (2017), the
PtrNet was further extended to learn without supervision using Policy Gradient, trained
to output a distribution over node permutations. Other approaches encoded instances via
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graph neural networks. A structure2vec (S2V) (Khalil et al., 2017) model was trained to
output the ordering of partial tours using Deep Q-Learning (DQN). Later, graph attention
was employed to a hybrid approach using 2-opt local search on top of tours trained via Policy
Gradient (Deudon et al., 2018). Graph attention was extended in Kool et al. (2019) using
REINFORCE (Williams, 1992) with a greedy rollout baseline, resulting in lower optimality
gaps. Recently, the supervised approach was revisited using Graph Convolution Networks
(GCN) (Joshi et al., 2019) learning probabilities of edges occurring in a TSP tour. It achieved
state-of-the-art results up to 100 nodes whilst also combining with search heuristics.

It is important to previous methods to have additional procedures such as beam search,
classical improvement heuristics and sampling to achieve good solutions. However, little
attention has been posed on learning such policies that search for improved solutions. A
recent approach, based on the transformer architecture (Wu et al., 2019), employed a Graph
Attention Network (GAT) (Veličković et al., 2018) coupled with 2-opt and node swap
operations. The limitations of this approach are related to the fixed output embeddings.
These are vectors defined by the squared number of nodes, which makes expanding to general
k-opt harder. Moreover, at inference it requires more samples than construction methods to
achieve similar results. In contrast, we encode edge information using graph convolutions and
use classical sequence encoding to learn tour representations. We decode these representations
via a pointing attention mechanism to learn a stochastic policy of the action selection task.
Our approach resembles classical 2-opt heuristics (Hansen and Mladenović, 2006) and can
outperform previous deep learning methods in solution quality and sample efficiency.

3. Background

3.1. Travelling Salesman Problem

We focus on the 2D Euclidean TSP. Given an input graph, represented as a sequence of
n locations in a two dimensional space X = {xi}ni=1, where xi ∈ [0, 1]2, we are concerned
with finding a permutation of the nodes, i.e. a tour S = (s1, . . . , sn), that visits each
node once (except the starting node) and has the minimum total length (cost). We define
the cost of a tour as the sum of the distances (edges) between consecutive nodes in S as
L(S) = ‖xsn − xs1‖2 +

∑n−1
i=1

∥∥xsi − xsi+1

∥∥
2
, where ‖·‖2 denotes the `2 norm.

3.2. k-opt Heuristic for the TSP

Improvement heuristics enhance feasible solutions through a search procedure. A procedure
starts at an initial solution S0 and replaces a previous solution St by a better solution
St+1. Local search methods such as the effective Lin-Kernighan-Helsgaun (LKH) (Helsgaun,
2009) heuristic perform well for the TSP. The procedure searches for k edge swaps (k-opt
moves) that will be replaced by new edges resulting in a shorter tour. A simpler version
(Lin and Kernighan, 1973) considers 2-opt (Figure 1) and 3-opt moves alternatives as these
balance solution quality and the O(nk) complexity of the moves. Moreover, sequential
pairwise operators such as k-opt moves can be decomposed in simpler l-opt ones, where l < k.
For instance, sequential 3-opt operations can be decomposed into one, two or three 2-opt
operations (Helsgaun, 2009). However, in local search algorithms, the quality of the initial
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solution usually affects the quality of the final solution, i.e. local search methods can easily
get stuck in local optima (Hansen and Mladenović, 2006).

...

...

...

...

Figure 1: TSP solution before a 2-opt move (left), and after a 2-opt move (right). Replaced
edges are represented in dashed lines. Note that the sequence si, . . . , sj is inverted.

To avoid local optima, different metaheuristics have been proposed including Simulated
Annealing and Tabu Search. These work by accepting worse solutions to allow more
exploration of the search space. In general, this strategy leads to better solution quality.
However, metaheuristics still require expert knowledge and may have sub-optimal rules in
their design. To tackle this limitation, we propose to combine machine learning and 2-opt
operators to learn a stochastic policy to improve TSP solutions sequentially. A stochastic
policy resembles a metaheuristic, sampling solutions in the e neighborhood of a given solution,
potentially avoiding local minima. Our policy iterates over feasible solutions and the minimum
cost solution is returned at the end. The main idea of our method is that by taking future
improvements into account can potentially result it better policies than greedy heuristics.

