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Abstract

Graph embeddings represent nodes as low-dimensional vectors to preserve the proximity
between nodes and communities of graphs for network analysis. The temporal edges (e.g.,
relationships, contacts, and emails) in dynamic graphs are important for graph evolution
analysis, but few existing methods in graph embeddings can capture the dynamic informa-
tion from temporal edges. In this study, we propose a dynamic graph embedding method
to analyze the evolution patterns of dynamic graphs effectively. Our method uses diffuse
context sampling to preserve the proximity between nodes, and applies dynamic context
graph embeddings to train discrete-time graph embeddings in the same vector space without
alignments to preserve the temporal continuity of stable nodes. We compare our method
with several state-of-the-art methods for link prediction, and the experiments demonstrate
that our method generally performs better at the task. Our method is further verified
using a real-world dynamic graph by visualizing the evolution of its community structure
at different timesteps.
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1. Introduction

Graphs describe the relationships between entities, such as social relationships within a pop-
ulation, interactions between biological proteins, and co-occurrence relationships between
words. Dynamic graphs are very common in many application domains in which entities
and connections change over time, such as email graphs and instant messaging graphs. An-
alyzing these graphs can provide insight into evolution patterns in these domains. Recently,
dynamic graph analysis has received considerable attention, and many embedding-based
approaches have been proposed for temporal link prediction Nguyen et al. (2018), node
prediction Zhou et al. (2018), and multi-label node classification Ma et al. (2018). Thus,
utilizing embeddings to investigate graph evolution is a promising research direction.

Previous methods for graph embeddings, such as matrix factorization Cao et al. (2015),
random walk Perozzi et al. (2014); Grover and Leskovec (2016); Ribeiro et al. (2017), deep
neural network Cao et al. (2016); Wang et al. (2016); Ni et al. (2018); Dai et al. (2018), and
many others Tang et al. (2015); Gu et al. (2018), generally focus on static graphs to preserve
the proximity between nodes. These methods fail to capture the temporal information in
dynamic graphs. Recently, continuous-time dynamic graph embeddings Nguyen et al. (2018)
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have been used to learn continuous changes in temporal graphs via temporal walk, which is
a walking strategy with a time-ascending order. However, this method represents all graph
information in one embedding and cannot effectively capture the temporal changes of nodes
over time. DynGEM Kamra et al. (2017) uses a deep autoencoder model to learn discrete-
time dynamic graph embeddings incrementally. DynTriad Zhou et al. (2018) seeks to train
adjacent graphs in a dynamic graph jointly into a sequence of embeddings by imposing
a triad. However, these discrete-time dynamic graph embedding methods focus only on
learning representations from adjacent snapshots and ignore the latent context information
behind all snapshots.

In this study, we attempt to learn discrete-time graph embeddings for dynamic graphs.
Each node has the same number of low-dimensional vectors as the number of timesteps,
and both the proximity and temporal continuity of each node are preserved in the dynamic
graph embedding. A direct method to solve this problem is to learn each graph separately
via static graph embedding methods, and then align all graph embeddings into the same
vector space by alignment methods Hamilton et al. (2016). However, it is challenging to
align these embeddings, because of nonlinear movements of evolving nodes, and such align-
ment error would reduce the performance of downstream tasks. Therefore, we propose a
Dynamic Context Graph Embedding (DCGE) method, based on Bayesian network theory
and Bernoulli prior probability, to learn a sequence of snapshots in a dynamic graph and
generate continuous embedded vectors for nodes in the same vector space, without addi-
tional embedding alignments. DCGE can capture how each node changes from one snapshot
to the next by jointly learning context embeddings, which embed the context information
of each node through all snapshots as the sharing parameters. Generally, this study makes
the following contributions:

• We propose a diffuse context sampling algorithm based on Bayesian network theory,
and a novel dynamic graph embedding method that incorporates latent context in-
formation into graph embedding learning. The context embeddings can be learned
through multiple snapshots jointly, to retain temporal context information.

