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Abstract

We develop a model-free reinforcement learning approach to solve constrained Markov
decision processes, where the objective and budget constraints are in the form of infinite-
horizon discounted expectations, and the rewards and costs are learned sequentially from
data. We propose a two-stage procedure where we first search over deterministic policies,
followed by an aggregation with a mixture parameter search, that generates policies with
simultaneous guarantees on near-optimality and feasibility. We also numerically illustrate
our approach by applying it to an online advertising problem.
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1. Introduction

Applications of Reinforcement Learning (RL) in online advertising with recommendation
systems have been a topic of major research interests (Cai et al. (2018); Wang et al. (2018);
Wu et al. (2018)). However, despite their tremendous success, most RL-methods are not
designed to learn optimal policies under constraints, yet they appear ubiquitously when
facing budget or safety considerations. A standard framework for studying RL under con-
straints is the Constrained Markov Decision Process (CMDP), where the objective is to
maximize the long-run return, with constraints on one or several types of long-run costs.
In this paper, we consider the case where both the objective and the constraint are in the
form of an infinite-horizon cumulative discounted expectation, whereas the returns, costs
and transitions are revealed from sequential data. The goal is to design an efficient method-
ology for the constrained problem by assimilating classical optimality properties of CMDP
into RL, in order to efficiently use established RL approaches and obtain policies that enjoy
both near-optimality and feasibility.

The CMDP in the form described above is motivated from a range of important applica-
tions including online advertising. Sponsored search campaigns, for instance, are designed
based on predetermined budgets. Therefore, the marketer has to employ effective strategies
to accrue the maximum reward while observing certain monetary constraints throughout
the campaign. Similarly, in email campaigns, the marketer can only send out a limited
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number of emails under different constraints due to user fatigue or limited available dis-
count offers. Thus, it is important to consider information beyond potential revenues, such
as the remaining budget or the likely outcomes of different offers. Direct applications of
most RL-algorithms do not, in general, consistently produce optimal solutions within these
budget constraint. Thus, several lines of work have been devoted to resolve this challenge.
In the model-based regime (i.e., parametric-based transition), Geibel (2006) and Lee et al.
consider linear programming, Geibel (2006) considers state-space extension, and Feinberg
and Rothblum (2012) considers policy iterations. However, model-based algorithms suffer
when the state or action space gets large as estimating the transition dynamics of the users
can be very challenging or even infeasible. In model-free settings, constrained policy opti-
mization (CPO) (Achiam et al. (2017)) is designed based on trust region policy optimization
(TRPO) and its variants (Schulman et al. (2015, 2017)). Through surrogate function ap-
proximations, CPO provides safe iterations in each policy update, preventing any constraint
violation in the agent’s learning process. However, the implementation requires a safe pol-
icy to start with and it may be over-conservative to require a safe update in each iteration,
especially for areas of advertising where the budget constraint is not as hard a constraint
as, say, in auto-driving. Thus, the extra effort and setup in the implementation of CPO
might not be as desirable in our setting. Another line of work in tacking constrained MDP
uses primal-dual, Lagrangian-based RL methods (Chow et al. (2018); Tessler et al. (2018)),
which involves stochastic updates for solving the KKT conditions. In particular, Chow et al.
(2018) investigates constraints arising from risk criteria such as conditional-value-at-risk or
chance constraints while the reward constrained policy optimization (RCPO) in Tessler
et al. (2018) uses an actor-critic updates in the policy space and a stochastic recursion
on the Lagrange multiplier updates in the dual space. However, although convergence is
guaranteed for primal-dual methods in theory, in practice significant efforts are required to
tune the hyper-parameters, especially the learning rates of the dual variable, as the updates
become noisy and unstable around convergence and the training process can easily become
too slow or overly greedy.