4. Reinforcement Learning Formulation

Our formulation considers solving the TSP via 2-opt as a Markov Decision Process (MDP),
detailed below. In our MDP, a given state S̄ is composed of a tuple of the current solution
(tour) S and the lowest-cost solution S′ seen in the search. The proposed neural architec-
ture (Section 5) approximates the stochastic policy πθ(A|S̄), where θ represents trainable
parameters. Each A = (a1, a2) corresponds to a 2-opt move where a1, a2 are node indices.
Our architecture also contains a value network that outputs value estimates Vφ(S̄), with φ
as learnable parameters. We assume TSP samples drawn from the same distribution and use
Policy Gradient to optimize the parameters of the policy and value networks (Section 6).

States A state S̄ is composed of a tuple S̄ = (S, S′), where S and S′ are the current and
lowest-cost solution seen in the search, respectively. That is, given a search trajectory at
time t and solution S, St = S and S′t = S′ = argminSt̃∈{S0,...,St}L(St̃).

Actions We model actions as tuples A = (a1, a2) where a1, a2 ∈ {1, . . . , n}, a2 > a1

correspond to index positions of solution S = (s1, . . . , sn).

Transitions Given A = (i, j) transitioning to the next state defines a determin-
istic change to solution Ŝ = (. . . , si, . . . , sj , . . . ), resulting in a new solution S =
(. . . , si−1, sj , . . . , si, sj+1 . . . ) and state S̄ = (S, S′). That is, selecting i and j in Ŝ im-
plies breaking edges at positions (i− 1, i) and (j, j+ 1), inserting edges (i− 1, j) and (i, j+ 1)
and inverting the order of nodes between i and j.
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Figure 2: In the architecture, a state S̄ = (S, S′) is passed to a dual encoder where graph and
sequence information are extracted. A policy decoder takes encoded inputs to query node
indices and output actions. A value decoder takes encoded inputs and outputs state values.

Rewards Similar to (Wu et al., 2019), we attribute rewards to actions that can improve
upon the current best-found solution, i.e., Rt = L(S′t)− L(S′t+1).

Environment Our environment runs for T steps. For each run, we define episodes of
length T ≤ T, after which a new episode starts from the last state in the previous episode.
This ensures access to poor quality solutions at t = 0, and high quality solutions as t grows.
In our experiments, treating the environment as continuous and bootstrapping (Mnih et al.,
2016) resulted in lower quality policies under the same conditions.

Returns Our objective is to maximize the expected return Gt, which is the cumulative
reward starting at time step t and finishing at T at which point no future rewards are
available, i.e., Gt =

∑T−1
t′=t γ

t′−tRt′ where γ ∈ (0, 1] is a discount factor.

5. Policy Gradient Neural Architecture

Our neural network, based on an encoder-decoder architecture is depicted in Figure 2. Two
encoder units map each component of S̄ = (S, S′) independently. Each unit reads inputs
X = (x1, . . . , xn), where xi are node coordinates of node si in S and S′ . The encoder then
learns representations that embed both graph topology and node ordering. Given these
representations, the policy decoder samples action indices a1, . . . , ak sequentially, where k = 2
for 2-opt. The value decoder operates on the same encoder outputs but outputs real-valued
estimates of state values. We detail the components of the network in the following sections.

5.1. Encoder

The purpose of our encoder is to obtain a representation for each node in the input graph
given its topological structure and its position in a given solution. To accomplish this
objective, we incorporate elements from Graph Convolution Networks (GCN) (Kipf and
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Welling, 2017) and sequence embedding via Recurrent Neural Networks (RNN) (Hochreiter
and Schmidhuber, 1997). Furthermore, we use edge information to build a more informative
encoding of the TSP graph.

Embedding Layer We input two dimensional coordinates xi ∈ [0, 1]2, ∀i ∈ 1, . . . , n,
which are embedded to d-dimensional features as x0

i = Wxxi + bx , where Wx ∈ Rd×2,
bx ∈ Rd. We use as input the Euclidean distances ei,j between coordinates xi and xj to
add edge information and weigh the node feature matrix. To avoid scaling the inputs
to different magnitudes we adopt symmetric normalization (Kipf and Welling, 2017) as
ẽi,j =

ei,j√∑n
j=1 ei,j

∑n
i=1 ei,j

. Then the normalized edges are used in combination with GCN

layers to create richer node representations using its neighboring topology.

Graph Convolutional Layers In the GCN layers, we denote as x`i the node feature
vector at GCN layer ` associated with node i. We define the node feature at the subsequent
layer combining features from nodes in the neighborhood N (i) of node i as

x`+1
i = x`i + ReLU

(∑
j∈N (i)

ẽi,j(W
`
gx

`
j + b`g)

)
, (1)

where W `
g ∈ Rd×d, b`g ∈ Rd, ReLU is the Rectified Linear Unit and N (i) corresponds to the

remaining n− 1 nodes of a complete TSP network. At the input to these layers, we have
` = 0 and after L layers we arrive at representations zi = xLi leveraging node features with
the additional edge feature representation.