• Our method is more effective for link prediction than other state-of-the-art techniques,
on both continuous-time and discrete-time graphs.

• Our method can be used to analyze and visualize the evolution of a graph while
preserving the temporal continuity of stable nodes and community structure over
time.

2. Related Work

With the rise of social networks (e.g., Facebook and Twitter) and big data (millions or
billions of interaction records), graph embedding methods have attracted considerable at-
tention from both industrial and academic researchers. The key point of graph embed-
dings is to learn a low-dimensional vector representation for each node and to preserve the
proximity between nodes, which can be used for many downstream tasks, including node
classification Perozzi et al. (2014), link prediction Ou et al. (2016), node clustering Wang
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et al. (2017), anomaly detection Hu et al. (2016), and collaboration prediction Chen and
Sun (2017).

Some graph embedding methods are based on matrix factorization Cao et al. (2015);
these construct a k-step transition probability matrix to measure node similarity at different
scales. Inspired by the good performance of word2vec in natural language processing,
researchers have incorporated random walk into the skip-gram model Mikolov et al. (2013a)
to learn graph embeddings; such methods include DeepWalk Perozzi et al. (2014) and
node2vec Grover and Leskovec (2016). These methods use random walk to produce a series
of node sequences as the text and apply the skip-gram model to learn graph representations.
Struc2vec Ribeiro et al. (2017) focuses on the structural identities of nodes and constructs a
weighted multilayer graph for random walk to capture the hierarchical structural similarity.
Recently, considerable attention has been attracted by some embedding methods based on
deep neural networks Wang et al. (2016); Cao et al. (2016); Ni et al. (2018); Hamilton et al.
(2017); Veličković et al. (2018) for learning nonlinear mapping functions. To enhance the
robustness of representations, Dai et al. employed generative adversarial graphs to capture
latent features in graph embeddings Dai et al. (2018).

Most existing graph embedding methods focus only on static graphs, but learning dy-
namic graph embedding is an active research topic. CTDNE Nguyen et al. (2018) incorpo-
rates temporal information into existing graph embedding methods based on random walk
by introducing a time-series order. DynGEM Kamra et al. (2017) combines deep autoen-
coders with a layer expansion to generate embeddings, and can handle dynamic graphs with
a growing size. DynTriad Zhou et al. (2018) focuses on a local structure, called a triad,
to learn the proximity information and evolution patterns. DepthLGP Ma et al. (2018)
tackles the issue of updating out-of-sample nodes into graph embeddings by combining a
probabilistic model with deep learning.

Existing methods focus only on a static graph to consider the influence of neighbors Tang
et al. (2015); Hamilton et al. (2017); Veličković et al. (2018), or process predefined motifs
in temporal graphs Zhou et al. (2018). In contrast, DCGE learns the global context em-
beddings by combining them with local context information through the dynamic network
with multiple snapshots. In this manner, the context characteristics of nodes can be used
to generate reasonable graph embeddings.

3. Problem Definition

In this study, we seek to solve the problems of the proximity and temporal representation
of dynamic graphs. A dynamic graph is defined as follows:

Definition 1 (Dynamic Graph) A dynamic graph is a series of graphs Γ(V,E) = {G1, ..., GT },
where Gt = (Vt, Et), V and E include all nodes and edges in Γ, T is the number of graphs,
Vt ⊆ V is a node set, and Et ⊆ E includes all temporal edges within the timespan [Pt, Pt+1].
Each ei = (u, v, pi) ∈ Et is a temporal edge between the node u ∈ Vt and the node v ∈ Vt at
time pi ∈ [Pt, Pt+1].

Our goal is to learn dynamic graph embeddings Y1, ..., YT and Yt ∈ R|Vt|×D, where |Vt| is
the number of nodes at timestep t and D is the dimension of the embeddings. The concept
of dynamic graph embeddings is defined formally as follows:
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Definition 2 (Dynamic Graph Embedding) Given a dynamic graph Γ(V,E) = {G1, ..., GT },
a dynamic graph embedding projects each node u ∈ Vt into a low-dimensional vector space

by a mapping function fg : u 7→ y
(t)
u ∈ RD, D � |Vt|, t ∈ [1, T ].