In this paper, we address these issues on the primal-dual formulation and explain the un-
stable convergence behavior of primal-dual methods around the optimal value. Furthermore,
we design a mixing method which aims to alleviate the tuning issues by both exploiting
the low-dimensional feature of dual variables (when the number of budget constraints is
negligible compared to the cardinality of the state/action space) and investigating a special
splitting property of CMDPs (Feinberg and Rothblum (2012)). In particular, for a single
budget constraint, the “splitting” property refers to a structure of the optimal randomized
policy in CMDP where two possible actions are assigned with a binary distribution to a
certain state and the policy stays deterministic elsewhere (Feinberg and Rothblum (2012)).
This splitting property contributes to the unstable behaviors of the dual convergence be-
cause the RL method is essentially searching for two different optimal policies around the
optimal dual value. This splitting property arises from the extreme points of a linear pro-
gram (LP) formulation of CMDP via the occupation measure (Altman (1999)). It reveals
the saddle point structure of the Lagrangian and allows us to confine our policy search in
a smaller solution space.

Leveraging the splitting property, our approach bypasses the need to search over large
spaces of randomized policies and, by solving a sequence of RL problems without restriction
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under the Lagrangian relaxation, finds candidate deterministic policies with direct appli-
cation of classical RL-methods (e.g. Q-learning, TD-learning or TRPO). To improve on
the undesirable properties of primal-dual methods around convergence, we first propose
a discretization scheme which exploits the one-dimensional structure of dual variable and
allows for parallel computing. Then we propose a novel feasibility mixing procedure which
efficiently mixes the candidate policies and find an optimal randomized policy that would
achieve both optimality and feasibility. We provide theoretical justifications on our frame-
work, and also conduct experiments on an online advertisement problem to demonstrate its
performance.

The remainder of this paper is organized as follows. Section 2 presents our problem
setting and notations. Section 3 describes our Lagrangian formulation and its implications.
Section 4 presents our main dual Q-learning algorithm that harnesses the splitting property
of CMDP in the Lagrangian formulation. Section 5 discusses practical implementation, and
Section 6 illustrates our experimental results.

2. Problem Setting

A Constrained Markov Decision Process (CMDP) can be formulated as follows. Let S be
the finite set of states, A the finite set of actions, and p(s, a, s′) the probability measure
governing the stochastic transition between states, namely

P(st+1 = s′|st = s, at = a) = p(s, a, s′)

with non-negative entries and
∑

s′ p(s, a, s
′) = 1. Let rt = r(st, at) be the corresponding

expected reward. Denote Π to be the space of stationary randomized policies π where

P(at = a|s0, a0, r1, s1, a1, ..., rt, st = s) = P(at = a|st = s) = π(s, a),

and
∑

a π(s, a) = 1, π(s, a) ≥ 0 for all a, s. Notice the stationarity comes from the fact that
the policy at each state s does not change with t. Moreover, if over any state s, π(s, a) is zero
for all but one action a ∈ A, then we say π ∈ Π0 ⊂ Π is a stationary deterministic policy and
denote this a by π(s). Suppose at each step t, the agent interacting with the environment
not only receives random (immediate) reward rt but also incurs random (immediate) cost
denoted by ct = c(st, at). Let s0 ∼ ρ be the distribution of the initial state and γ ∈ [0, 1]
be the discounted factor. We consider the following CMDP:

max
π∈Π

Es0∼ρ,π

[ ∞∑
t=1

γt−1rt

]

s.t. Es0∼ρ,π

[ ∞∑
t=1

γt−1ct

]
≤ B,

(1)

where Es0∼ρ,π denotes the expectation under policy π and initial distribution s0 ∼ ρ. We
confine our policy search in Π because it is well-known (see, e.g., Altman (1999)) that the
optimal policy π? for CMDP lies in the space Π. Also, we do not assume the distributions
of r(·, ·) c(·, ·), or p(·, ·, ·) are known.
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3. Lagrangian with Reduced Policy Space