Sequence Embedding Layers Next, we use node embeddings zi to learn a sequence
representation of the input and encode a tour. Due to symmetry, a tour from nodes (1, . . . , n)
has the same cost as the tour (n, . . . , 1). Therefore, we read the sequence in both orders to
explicitly encode the symmetry of a solution. To accomplish this objective, we employ two
Long Short-Term Memory (LSTM) as our RNN functions, computed using hidden vectors
from the previous node in the tour and the current node embedding resulting in

(h→i , c
→
i ) = RNN(z→i , (h

→
i−1, c

→
i−1)), i ∈ (1, . . . , n) (2)

(h←i , c
←
i ) = RNN(z←i , (h

←
i+1, c

←
i+1)), i ∈ (n, . . . , 1) (3)

where in (2) a forward RNN goes over the embedded nodes from left to right, in (3) a
backward RNN goes over the nodes from right to left and hi, ci ∈ Rd are hidden vectors.

Our representation reconnects back to the first node in the tour ensuring we con-
struct a sequential representation of the complete tour, i.e. (h→0 , c

→
0 ) = RNN(zn, 0) and

(h←n+1, c
←
n+1) = RNN(z1, 0). Afterwards, we combine forward and backward representations

to form unique node representations in a tour as oi = tanh((Wfh
→
i + bf ) + (Wbh

←
i + bb)),

and a tour representation hn = h→n + h←n , where hi, oi ∈ Rd, Wf ,Wb ∈ Rd×d and bf , bb ∈ Rd.

Dual Encoding In our formulation, a state S̄ = (S, S′) is represented as a tuple of the
current solution S and the best solution seen so far S′. For that reason, we encode both S
and S′ using independent encoding layers (Figure 2). Thus, we abuse notation and define a
sequential representation of S′ after going through encoding layers as h′n ∈ Rd.
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5.2. Policy Decoder

We aim to learn the parameters of a stochastic policy πθ(A|S̄) that given a state S̄, assigns
high probabilities to moves that reduce the cost of a tour. Following (Bello and Pham, 2017),
our architecture uses the chain rule to factorize the probability of a k-opt move as

πθ(A|S̄) =

k∏
i=1

pθ
(
ai|a<i , S̄

)
, (4)

and then uses individual softmax functions to represent each term on the RHS of (4), where
ai corresponds to node positions in a tour, a<i represents previously sampled nodes and
k = 2. At each output step i, we map the tour embedding vectors to the following query
vector

qi = tanh
(

(Wqqi−1 + bq) + (Wooi−1 + bo)
)
, (5)

whereWq,Wo ∈ Rd×d, bq, bo ∈ Rd×d are learnable parameters and o0 ∈ Rd is a fixed parameter
initialized from a uniform distribution U(−1√

d
, 1√

d
). Our initial query vector q0 receives the

tour representation from S and S′ as hs̄ = Wshn + bs‖Ws′h
′
n + bs′ and a max pooling graph

representation zg = max(z1, . . . , zn) from S to form q0 = hs̄+ zg, where learnable parameters
Ws,Ws′ ∈ R

d
2
×d, bs, bs′ ∈ R

d
2 and ·‖· represents the concatenation operation. Our query

vectors qi interact with a set of n vectors to define a pointing distribution over the action
space. As soon as the first node is sampled, the query vector updates its inputs with the
previously sampled node using its sequential representation to select the subsequent nodes.

Pointing Mechanism We use a pointing mechanism to predict a distribution over node
outputs given encoded actions (nodes) and a state representation (query vector). Our pointing
mechanism is parameterized by two learned attention matrices K ∈ Rd×d and Q ∈ Rd×d and
vector v ∈ Rd as

uij =

{
vT tanh(Koj +Qqi), if j > ai−1

−∞, otherwise ,
(6)

where pθ
(
ai | a<i, S̄

)
= softmax(C tanh(ui)) predicts a distribution over n actions, given a

query vector qi with ui ∈ Rn. We mask probabilities of nodes prior to the current ai as we
only consider choices of nodes in which ai > ai−1 due to symmetry. This ensures a smaller
action space for our model, i.e. n(n− 1)/2 possible feasible permutations of the input. We
clip logits in [−C,+C] (Bello and Pham, 2017), where C ∈ R is a parameter to control the
entropy of ui.