Each embedding vector y
(t)
v is a representation of node v in graph Gt, and different repre-

sentations of node v are distinct, because of the various graph structures in each snapshot.
Even though a dynamic graph changes over time, the properties of each node that inter-
acts with the other nodes are mostly stable. To use this context information in different
snapshots sufficiently, we introduce the definition of context graph embedding as follows:

Definition 3 (Context Graph Embedding) Given a dynamic graph Γ(V,E) = {G1, ..., GT },
a context graph embedding encodes all of the local context information of a node u ∈ V
from each temporal graph Gt to a single low-dimensional vector by a mapping function
fc : u 7→ cu ∈ RD, D � |V |. Each node has a unique context graph embedding.

A dynamic embedding matrix Yt ∈ R|Vt|×D is used to represent the proximity and
temporal properties for each graph Gt, and a context graph embedding matrix C ∈ R|V |×D
represents the temporal context information of each node. The dynamic graph embedding
and context graph embedding generally satisfy the following properties:

• Proximity Preservation. The embeddings should preserve the proximity between
nodes, i.e., if nodes u and v are connected, or have similar neighbor nodes at timestep

t, y
(t)
u and y

(t)
v should be located nearby in the vector space.

• Context Consistency. Although dynamic graphs include multiple snapshots, cv
should retain the stable context properties of node v as the neighbor of other nodes.
For example, if (v, u) ∈ Et and (v, w) /∈ Et, 〈cv, ytu〉 > 〈cv, ytw〉, where 〈a, b〉 is the inner
product of a and b. Moreover, if (v, u) ∈ Et and (v, u) /∈ Et+1, 〈cv, ytu〉 > 〈cv, yt+1

u 〉.

• Temporal Continuity. The embeddings should preserve the temporal similarity of

stable nodes, i.e., if a node u has similar neighbors at timesteps t and t+ 1, y
(t)
u and

y
(t+1)
u should be located nearby in the vector space.

Our DCGE model is designed to preserve the characteristics mentioned above.

4. Proposed Method

Our proposed method, DCGE, includes two main components: diffuse context sampling and
dynamic graph embedding learning. Diffuse context sampling, based on Bayesian network
theory, aims to generate the context for each node, to capture the desirable context for
each node in every snapshot. We use the Bernoulli prior probability model to learn the
adjacent similarity (direct connection between two nodes) and context similarity (internal
connection between a node and its context) jointly, to embed the dynamic graph.

The remainder of this section is organized as follows. First, we introduce a diffuse
context sampling algorithm based on Bayesian network theory. Second, we discuss how
to take account of both adjacent similarity and context similarity with the Bernoulli prior
probability model, to ensure that our dynamic graph embeddings are aligned naturally.

500



Learning Dynamic Context Graph Embedding

A

B C

D

Figure 1: An example of a Bayesian network, which is a DAG.

4.1. Diffuse Context Sampling

Context is a common concept in natural language processing (NLP) that refers to the
adjacent words of a word in a sentence. Deepwalk Perozzi et al. (2014) introduces the
context of nodes into graph analysis by using random walk combined with the skip-gram
model, but assumes that the context is independent. In a graph, the context is an h-hop
neighbor set of the target node v (for example, like a subgraph without v). Intuitively, the
neighbors of node v are strongly interrelated, and influence node v by a complex diffusion
process. Generally, we can compute the multivariate dependent joint conditional probability
distribution as

P (x1, x2, ..., xn) = P (x1)P (x2|x1)...P (xn|x1, x2, ..., xn−1). (1)

Because the joint distribution between different variables is complex, it is difficult to com-
pute P (x1, x2, ..., xn) directly. In a Bayesian network, each node stores the joint conditional
probabilities of all direct parent nodes and is independent of the other (indirect) parent
nodes in a directed acyclic graph (DAG). As shown in Figure 1, the other nodes influence
the target node via cascading transmission. A Bayesian network assumes that the condi-
tional probability of the target node depends only on its parents. As a consequence of this
property, Equation 1 can be simplified to