A common way to solve CMDP (1) is to formulate it as the following LP (Altman (1999)):

max
x≥0

∑
s,a

xsar(s, a)

s.t.
∑
s,a

xsac(s, a) ≤ B,∑
a

xsa − γ
∑
s′,a

xs′ap(s
′, a, s) = ρ(s) ∀s,

(2)

where xsa =
∑∞

t=1 γ
t−1P(st = s, at = a|π, s0 ∼ ρ) is referred to as the occupation measure of

policy π under initial distribution ρ. It can be interpreted as the total discounted expected
number of times state-action pair (s, a) is visited under policy π, so that Eπ[

∑∞
t=1 γ

t−1rt] can
be seen to be expressible as

∑
s,a xsar(s, a) and similarly Eπ[

∑∞
t=1 γ

t−1ct] as
∑

s,a xsac(s, a),
and the second constraint in (2) follows from a first-step Markovian analysis. Moreover, it
is shown in Altman (1999) that an optimal randomized policy π? can be computed from an
optimal solution x? of (2) by letting

π?(s, a) =
x?sa∑
a x

?
sa

. (3)

However, formulating the above optimization problem requires the knowledge of r(s, a), c(s, a)
and p(s, a, s′) of the MDP which in our setting can only be learned implicitly. Also, the
number of state-action pair may get too large to use tabular methods. On the other hand,
the more efficient, large-scale approximate RL methods such as TD-learning, Q-learning or
TRPO (Sutton and Barto (2018); Watkins and Dayan (1992)) cannot directly help us with
the search of an optimal randomized policy. To address this issue, we first consider the dual
optimization problem (Bertsimas and Tsitsiklis (1997)) of (2):

min
λ≥0,v

∑
s

vsρ(s) + λB

s.t. vs ≥ r(s, a)− λc(s, a) + γ
∑
s′

p(s, a, s′)vs′ ∀s.
(4)

For fixed λ ≥ 0, the minimization in (4) is exactly the LP formulation for solving the
value function of an unconstrained MDP with adjusted reward rλt = rt − λct instead of rt
at each step t (plus the constant term λB), and the constraint follows from the Bellman
optimality equation (Puterman (2014)). This allows us to convert (1) into the form (5)
(shown below). Advantageously, for any fixed λ, because of its unconstrained nature, the
inner maximization problem in (5) now suffices to search for policy π in the deterministic
policy space Π0 instead of the randomized policy space Π. Hence we can apply many suitable
approximation algorithms in RL to search for the optimal deterministic policy (Sutton and
Barto (2018)). We have the following theorem (Notice the reduction of policy space into
Π0 as a key transition in this dual):

Theorem 1 Problem (1) can be reformulated as

min
λ≥0

max
π∈Π0

R(π, ρ)− λ
(
C(π, ρ)−B

)
(5)
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where R(π, ρ) , Es0∼ρ,π[
∑∞

t=1 γ
t−1rt] and C(π, ρ) , Es0∼ρ,π[

∑∞
t=1 γ

t−1ct].

Proof Based on our discussion and the LP duality, we only have to show that for any fixed
λ ≥ 0,

min
v

∑
s

vsρ(s)

subject to vs ≥ r(s, a)− λc(s, a) + γ
∑
s′

p(s, a, s′)vs′ ∀s
(6)

is equivalent to
max
π∈Π0

R(π, ρ)− λC(π, ρ). (7)

In particular, for fixed λ ≥ 0, problem (6) obtains the optimal expected total discounted
reward

∑
s vsρ(s) with adjusted reward rλt = rt−λct guaranteed by the Bellman optimality

constraint as well as the condition that ρ(s) > 0,∀s (Puterman (2014)). On the other hand,
given the discounted adjusted reward rλt , we know from classical MDP results that for any
unconstrained infinite-horizon discounted MDP there exists a stationary and deterministic
optimal policy π? ∈ Π0 for any initial state distribution satisfying ρ(s) > 0,∀s. Moreover,
the optimal expected total discounted reward is max

π∈Π0

R(π, ρ)− λC(π, ρ).