5.3. Value Decoder

Similar to the policy decoder, our value decoder works by reading tour representations from
S and S′ and a graph representation from S. That is, given embeddings Z the value decoder
works by reading the outputs zi for each node in the tour and the sequence hidden vectors
hn, h

′
n to estimate the value of a state as

Vφ(S̄) = Wr ReLU
(
Wz

( 1

n

n∑
i=1

zi + hv

)
+ bz

)
+ br , (7)
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with hv = Wvhn+bv‖Wv′h
′
n+bv′ . WhereWz ∈ Rd×d,Wr ∈ R1×d, bz ∈ Rd, br ∈ R are learned

parameters that map the state representation to a real valued output and Wv,Wv′ ∈ R
d
2
×d,

bv, bv′ ∈ R
d
2 map the tours to a combined value representation. We use a mean pooling

operation in (7) to combine node representations zi in a single graph representation. This
vector is then combined with the tour representation hv to estimate current state values.

6. Policy Gradient Optimization

In our formulation, we maximize the expected rewards given a state S̄ defined as J(θ | S̄) =
Eπθ [Gt | S̄] . Thus, during training, we define the total objective over a distribution S of
uniformly distributed TSP graphs (solutions) in [0, 1]2 as J(θ) = ES̄∼S [J(θ | S̄)]. To optimize
our policy we resort to the Policy Gradient learning rule, which provides an unbiased gradient
estimate w.r.t. the model’s parameters θ. During training, we draw B i.i.d. graphs and
approximate the gradient of (6), indexed at t = 0 as

∇θJ(θ) ≈ 1

B

1

T

[ B∑
b=1

T−1∑
t=0

∇θ log πθ(A
b
t | S̄bt )(Gbt − Vφ(S̄bt ))

]
(8)

where the advantage function is defined as Abt = Gbt−Vφ(S̄bt ). To avoid premature convergence
to a sub-optimal policy (Mnih et al., 2016), we add an entropy bonus

H(θ) =
1

B

B∑
b=1

T−1∑
t=0

H(πθ(· | S̄bt )) , (9)

with H(πθ(· | S̄bt )) = −Eπθ [log πθ(· | S̄bt )], and similarly to (8) we normalize values in (9)
dividing by k. Moreover, we increase the length of an episode after a number of epochs,
i.e. at epoch e, T is replaced by Te. The value network is trained on a mean squared error
objective between its predictions and Monte Carlo estimates of the returns, formulated as an
additional objective

L(φ) =
1

B

1

T

[ B∑
b=1

T−1∑
t=0

∥∥∥Gbt − Vφ(S̄bt ))
∥∥∥2

2

]
. (10)

Afterwards, we combine the previous objectives and perform gradient updates via Adaptive
Moment Estimation (ADAM) (Kingma and Ba, 2015), with βH , βV representing weights of
(9) and (10), respectively. Our model is close to REINFORCE (Williams, 1992) but with
periodic episode length updates (truncation), and to Advantage Actor-Critic (A2C) (Mnih
et al., 2016) bootstrapping only from terminal states. In our case, this is beneficial as at the
start the agent learns how to behave over small episodes for easier credit assignment, later
tweaking its policy over larger horizons. The complete algorithm is depicted in Algorithm 1.

7. Experiments and Results

We conduct extensive experiments to investigate the performance of our proposed method.
We consider three benchmark tasks, Euclidean TSP with 20, 50 and 100 nodes, TSP20,
TSP50 and TSP100 respectively. For all tasks, node coordinates are drawn uniformly at
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Algorithm 1 Policy Gradient Training
Input: Policy network πθ, critic network Vφ, number of epochs E , number of batches NB,

batch size B, step limit T, length of episodes Te, learning rate λ

1 Initialize policy and critic parameters θ and φ
2 for e = 1, . . . , E do
3 T ← Te
4 for n = 1, . . . , NB do
5 t← 0

6 Initialize random S̄b0, ∀b ∈ {1, . . . , B}
7 while t < T do
8 t′ ← t
9 while t− t′ < T do

10 Abt ∼ πθ(.|S̄bt ), ∀b ∈ {1, . . . , B}
11 Take actions Abt , observe S̄bt+1, R

b
t , ∀b ∈ {1, . . . , B}

12 S̄bt ← S̄bt+1, ∀b ∈ {1, . . . , B}
13 t← t+ 1

14 for i ∈ {t′, . . . , t− 1} do

15 Gbi ←
t′+T−1∑̃
t=i

γ t̃−t
′
Rb
t̃
, ∀b ∈ {1, . . . , B}

16 gθ ← 1
Bk

[
1
T

B∑
b=1

t−1∑
i=t′
∇θ log πθ(A

b
i | S̄bi )Abi + βH∇θH(πθ(· | S̄bi ))

]
17 gφ ← 1

BT

[
βV

B∑
b=1

t−1∑
i=t′
∇φ
∥∥Gbt − Vφ(S̄bi ))