P (x1, x2, ..., xn) =
n∏

i=1

P (xi|Parents(xi)). (2)

Intuitively, the transfer probabilities of a node from its parents are truly different; that is, the
influence of celebrities is more powerful than the influence of ordinary people. Most graphs
express this information by the weights on the edges. Previous work, such as PageRank Page
(1997), use the node degree to estimate the importance of each node (page). We use the
weight proportion as the empirical distribution to compute the transfer probability of edge
(v, u) from node v to node u, and the conditional probability is

P (x|v) =
wv,x∑

(v,u)∈E wu,v
, (3)

where wu,v is the weight of edge (u, v). We use the above formula to measure the transfer
probability in the Bayesian network. We define P (xi|Parents(xi)) as

P (xi|Parents(xi)) =
∏

v∈Parents(xi)

P (xi|v). (4)
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Figure 2: An example of reconstructing a context as a Bayesian network. The conditional
probability of node 1 can be computed as P (x = 1|Parents(1)) = P (x = 1|x =
3)P (x = 1|x = 5)P (x = 1|x = 2)P (x = 1|x = 4).

Therefore, we can easily combine Equation 1 with the equations above:

P (x1, x2, ..., xn) =
n∏

i=1

∏
v∈Parents(xi)

wv,xi∑
(v,u)∈E wu,v

. (5)

For example, as shown in Figure 3, an impact diffusion process can be reconstructed as a
DAG. Through such a transfer relationship, the relation between a node and its context
is more interpretable. Therefore, we use the proposed diffusion context sampling method,
based on Bayesian networks, to generate high-quality contexts for each node.

First, we initialize the context set S(v) = v. Second, we randomly select a node u from
S(v) and compute the transition probability of each edge (u, x) ∈ E as Equation 3. The
next node is chosen by Equation 3 and we add node x to S(v). Again, we randomly select
another node from S(v) and repeat this process until the size of S(v) is k + 1. Finally,
we remove node v from S(v) and receive the context. Notice that our method can also be
applied to an undirected graph by converting each undirected edge to two directed edges.
The detailed pseudocode for context sampling is presented in Algorithm 1.

Algorithm 1 Diffuse Context Sampling
Input: k the maximum number of nodes

G1, ..., GT the snapshots to sample
Output: Context Set S

S = {}
for t ∈ (1, T ) do

for each v ∈ Vt do
S(v) = {v}
while size(S(v)) ≤ k+1 do

Randomly select node u ∈ S(v)
Select edge (x, u) ∈ Et as Eq.4
Add x to S(v)

end while
Add S(v)− v to S

end for
end for
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4.2. Dynamic Context Graph Embedding

In this section, we introduce how to learn dynamic graph embeddings with the character-
istics mentioned in Section 3. To preserve the proximity between nodes, we introduce the
concepts of neighbor similarity loss and context similarity loss. First, neighbor similar-
ity suggests that connected nodes should be embedded closely in the latent representation
space. Therefore, we compute each pair of connected nodes to estimate the neighbor sim-
ilarity. Second, the context similarity loss solves two requirements in learning dynamic
graph embeddings. One is the alignment requirement, which forces graph embeddings in
different snapshots to be aligned into the same vector space. The other requirement is to
learn the context property of nodes through all snapshots, to use the context information
adequately. Moreover, we assume that a dynamic graph will evolve smoothly over time, so
graph embeddings in adjacent snapshots should be smoothed by our temporal smoothness
loss. We discuss each type of loss mentioned above in the following.

Adjacent proximity, or first-order proximity, expresses the direct relationship between
two nodes connected by an edge. A connection between two entities could represent an
interaction, a phone call, or a friendship.