Theorem 1 suggests that the search for optimal policies can first proceed with a deterministic
policy search fixing some set of λ. Then, we optimize with respect to λ in (5) to find an
optimal λ? which closes the duality gap between (2) and (4) with optimal policies that
maximize the penalized expected reward rt − λ∗ct plus the term λ?B.

4. Policy Mixing and Dual Q-Learning

The two steps discussed above recover the optimal value of the primal (2). However, to
recover the optimal, possibly randomized policy, we need to look more closely at the dual
problem (5). To begin, it is known that if an LP has an optimal solution, then it also has
an optimal basic feasible solution (Bertsimas and Tsitsiklis (1997)), meaning that we can
find optimal solution x? with at most s + 1 non-zeros entries. This leads to the following
proposition.

Proposition 1 If ρ(s) > 0 ∀s, then there is an optimal policy π? for the primal problem
(1) with π?(s) following a deterministic action for all but possibly one state.

Proof Given that we can find optimal solution x? for problem (2) with at most s+ 1 non-
zero entries, if we further assume that ρ(s) > 0 for all state s, then the second constraint
of (2) would force any feasible solution x to satisfy

∑
a xsa > 0 for any s. This condition

implies that for any s, we can find at least one a such that x?sa > 0. Since x? has at most
s+ 1 non-zeros entries, we can have at most one positive entry among all entries of x?sa. It
then follows from (3) that the optimal policy π? for (1) is deterministic at all states except
possibly one, where the optimal policy splits into two possible actions.

Following Proposition 1, we can characterize an important property regarding the optimal
policy for (5). In particular, we consider the dual function

D(λ) , max
π∈Π0

R(π, ρ)− λ
(
C(π, ρ)−B

)
. (8)
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Theorem 2 Assume ρ(s) > 0 ∀s and the optimal policy π? for problem (1) is unique. Then
the maximization in (8), at the optimal λ∗ that solves (5), admits either a deterministic
optimal policy π?, or a pair of optimal deterministic policies π1, π2 with actions different in
one state s and π? = (1− t)π1 + tπ2 for some 0 < t < 1.

Proof Let π? be the optimal, possibly randomized policy for the primal (1). By the LP
duality (Bertsimas and Tsitsiklis (1997)), we know the optimal values for (1) and (5) are
equal and we must have, for some λ? ∈ argmin

λ≥0
D(λ) ≥ 0, that

R(π?, ρ) = min
λ≥0
D(λ) = D(λ?). (9)

If there exists λ? = 0 where (9) holds, then

min
λ≥0
D(λ) = D(0) = max

π∈Π0

R(π, ρ). (10)

Combining (9) and (10), we have R(π?, ρ) = max
π∈Π0

R(π, ρ) and by the uniqueness we have

π? = argmax
π∈Π0

R(π, ρ). The primal feasibility of (1) guarantees C(π?, ρ) ≤ B. In fact, notice

in this case, the optimal policy for the unconstrained MDP in (1) is actually feasible, and
thus CMDP (1) reduces to an unconstrained MDP.

On the other hand, if we have argmin
λ≥0

D(λ) > 0, then we observe thatD(λ) = max
π∈Π0

R(π, ρ)−

λ
(
C(π, ρ) − B

)
is the maximum of a finite number (i.e. the number of deterministic poli-

cies is finite) of linear functions in λ. Thus, D(λ) is piece-wise linear and convex in λ.
Since λ? > 0 is the global minimum of D(λ) and D(λ) is piece-wise linear, we must have

D+(λ?) = limt→0
D(λ?+t)−D(λ?)

t ≥ 0 and D−(λ?) = limt→0
D(λ?)−D(λ?−t)

t ≤ 0.
Now if λ? = argmin

λ≥0
D(λ) > 0 is not unique, then by convexity we can find an interval of λ

with the same optimal D(λ), implying the optimal deterministic policy under this λ is both
feasible (zero slope means C(π, ρ) = B) and optimal. Thus, suppose λ? = argmin