∥∥2

2

]
18 θ, φ← ADAM(λ,−gθ, gφ)

random in the unit square [0, 1]2 during training. For validation, a fixed set of TSP instances
with their respective optimal solutions is used for hyperparameter optimization. For a fair
comparison, we use the same test dataset as reported in Kool et al. (2019); Joshi et al. (2019)
containing 10,000 instances for each TSP size. Thus, previous results reported in Kool et al.
(2019) are comparable to ours in terms of solution quality (optimality gap). Results from Wu
et al. (2019) are not measured in the same data but use the same data generation process.
Since at the time of submission no implementation is available, we report the optimality gaps
reported in the original paper. Moreover, we report running times reported in Kool et al.
(2019); Joshi et al. (2019); Wu et al. (2019). Since time can vary due to implementations
and hardware, we rerun the method of Kool et al. (2019) in our hardware. Due to provided
supervised samples, the method of Joshi et al. (2019) is not ideal for combinatorial problems.
Thus, we compare our results in more detail to Kool et al. (2019) (running time and solution
quality) and Wu et al. (2019) (solution quality and sample efficiency).

7.1. Experimental Settings

All our experiments use a similar set of hyperparameters. We use a batch size B = 512
for TSP20 and TSP50 and B = 256 for TSP100 due to GPU memory. For this reason, we
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generate 10 random mini-batches for TSP20 and TSP50 and 20 mini-batches for TSP100
in each epoch. TSP20 trains for 200 epochs as convergence is faster for smaller problems,
whereas TSP50 and TSP100 train for 300 epochs. We use the same γ = 0.99, `2 penalty
of 1 × 10−5 and learning rate λ = 0.001, λ decaying by 0.98 at each epoch. Loss weights
are βV = 0.5, βH = 0.0045 for TSP20 and TSP50, βH = 0.0018 for TSP100. βH decays by
0.9 after every epoch for stable convergence. In all tasks, d = 128, L = 3 and we employ
one RNN block. The update in episode lengths are T1 = 8, T100 = 10, T150 = 20 for TSP 20;
T1 = 8, T100 = 10, T200 = 20 for TSP50; and T1 = 4, T100 = 8, T200 = 10 for TSP100. C = 10
is used during training and testing. v is initialized as U(−1√

d
, 1√

d
) and remaining parameters

are initialized according to PyTorch’s default parameters.
We train on a RTX 2080Ti GPU, generating random feasible initial solutions on the fly

at each epoch. Each epoch takes an average time of 2m 01s, 3m 05s and 7m 16s for TSP20,
TSP50 and TSP100, respectively. We clip rewards to 1 to favor non-greedy actions and
stabilize learning. Due to GPU memory, we employ mixed precision training (Jia et al., 2018)
for TSP50 and TSP100. For comparison with Wu et al. (2019), we train for a maximum
step limit of 200. Note that our method is more sample efficient than the proposed in Wu
et al. (2019), using 50% and 75% of the total samples for TSP20 and TSP50/100 during
training. During testing, we run our policy for 500, 1,000 and 2,000 steps to compare to
previous works. Our implementation is available online 1.

7.2. Experimental Results and Analysis

We learn policies for TSP20, TSP50 and TSP100, and depict the optimality gap and its
exponential moving average in the log scale in Figure 3. In the figure, the optimality gap is
averaged over 256 validation instances and 200 steps (same as training). The results show
that we can learn effective policies that decrease the optimality gap over the training epochs.
We also point out that increasing the episode length improved validation performance as we
consider longer planning horizons in (8). Moreover, it is interesting to note that the optimality
gap grows with the instance size as solving larger TSP instances is harder. Additionally,
we report the gaps of the best performing policies in Figure 4. In the figure, we show the
optimality gap of the best solution for 512 test instances over 2,000 steps. Here, results show

1. https://github.com/paulorocosta/learning-2opt-drl

474

https://github.com/paulorocosta/learning-2opt-drl


Learning 2-opt Heuristics for the TSP via Deep Reinforcement Learning

that we can quickly reduce the optimality gap at the beginning and later steps attempt
to fine-tune the best tour. In the experiments, we find the optimal solution for TSP20
instances and stay within optimality gaps of 0.1% for TSP50 and 0.7% for TSP100. Overall,
our policies can be seen as a solver requiring only random initial solutions and sampling to
achieve near-optimal solutions.

To showcase that, we compare the learned policies with classical 2-opt First Improvement
(FI) and Best Improvement (BI) heuristics, which select the first and best cost-reducing
2-opt operation, respectively. Since local search methods can get stuck in local optima, we
include a version of the heuristics using restarts. That is, we restart the search at a random
solution as soon as we reach a local optimum. We run all heuristics and learned policies
on 512 TSP100 instances for a maximum of 1,000 steps starting from the same solutions.
The boxplots in Figure 5 depict the results. We observe that our policy (TSP100-Policy)
outperforms classical 2-opt heuristics finding tours with lower median and less dispersion.
These results support our initial hypothesis that considering future rewards in the choice of
2-opt moves leads to better solutions. Moreover, our method avoids the worst case O(n2)
complexity of selecting the next solution of FI and BI.