Adjacent similarity loss. Because nodes coexist with each other via edges, we measure
the joint probability of an existing edge e(i, j) as

P+
i,j =

1

1 + e−〈yi,yj〉
, (6)

where yi ∈ RD is the low-dimensional vector representation of node i, and 〈a, b〉 is the
inner product of a and b. We use the Bernoulli distribution as the empirical distribution of

existing edges. The prior probability can be defined as P̂+
i,j =

wi,j

W , where W =
∑

(i,j)∈E wi,j

and wi,j is the weight of edge e(i, j), which represents the strength of the relationship. For
example, by default, in an unweighted graph, wi,j = 1 for existing edges and wi,j = 0
for nonexistent edges. To preserve first-order proximity, we use KL-divergence to measure
the distance between two distributions; we define the positive adjacent similarity loss, with
some simplification, as

Le+ = −
∑

(i,j)∈Et

wi,j logP+
i,j . (7)

The edges of the graph are positive samples, and we consider the nonexistent edges as
negative samples with the probability P−i,j . The negative adjacent similarity loss is

Le− = −
∑

(i,j)/∈Et

wi,j logP−i,j , (8)

where we notice that wi,j is naturally set to zero; therefore, we cannot optimize the negative
adjacent similarity loss directly. Because the value of the sigmoid function is in the range
(0,1), we redefine Equation 8 as

Le− = −
∑

(i,j)/∈Et

log(1− P−i,j). (9)

The total adjacent similarity loss is

Le = Le+ + Le− . (10)
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Although an edge is the most direct relationship in a graph, first-order proximity alone is
insufficient to describe the structure of a graph. Single-neighbor similarity can estimate the
direct coexistence relationship between nodes, but ignores the context information that im-
plies potential connections. Second-order proximity is an important property for exploring
the indirect relationship between nodes, and has been applied well by previous work Tang
et al. (2015). We use context embeddings to preserve the k-order (k ≥ 2) proximity of
nodes in dynamic graphs.

Context similarity loss. Assuming that the context of each node in the graph is
stable, we aim to find a representation for each context in the latent space that preserves
the property of second-order, or higher-order, proximity of nodes. Random walk-based
models Perozzi et al. (2014); Grover and Leskovec (2016); Ribeiro et al. (2017) split a fixed
window in walks as the context of nodes. Instead of random walk using such a linear transfer
probability, we use a diffuse context sampling method to generate the context of each node,
as we discuss in Section 4.1; this method is a nonlinear transfer probability process. To learn
context information from the latent space, we introduce context embedding C ∈ R|V |×D.
Context embedding has been used to align discrete-time embeddings in the dynamic word
embedding method Rudolph and Blei (2018). The context of an entity in a graph can be
the neighbors around the corresponding node. Even though context changes continually in
a dynamic graph, most nodes have stable context properties. Overall, the context vector
can reflect the stable context property of each node and group all embeddings into the
same vector space. Context proximity should be transductive; for example, if 〈yi, yk〉 >
〈yj , yk〉, then 〈ci, ck〉 > 〈cj , ck〉, where 〈a, b〉 is the inner product of a and b. Therefore,
the empirical probability of a node v that has a k-node context S(v) is P̂ (v|S(v)). As we
discuss in Section 4.1, computing P̂ (v|S(v)) directly is extremely difficult because of the
complex interaction in contexts, and we can assume that the context is a Bayesian network.
According to Bayesian theory, P̂ (v|S(v)) can be changed to

P̂ (v|S(v)) =
P (S(v)|v)P (v)

P (S(v))
. (11)

To simplify our model, we assume P (S(v)) =
∏

u∈S(v) P (u) and P (v) = d(v)∑
u∈V d(u) , where

d(v) =
∑

(u,v)∈E wu,v. We then combine Equations 1, 2, and 11 as

P̂ (v|S(v)) =
P (v)

P (S(v))
P (u1|v)P (u2|u1, v)...P (uk|u1, u2, ..., v), (12)

where u1, ..., uk ∈ S(v) and P (ui|u1, ..., v) is the transfer probability of node ui in the
Bayesian network that is generated by the diffuse context sampling method described in Sec-
tion 4.1. Notice that we do not need to compute the conditional probability P (ui|u1, ..., v)
again, because it is computed in the diffuse context sampling process, according to Equa-
tions 4 and 5, and we define