λ≥0
D(λ) > 0

is unique, then we have D−(λ?) < 0 < D+(λ?), and there exists some ε > 0 and policies
π1, π2 such that

D(λ) =D(λ?) +D+(λ?)(λ− λ?) = R(π1, ρ)− λ
(
C(π1, ρ)−B

)
(11)

for λ? ≤ λ ≤ λ? + ε and

D(λ) =D(λ?) +D−(λ?)(λ− λ?) = R(π2, ρ)− λ
(
C(π2, ρ)−B

)
(12)

for λ? − ε ≤ λ ≤ λ?. In particular, at λ?, we have

R(π1, ρ)− λ?
(
C(π1, ρ)−B

)
= R(π2, ρ)− λ?

(
C(π2, ρ)−B

)
(13)

which implies
π1 = π2 = argmax

π∈Π0

R(π, ρ)− λ?C(π, ρ). (14)
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We know from Bellman (2013) that for a finite unconstrained MDP problem, there exists
a unique optimal value function such that v?(s) ≥ vπ(s) for all state s. Thus, (14) and the
fact that ρ(s) > 0 ∀s implies that we must have

v?(s) = vπ1(s) = vπ2(s) ∀s (15)

where v? is the optimal value function for the MDP with adjusted reward rλ
?

t = rt − λ?ct
and vπi is the value of policy πi under this adjusted reward. This implies v?,vπ1 and vπ2

must satisfy all three forms of the Bellman equations:

v(s) = max
a

rλ
?
(s, a) + γ

∑
s′

p(s, a, s′)v(s′),

=rλ
?
(s, π1(s)) + γ

∑
s′

p(s, π1(s), s′)v(s′) = rλ
?
(s, π2(s)) + γ

∑
s′

p(s, π2(s), s′)v(s′),

(16)

for all s. Now, for any 0 ≤ t ≤ 1, let πt be the randomized policy πt = (1− t)π1 + tπ2. Then
the value of policy πt uniquely satisfies the following Bellman equation:

vπt(s) = (1− t)rλ?(s, π1(s)) + t · rλ?(s, π2(s))

+γ
∑
s′

(
(1− t)p(s, π1(s), s′) + tp(s, π2(s), s′)

)
vπt(s′) (17)

It follows from (16) that v? satisfies (17) and is thus the value function (i.e. fixed point)
of policy πt. Thus any policy πt, 0 ≤ t ≤ 1 is optimal for the MDP with adjusted reward
rλ

?

t = rt − λ?ct and achieves primal optimality in the sense that

R(π?, ρ) = D(λ?) = R(πt, ρ)− λ?
(
C(πt, ρ)−B

)
. (18)

Now, it follows from (11) and (12) that D+(λ?) = B − C(π1, ρ) > 0 and D−(λ?) =
B−C(π2, ρ) < 0. Furthermore, C(πt, ρ) can be shown to be a continous function of t. Thus,
we must have C(πt, ρ) = B for some 0 < t < 1. Then such πt satisfies not only primal
feasibility but also primal optimality due to (18):

R(π?, ρ) = R(πt, ρ)− λ?
(
C(πt, ρ)−B

)
= R(πt, ρ). (19)

The claim that π1 and π2 differ by one state now follows from (1) and the uniqueness
assumption. The other cases where one or both of D+(λ?) and D−(λ?) are 0 lead to either
t = 0 or 1, which further lead to deterministic policy. The analysis is similar so we omit it.