Comparison to Classical Heuristics, Exact and Learning Methods We report
results on the same 10,000 instances for each TSP size as in Kool et al. (2019) and rerun
the optimal results obtained by Concorde to derive optimality gaps. We compare against
Nearest, Random and Farthest Insertion constructions heuristics. and include the vehicle
routing solver of OR-Tools (Perron and Furnon) containing 2-opt and LKH as improvement
heuristics (Bello and Pham, 2017). We add to the comparison recent deep learning methods
based on construction and improvement heuristics, including supervised (Vinyals et al., 2015;
Joshi et al., 2019) and reinforcement (Wu et al., 2019; Kool et al., 2019; Deudon et al.,
2018; Khalil et al., 2017; Bello and Pham, 2017) learning methods. We note, however, that
supervised learning is not ideal for combinatorial problems due to the lack of optimal labels
for large problems. Previous works to Kool et al. (2019) are presented with their reported
running times and optimality gaps as in the original paper. For recent works, we present the
optimality gaps and running times as reported in (Kool et al., 2019; Joshi et al., 2019; Wu
et al., 2019). We report previous results using greedy, sampling and search decoding and refer
to the methods by their neural network architecture. We note that the test dataset used in
Wu et al. (2019) is not the same but the data generation process and size are identical. This
fact allied with the high number of samples decreases the variance of the results. We focus
our attention on GAT (Kool et al., 2019) and GAT-T (Wu et al., 2019) (GAT-Transformer)
representing the best construction and improvement heuristic, respectively.

Our results, in Table 1, show that with only 500 steps our method outperforms traditional
construction heuristics, learning methods with greedy decoding and OR-Tools achieving
0.01%, 0.36% and 1.84% optimality gap for TSP20, TSP50 and TSP100, respectively.
Moreover, we outperform GAT-T requiring half the number of steps (500 vs 1,000). We
note that with 500 steps, our method also outperforms all previous reinforcement learning
methods using sampling or search, including GAT (Deudon et al., 2018) applying 2-opt local
search on top of generated tours. Our method only falls short of the supervised learning
method GCN (Joshi et al., 2019), using beam search and shortest tour heuristic. However,
GCN (Joshi et al., 2019), similar to samples in GAT (Kool et al., 2019), uses a beam width of
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1,280, i.e. it samples more solutions. Increasing the number of samples (steps) increases the
performance of our method. When sampling 1,000 steps (280 samples short of GCN (Joshi
et al., 2019) and GAT (Kool et al., 2019)) we outperform all previous methods that do no
employ further local search improvement and perform on par with GAT-T on TSP50, using
5,000 samples (5 times as many samples). For TSP100, sampling 1,000 steps results in a
lower optimality gap (1.26%) than all compared methods. Lastly, increasing the sample size
to 2,000 results in even lower gaps, 0.00% (TSP20), 0.12% (TSP50) and 0.87% (TSP100).

Table 1: Performance of TSP methods w.r.t. Concorde. Type: SL: Supervised Learning,
RL: Reinforcement Learning, S: Sampling, G: Greedy, B: Beam Search, BS: B and Shortest
Tour and T: 2-opt Local Search. Time: Time to solve 10,000 instances reported in (Kool
et al., 2019; Joshi et al., 2019; Wu et al., 2019) and ours.

Method Type TSP20 TSP50 TSP100
Cost Gap Time Cost Gap Time Cost Gap Time

Concorde (Applegate et al., 2006) Solver 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)

H
eu

ri
st
ic
s OR-Tools (Perron and Furnon) S 3.85 0.37% 5.80 1.83% 7.99 2.90%

Nearest Insertion G 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Random Insertion G 4.00 4.36% (0s) 6.13 7.65% (1s) 8.52 9.69% (3s)
Farthest Insertion G 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)

C
on

st
.+

G
re
ed

y PtrNet (Vinyals et al., 2015) SL 3.88 1.15% 7.66 34.48% -
GCN (Joshi et al., 2019) SL 3.86 0.60% (6s) 5.87 3.10% (55s) 8.41 8.38% (6m)
PtrNet (Bello and Pham, 2017) RL 3.89 1.42% 5.95 4.46% 8.30 6.90%
S2V (Khalil et al., 2017) RL 3.89 1.42% 5.99 5.16% 8.31 7.03%
GAT (Deudon et al., 2018) RL,T 3.85 0.42% (4m) 5.85 2.77% (26m) 8.17 5.21% (3h)
GAT (Kool et al., 2019) RL 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)