P (ui|u1, ..., ui−1) =

i−1∏
j=1

P (ui|uj), (13)

=
i−1∏
j=1

wuj ,ui∑
(uj ,r)∈E wuj ,r

. (14)
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Thus, the conditional probability between node v and its context S(v) is

P (v|S(v)) = σ(
〈yv,

∑
j∈S(v) cj〉
k

), (15)

where σ(·) is the sigmoid function σ(x) = 1
1+e−x . In addition, we use KL-divergence to

measure the distance between P (v|S(v)) and its empirical distribution P̂ (v|S(v)) as the
context similarity loss function:

Lcs = −
∑
v∈V

P̂ (v|S(v)) log σ(
〈yv,

∑
u∈S(v) cu〉
k

). (16)

Temporal smoothness loss. To penalize the adjacent embedding vectors yt−1
v and ytv

for drifting too far from each other, the temporal smoothness loss is

Lsmooth =

{∑
v∈V ‖ytv − yt−1

v ‖2 t ≥ 2

0 t = 1
(17)

Finally, we group all likelihoods as the optimization objective:

arg min
{Y1,...,YT },C

T∑
t=1

(Lt
e + Lt

cs + Lsmooth). (18)

4.3. Optimization

Because negative edges are far more numerous than positive edges, computing all of the
negative edges is extremely time-consuming. Therefore, we use negative sampling, to ran-
domly select negative edges, to reduce the computation time of Le− . In this paper, we use
the unigram distribution Mikolov et al. (2013b) raised to the power of 0.75. We denote the
set of negative sampling edges by E−t , and reformulate Equation 9 as

Le− = −
∑

(i,j)∈E−t

log(1− P−i,j). (19)

Normalization. Intuitively, the embeddings should be normalized, to improve the
training and encourage convergence. Therefore, we force a normalization operation on
every embedding vector at each epoch. This operation can help to train our model faster.
The general formula for normalization is

yv = (yv1 , yv2 , ..., yvD), (20)

ŷv = (ŷv1 , ŷv2 , ..., ŷvD), (21)

ŷvi =
yvi − µ

Σ
, (22)

µ =
1

D

D∑
i=1

yvi ,Σ =
1

D

D∑
i=1

(yvi − µ)2. (23)
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Figure 3: The main process describes how DCGE works. We split a dynamic graph into
T snapshots, and train graph embeddings Y1, ..., YT for each snapshot. The con-
text embedding C is shared across all snapshots and is trained with the graph
embeddings jointly.

Initialization. We initialize each embedding matrix, including C and Y1, ..., YT , with
Gaussian random initialization, as C, Y1, ..., YT ∼ N(0, 1).

We use Adam Kingma and Ba (2015) as an optimizer, to optimize Equation 18 with a
proper learning rate γ = 0.001. In our implementation, we train our model with a mini-
batch size of 128, and repeat this process until the early stopping within 20 steps, to avoid
overfitting. More details of our model are shown in Algorithm 2.

Algorithm 2 DCGE
Input: A dynamic graphs Γ = {G1, ..., GT }, Gt = (Vt, Et)

embedding size D
context size k
negative samples q

Output: Graph embeddings Y1, ..., YT

Initialize embedding matrix Y1, ..., YT randomly
Initialize context matrix C randomly
for n = 1→ N do

Sample S from Context Sampling(k,Γ)
Sample E−t from {G1, ..., GT }
Computing loss L on S(v) and (Et, E

−
t ) according to Eq 18

Optimize L using Adam then update Y1, ..., YT and C
end for

5. Experiments

Our method was evaluated by the link prediction task (continuous-time and discrete-time
dynamic graphs) and dynamic graph visualization. The former is a classical method to
assess the effectiveness for capturing dynamic changes in proximity in adjacent timesteps.
The latter focuses on showing the evolution of relationships in the dynamic graph. The
experiments were performed on Intel i7 8700K (CPU), RTX2070 (GPU), 32 GB (memory).