Theorem 2 postulates that the maximization of the Lagrangian or penalized objective
R(π, ρ)−λ∗

(
C(π, ρ)−B

)
generally leads to multiple (deterministic) optimal solutions, even

if the primal problem (1) has a unique optimal policy. Note that the maximization of
R(π, ρ)−λ∗

(
C(π, ρ)−B

)
is an unconstrained MDP, which allows us to use any classical RL

methods to learn its optimal policy. The key is that in order to retrieve the primal optimal
policy, we need to identify two optimal policies for this penalized objective, and mix them
together with a search for the optimal mixture parameter t.
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Before presenting practical algorithms for implementation, we first propose a straight-
forward theoretical procedure in Algorithm 1 that would demonstrate the asymptotic opti-
mality of our method. For demonstration, we would simply use Q-learning on the penalized
problem along with subsequent TD-learning for dual updates. However, we note that Al-
gorithm 1 can be replaced by any type of Actor-Critic updates as in Tessler et al. (2018).
Notation-wise, we use πλ to denote the optimal deterministic policy for penalized reward
rλt = rt − λct. Given the simple dual Q-learning method described in Algorithm 1, we
have the following Theorem 3. Notice the N chosen large is fixed and does not grow with
iterations.

Algorithm 1 Dual Q-learning on Candidates for Mixture

Input: Dual range 0 ≤ λmin < λmax, discretization parameter n, maximum episode E1

and E2, maximum trajectory M1 and M2, learning rate αe, εgreedy for the greedy policy
and discretized λmin = λ1 < ... < λn = λmax.
for i = 1 to n do

Initialize : e ← 0, Q̂ie, the Q-function array for storage (e.g. to 0), an estimate of
Qi(s, a) = Eπλi [

∑∞
t=0 γ

t(rt−λict)|s0 = s, a0 = a] and {v̂cost}ie cost value function array
for storage, an estimate of Eπλi [

∑∞
t=0 γ

tct|s0 = s].
repeat
e← e+ 1, initialize t← 0 and sample s0 ∼ ρ
while st is not terminal and t ≤M1 do

Take action at at st derived from Q̂ie−1 using εgreedy-greedy policy and ob-

serve rt+1, st+1, then let Q̂ie−1(st, at) ← Q̂ie−1(st, at) + αe
(
rt+1 − λict+1 +

γmax
a′
Q̂ie−1(st+1, a

′)− Q̂ie−1(st, at)
)

and update t← t+ 1

end while
Update Q̂ie ← Q̂ie−1.

until e ≥ E1 or changes in Q̂i are small
e← 0.
repeat
e← e+ 1, initialize t← 0 and sample s0 ∼ ρ
while st is not terminal and t ≤M2 do
{v̂cost}ie−1(st)← {v̂cost}ie−1(st) + αe

(
ct+1 + γ{v̂cost}ie−1(st+1)− {v̂cost}ie−1(st)

)
Update t← t+ 1

end while
Update {v̂cost}ie ← {v̂cost}ie−1.

until e ≥ E2 or changes in V̂ i
cost are small

Compute D̂(λi) =
∑

s(maxa Q̂
i(s, a))ρ(s) + λiB. Find πλi(s) = argmaxaQ̂

i(s, a)
end for
Output: π1 = πλi and π2 = πλi′ where λi = argmin{D̂(λj)|

∑
s v̂

j
cost(s)ρ(s) ≤ B} and

λi′ = argmin{D̂(λj)|
∑

s v̂
j
costρ(s) ≥ B, πλj 6= π1}.

Theorem 3 Assume ρ(s) > 0 ∀s, the optimal policy π? for problem (1) is unique and
there exists some λ? ∈ argmin D(λ) such that λmin < λ? < λmax. Fix n ≥ 0, assume for
each Qi-learning problem and TD-learning problem for 1 ≤ i ≤ n, every state and every

216



Constrained Reinforcement Learning via Policy Splitting

state-action pair are visited infinitely often. Furthermore, sequence αe satisfies∑
e

αe =∞ and
∑
e

α2
e <∞. (20)

Then there exists N large enough and εg small enough such that if we fix n = N and εgreedy ≤
εg, we will recover a pair of deterministic policies π1, π2 such that π? = (1− t)π1 + tπ2 for
some 0 ≤ t ≤ 1 with probability 1 as the number of episode E1, E2 →∞.