C
on

st
.+

Se
ar
ch GCN (Joshi et al., 2019) SL,B 3.84 0.10% (20s) 5.71 0.26% (2m) 7.92 2.11% (10m)

GCN (Joshi et al., 2019) SL,BS 3.84 0.01% (12m) 5.70 0.01% (18m) 7.87 1.39% (40m)
PtrNet (Bello and Pham, 2017) RL,S - 5.75 0.95% 8.00 3.03%
GAT (Deudon et al., 2018) RL,S 3.84 0.11% (5m) 5.77 1.28% (17m) 8.75 12.70% (56m)
GAT (Deudon et al., 2018) RL,S,T 3.84 0.09% (6m) 5.75 1.00% (32m) 8.12 4.64% (5h)
GAT {1280} (Kool et al., 2019) RL,S 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)

Im
pr
.+

Sa
m
pl
in
g GAT-T {1000} (Wu et al., 2019) RL 3.84 0.03% (12m) 5.75 0.83% (16m) 8.01 3.24% (25m)

GAT-T {3000} (Wu et al., 2019) RL 3.84 0.00% (39m) 5.72 0.34% (45m) 7.91 1.85% (1h)
GAT-T {5000} (Wu et al., 2019) RL 3.84 0.00% (1h) 5.71 0.20% (1h) 7.87 1.42% (2h)

Ours {500} RL 3.84 0.01% (5m) 5.72 0.36% (7m) 7.91 1.84% (10m)
Ours {1000} RL 3.84 0.00% (10m) 5.71 0.21% (13m) 7.86 1.26% (21m)
Ours {2000} RL 3.84 0.00% (15m) 5.70 0.12% (29m) 7.83 0.87% (41m)

Testing Learned Policies on Larger Instances Since we are interested in learning
general policies that can solve the TSP regardless of its size, we test the performance of our
policies when learning on TSP50 instances (TSP50-Policy) and applying on larger TSP100
instances. Results, in Table 2, show that we can extract general enough information to still
perform well on 100 nodes. Similar to a TSP100-Policy, our TSP50-Policy can outperform
previous reinforcement learning construction approaches and requires fewer samples. With
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1,000 samples TSP50-Policy performs similarly to GAT-T (Wu et al., 2019) using 3,000
samples, at 1.86% optimality gap. These results are closer to optimal than previous learning
methods without further local search improvement as in GCN (Joshi et al., 2019). When
increasing to 2,000 steps, we outperform all compared methods at 1.37% optimality gap.

Table 2: Performance of policies trained on
50 and 100 nodes on TSP100 instances.

TSP100-Policy TSP50-Policy

Steps Cost Gap Cost Gap

500 7.91 1.84% 7.98 2.78%
1000 7.86 1.26% 7.91 1.86%
2000 7.83 0.87% 7.87 1.37%

Table 3: Ablation studies on 512 TSP50 in-
stances running policies for 1,000 steps.

Epoch: 10 Epoch: 200

Opt. Gap (%) Cost Opt. Gap (%) Cost

Proposed 3.00 ± 0.08 5.87 0.22 ± 0.01 5.72

(a) w/o bi-LSTM 203.87 ± 0.61 17.33 134.42 ± 0.56 13.37
(b) w/o GCN 9.74 ± 0.08 6.26 0.30 ± 0.01 5.72
(c) w/o bidirectional 17.94 ± 0.15 6.73 2.20 ± 0.05 5.82
(d) w/o best solution 4.55 ± 0.04 5.96 0.22 ± 0.02 5.72
(e) shared encoder 5.15 ± 0.06 6.00 0.23 ± 0.01 5.72

Running Times and Sample Efficiency Comparing running times is difficult due to
varying hardware and implementations among different approaches. In Table 1, we report the
running times to solve 10,000 instances as reported in (Kool et al., 2019; Joshi et al., 2019;
Wu et al., 2019) and ours. We focus on learning methods, as classical heuristics and solvers
are efficiently implemented using multi-threaded CPUs. We note that our method cannot
compete in speed with greedy methods as we start from poor solutions and require sampling
to find improved solutions. This is neither surprising nor discouraging, as one can see these
methods as a way to generate initial solutions for an improvement heuristic like ours. We
note, however, that while sampling 1,000 steps, our method is faster than GAT-T (Wu et al.,
2019) even though we use a less powerful GPU (RTX 2080Ti vs Tesla V100). Moreover, our
method requires fewer samples to achieve superior performance. The comparison to GAT
(Kool et al., 2019) is not so straightforward as they use a GTX 1080Ti and different number
of samples. For this reason, we run GAT (Kool et al., 2019) using our hardware and report
running times sampling the same number of solutions in Table 4. Our method is slower for
TSP20 and TSP50 sampling 2,000 solutions. However, as we reach TSP100, our method can
be computed faster and, overall, requires less time to produce shorter tours.