For the first task, we used five datasets collected from the Graph Repository Rossi and
Ahmed (2015); all datasets are temporal and real. Table 1 shows the statistics of these
datasets.
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Table 1: The statistics of dynamic graphs. |V | = number of nodes; |E| = number of tem-
poral edges; T = number of timesteps in the training data.

Dataset |V | |E| T

mathoverflow 24,818 506,550 2350
ia-facebook 46,952 876,993 1591

soc-epinions 131,828 841,372 944
sx-askubuntu 159,316 964,437 2047
sx-superuser 194,085 1,443,339 2426

For the second task, we implemented t-SNE Maaten and Hinton (2008) on a dynamic
graph, to visualize the structure changes of each snapshot and demonstrate the advantages
of DCGE.

5.1. Baseline Methods

Our method is a discrete-time graph embedding method; we selected comparable base-
line methods from different categories. Node2vec and GAT are two representative static
methods: a random walk-based model and a graph neural network-based model. We se-
lected one continuous-time graph embedding method (CTDNE) and two static methods
for continuous-time link prediction. For discrete-time link prediction, we compared DCGE
with two discrete-time graph embedding methods (GynGEM and DynTriad).

5.2. Quantitative Results

Link prediction is a common application for evaluating the performance of graph embed-
dings. We set two different prediction tasks, continuous-time link prediction and discrete-
time link prediction, to compare DCGE with other methods.

Continuous-time link prediction. A continuous-time graph is a single graph with
timestamps on its edges. To generate the training data and testing data, we sorted all
temporal edges in time-ascending order, as suggested in Nguyen et al. (2018). We then
used the first 75% as the training data (one graph) and the remaining 25% as the testing
data (positive links). In the testing, we further randomly sampled an equal number of
negative links. For static node embedding methods (Node2vec and GAT) and CTDNE,
we learned node embeddings of the current snapshot during training. In the testing, we
used the learned model to predict links in the testing data. For node embedding-based
methods, we computed the similarity between two nodes by the L2 distance of their node
embeddings to predict the probability of existence of an edge between the two nodes. We
used a logistic regression model as the classifier for edge existence classification, to improve
the performance of node embedding-based methods. When DCGE is used for learning static
graphs, the context embedding retains only the context information in one graph. Therefore,
our model is equivalent to learning two types of embedding for each node, which capture
the proximity information and context information separately, to improve the performance.
In this task, we removed the temporal smoothness loss in Equation 18. Table 2 shows the
AUC scores of the continuous-time link prediction task; DCGE achieves better performance
than other state-of-the-art methods.

507



Chen Tao Lin

Table 2: AUC scores of link prediction in continuous-time dynamic graphs.

Dataset Node2vec CTDNE GAT DCGE

mathoverflow 0.754 0.774 0.801 0.813
ia-facebook 0.789 0.811 0.822 0.849

soc-epinions 0.713 0.758 0.816 0.823
sx-askubuntu 0.701 0.772 0.797 0.834
sx-superuser 0.705 0.783 0.811 0.815

Table 3: AUC scores of link prediction in discrete-time dynamic graphs.

Dataset DynGEM DynTriad DCGE

mathoverflow 0.765 0.792 0.828
ia-facebook 0.794 0.816 0.884

soc-epinions 0.765 0.821 0.837
sx-askubuntu 0.758 0.805 0.817
sx-superuser 0.756 0.796 0.809

Discrete-time link prediction. This task is to evaluate the ability to capture the
evolution of links in discrete-time dynamic networks with multiple snapshots. We split the
events into 10 parts equally and constructed 10 snapshots for discrete-time node embeddings
methods (DynGEM and DynTriad). The first nine snapshots were the training dataset and
the last nine snapshots were used for testing. Similarly to continuous-time link prediction,
discrete-time node embedding methods use the node embedding Yt to predict links in Gt+1,
except the last snapshot; we report the average performance of different snapshots. The
key of discrete-time link prediction is to preserve the temporal information and relative
community structure. DCGE uses the context information that other methods ignore.
Table 3 demonstrates that our method outperforms the other methods in all cases. In
contrast to DynTriad Zhou et al. (2018)—which learns the process of a closed triad, focusing
on a 3-node subgraph—DCGE uses the k-node context information to preserve the higher-
order proximity between nodes.