Proof Following Theorem 2, first consider the case where λ? > 0 is unique and D−(λ?) <
0 < D+(λ?). Then, as discussed in Theorem 2, (11) and (12), there exist some ε > 0 and
policies π′1, π

′
2 which differ by one state such that π? = (1− t)π′1 + tπ′2 for some 0 < t < 1,

D(λ) =D(λ?) +D+(λ?)(λ− λ?) = R(π′1, ρ)− λ
(
C(π′1, ρ)−B

)
(21)

for λ? ≤ λ ≤ λ? + ε and some deterministic π′1 while

D(λ) =D(λ?) +D−(λ?)(λ− λ?) = R(π′2, ρ)− λ
(
C(π′2, ρ)−B

)
(22)

for λ? − ε ≤ λ ≤ λ? and some deterministic π′2. It is clear from the definition of D(λ) and
our assumption on the uniqueness of π? that π′1 = πλ for λ? < λ < λ? + ε and π′2 = πλ for
λ? − ε < λ < λ?. Then, for n = N large enough, where (λmax − λmin)/N ≤ ε, we must
have some λ? − ε ≤ λi ≤ λ? ≤ λi+1 ≤ λ? + ε for some 1 ≤ i ≤ n and due to the strict
convexity of D(λ) around [λ? − ε, λ? + ε], we must have D(λi) < D(λi−1) < ... < D(λ1)
and D(λi+1) < D(λi+2) < ... < D(λn). Now, by the assumption on the Q-learning proce-
dure (infinitely often visit for state-action pair under ε-greedy policy, the Robbins-Monro
(Robbins and Monro (1985)) type condition (20)), it follows that the Qi-learning for ev-
ery 1 ≤ i ≤ n converges to the optimal Qi value (or εgreedy-optimal assuming optimistic,
large initialization for Q values (Even-Dar and Mansour (2002))) and we can recover the
optimal value (λ-adjusted) function maxaQ

i(s, a) with probability 1 as E → ∞ (Watkins
and Dayan (1992); Sutton and Barto (2018); Tsitsiklis (1994)). Thus, as E → ∞, we will
have D̂(λi) < D̂(λi−1) < ... < D̂(λ1) and D̂(λi+1) < D̂(λi+2) < ... < D̂(λn). On the
other hand, the assumption also guarantees that the TD learning on v̂jcost will converge

to v
λj
cost (or v

π
λj
εgreedy

cost , where π
λj
εgreedy is the εgreedy greedy policy from the optimal πλj ). If

we pick εgreedy > 0 small enough, we can make
∑

s |vπ
λj

cost(s) − v
π
λj
εgreedy

cost (s)|ρ(s) arbitrarily
small. However, we know from the piece-wise linearity and convexity of D(λ) that, for all

λj ≥ λ?, the gradient B − C(πλ, ρ) > 0 which implies
∑

s v
πλj
cost(s)ρ(s) = C(πλj , ρ) < B, and

we can find εgreedy small enough such that
∑

s v
π
λj
εgreedy

cost (s)ρ(s) < B and thus (in both cases)∑
s v̂

j
cost(s)ρ(s) < B with λi+1 = argmin{D̂(λj)|

∑
s v̂

j
cost(s)ρ(s) ≤ B} implying π1 = π′1 as

E1, E2 → ∞. Similarly we can show π2 = π′2. For other cases where λ? = 0 and one or
both of D+(λ?) and D−(λ?) are 0, it can be shown that the unique deterministic policy π?

can be recovered.