Ablation Study In Table 3, we present an ablation study of the proposed method. We
measure the performance at the beginning and towards the end of training, i.e. at epochs
10 and 200, rolling out policies for 1,000 steps for 512 TSP50 instances and 10 trials. We
observe that removing the LSTM (a) affects performance the most leading to a large 134.42%
gap at epoch 200. Removing the GCN component (b) has a lower influence but also reduces
the overall quality of policies, reaching 0.30% optimality gap. We then test the effect of the
bidirectional LSTM (c) replacing it by a single LSTM. In this case, gaps are even higher, at
2.20%, suggesting that encoding the symmetry of the tours is important. We also compare
to two variants of the proposed model, one that does not take as input the best solution (d)
and one that shares the parameters of the encoding units (e). For these cases, we note that
the final performance is similar to the proposed method, i.e. 0.22% optimality gap. However,
in our experiments, the proposed method can achieve better policies faster, reaching a 3.0%
gap at epoch 10, whereas (d) and (e) yield policies at the 4.55% and 5.15% level, respectively.
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Table 4: Performance of GAT (Kool et al.,
2019) vs our method. Results are compared
on the same hardware sampling the same
number of solutions.

Method TSP20 TSP50 TSP100
Cost Time Cost Time Cost Time

GAT {500} 3.839 (3m) 5.727 (10m) 7.955 (27m)
Ours {500} 3.836 (5m) 5.716 (7m) 7.907 (10m)

GAT {1,000} 3.838 (4m) 5.725 (14m) 7.947 (42m)
Ours {1,000} 3.836 (10m) 5.708 (13m) 7.861 (21m)

GAT {2,000} 3.838 (5m) 5.722 (22m) 7.939 (1h13m)
Ours {2,000} 3.836 (15m) 5.703 (29m) 7.832 (41m)

Table 5: Performance of OR-Tools vs our
method on TSPLib. See footnote 2.

Instance Opt. Ours {2000} OR-Tools

eil51 426 427 439
berlin52 7,542 7,974 7,944
pr76 108,159 111,085 110,948
rd100 7,910 7,944 8,221
eil101 629 635 650
lin105 14,379 16,156 15,363
ch130 6,110 6,175 6,329
pr144 58,537 61,207 59,286
ts225 126,643 127,731 127,763
a280 2,579 2,898 2,742

Avg. Opt. Gap 0.00% 4.56% 3.79%

Generalization to Real-world TSP instances In Table 5, we study the performance
of our method on TSPlib (Reinelt, 1991) instances. In general, these instances come from
different node distributions than those seen during training and it is unclear whether our
learned policies can be reused for these cases. We compare the results of the policy trained
on TSP100 sampling actions for 2,000 steps to results obtained from OR-Tools. We note
that for the 10 instances tested, our method outperforms OR-Tools in 5 instances. These
results are encouraging as OR-Tools is a very specialized heuristic solver. When we compare
optimality gaps (4.56% vs 3.79%)2 we see that our learned policies are not too far from
OR-Tools even though our method never trains on instances with more than 100 nodes. The
difference in performance increases for large instances, indicating that fine-tuning or training
policies for more nodes and different distributions can potentially reduce this difference.
However, similar to results in Table 2, our method still can achieve good results on instances
with more than 100 nodes, such as ts225 (0.86% gap).

8. Conclusions and Future Work

In this work, we introduced a novel deep reinforcement learning approach for approximating
a 2-opt improvement heuristic for the Euclidean Traveling Salesman Problem (TSP). We
proposed a neural architecture with graph and sequence embeddings capable of outperforming
state-of-the-art learned construction and improvement heuristics requiring fewer samples.
Our learned heuristics also outperform classical 2-opt ones reaching lower optimality gaps.

Expanding the proposed neural architecture to sample k-opt operations is an interesting
topic for future work. Moreover, exploring general improvement heuristics that can be
applied to a large number of combinatorial problems is another interesting idea for further
development. One drawback of our policy gradient method is the large number of samples
required to train a good policy. As a future direction, we intend to explore methods that can
be more sample efficient and can learn good policies requiring less training time. Lastly, we

2. We perform a more extensive comparison using 35 TSPlib instances in the Supplementary Materials. On
the 35 instances the gaps are 8.61% (ours) and 3.70% (OR-Tools).
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point out that future work on learning heuristics can be useful when solving problems where
standard solvers are not performant, e.g., a TSP with on-route stochastic travel costs.
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