5.3. Qualitative Results

To analyze evolution patterns of real-world dynamic graphs, we visualized the dynamic
graph in 2D space using t-SNE Maaten and Hinton (2008). We conducted a qualitative
analysis to understand the distinctive power of the dynamic embeddings learned by DCGE
and compared our embeddings with those of DynTriad, the state-of-the-art discrete-time
embedding method. The primary school data were collected from face-to-face contacts
between students and teachers in a school in France during two school days in October
2009 Stehlé et al. (2011). The data describe 242 students from 10 classes, composed of five
grades, with each of the grades divided into two classes. There are 10 assigned teachers
for 10 classes. We chose to analyze the evolution patterns on the first day, because of the
similarity between the two days. We divided the dynamic graph into 10 snapshots, including
the interactions of students from 8:45 to 17:05. We encoded each class and teacher with
11 different colors. As shown in Figure 4 (a–b), the projection of students and teachers
from the first graph, both methods can distinguish the different classes well. Figure 4
(c–d) illustrates the school lunch break. Half of the students leave school, and the others
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(a) DCGE (t=1) (b) Triad (t=1) (c) DCGE (t=5) (d) Triad (t=5)

Figure 4: The visualization of DCGE and DynTriad in two different time slices, via t-SNE.
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Figure 5: The AUC scores of discrete-time link prediction for different settings of the hy-
perparameters k, D, and q. (d) is the runtime of DCGE with default settings
(k = 5, D = 128, and q = 10) for different datasets.

have lunch in the dining hall and then play in the playground, as represented in the school
timetable Stehlé et al. (2011). We note that DCGE can always keep the graph embeddings
of the same class nearby, and distinguish different classes in different snapshots, to facilitate
the analysis of the graph evolution.

5.4. Parameter Analysis

We selected three hyperparameters (k, q, and D) for parameter analysis, by evaluating the
performance of our method on the discrete-time link prediction task. We set the parameters
k = 5, q = 10, and D = 128 as the default values, and then changed each parameter within
a suitable range to evaluate the influence of these parameters. The context size decides
how wide each node can reach and generate relationship. Figure 5 (a–c) shows that the
performance of our method is stable when k = 5 and q = 10, and the higher value can
afford a little gain barely. Thus, the hyperparameters k and q are rarely sensitive for the
link prediction task, and we can tune their values to achieve better performance. Figure 5
(c) shows that the performance improves dramatically when D increases from 32 to 128.

5.5. Efficiency

Our proposed model is composed of two steps: context sampling and embedding learning.
Many contexts are generated from each node in the graph, and this step can be processed
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in parallel. Therefore, the time for sampling contexts is proportional to the number of
nodes in the graph. We implemented the main part of the embedding learning on a GPU
because most loss function computations can be transformed easily to matrix operations.
The complexity of our model is linearly related to the number of entities and the number of
edges, so the execution time of DCGE is linear to the dynamic graph size. Additionally, we
use mini-batch to train our model in our implementation. Figure 5(d) shows the run time
of our model with each dataset. Note that the run time increases linearly with increasing
graph size.

6. Conclusion

In this study, we have proposed an approach to capture the changes of dynamic graphs
with context proximity and temporal properties preserved. To evaluate our method, we
have compared our method with several state-of-the-art methods, including static and dy-
namic methods, with continuous-time and discrete-time link prediction. The experiments
demonstrated that our method achieves substantial gains and performs effectively in the
proximity and evolution analysis of dynamic graphs. For future work, it is desirable to
update nodes that never appear in the graph incrementally, instead of retraining. Most
existing graph embedding methods focus only on one noticeable facet of a graph, whereas,
in the real world, a graph includes diverse facets. Therefore, we would like to design a
method to incorporate multi-facet properties into graph embeddings.
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