Theorem 3 guarantees that with suitable algorithmic parameter choices, Algorithm 1
can retrieve two candidate optimal policies such that their mixture gives rise to the optimal
randomized policy for the constrained problem (1). Next we will discuss in more detail the
implementation issues, including how to search for the mixture parameter.
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5. Discussion and Implementation

Theorem 3 not only gives us theoretical guarantees on recovering the candidates for optimal
mixtures, but also partially explains why the behavior of a direct primal dual method
becomes unstable around convergence. In particular, the splitting of action forces the primal
update to search for different optimal polices around the λ? and makes the convergence
especially difficult. To overcome such a difficulty, we use the mixing of policies which is to
be explained later in this section. The discretization of dual variable λ is designed for this
purpose as well. Notice this special discretization also allows for efficient parallel computing
on different λ. On the other hand, the conditions can be restrictive in practice and the
implementation for Algorithm 1 becomes inefficient as the accuracy parameters increase.
In particular, there are several main issues concerning the implementation of Algorithm 1:

1. How to find the a reasonable set of λmin, λmax?

2. What if Algorithm 1 cannot converge to the correct pair of policies (e.g. π1 and π2

differ by more than one state)?

3. Given two candidate policies π1, π2, and the results from Theorem 2 that π? = (1 −
t)π1 + tπ2 for some 0 ≤ t ≤ 1, how do we find t?

The first point is not a major concern. As mentioned, the dual variable λ is one-dimensional
and we can use many efficient RL methods such as Q-learning. In fact, we can use RCPO
efficiently before we run into convergence issues, at which point we can already observe
a good range of dual value λ for which the optimal λ? is likely to be contained in. To
address the second and third issues, we note that in both minimizing D(λ) and mixing
πt = (1− t)π1 + tπ2, it is critical to efficiently estimate C(π, ρ) for a given policy π.

Cost Evaluation. Suppose we have found πλ ∈ argmax
π∈Π0

R(π, ρ) − λC(π, ρ). Then an

estimate of C(πλ, ρ) can help evaluate a sub-gradient (Boyd and Vandenberghe (2004)) of
the piece-wise linear dual function D(λ), which is given by B−C(πλ, ρ). This in turn helps
decide a search direction for λ? based on first-order optimization methods. On the other
hand, when mixing the policies πt = (1− t)π1 + tπ2, we know from duality that

R(π?) = D(λ?) = R(πt, ρ)− λ?
(
C(πt, ρ)−B

)
. (23)

Thus, if we can find t such that C(πt, ρ) = B, it then follows from (23) that policy πt satisfies
primal feasibility and optimality simultaneously and is the solution of (1).

There are many ways to estimate C(π, ρ), e.g., TD-learning
∑

s vsρ(s), or Monte Carlo
by Sutton and Barto (2018). Thus, from now on we assume an efficient oracle EvalC(π, ρ)
which takes as input policy π and initial distribution ρ and outputs an estimate of C(π, ρ).

Dual Variable Range. Given the oracle EvalC(π, ρ), we can construct algorithms
that effectively select a reasonable pair of λmin and λmax. In particular, given a λ ≥ 0, if
we have found πλ by Q-learning on function D(λ), then by the convexity of D(λ), we know
if C(πλ, ρ) > B, it indicates λ ≤ λ? whereas if C(πλ, ρ) < B, it indicates λ ≥ λ?. Thus, we
can make use of the oracle EvalC(π, ρ) to estimate C(π, ρ). However, the estimate would
inevitably be corrupted by noise so we want to ensure an empirically over-budget policy π
(i.e. C(π, ρ) > B) is indeed over-budgeted, by setting a “safety margin” θ to account for
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Algorithm 2 Dual Variable Range Selection

Input: A threshold 0 < θ < 1 (e.g. θ = 1/2), step size λstep and a tolerance for budget
constraint τ .
Initialization: λ, λmin,λmax (e.g. 0)
Find πλ by Q-learning
if B − τ ≤ EvalC(πλ, ρ) ≤ B + τ , then

Break search and accept πλ as optimal policy.
end if
if EvalC(πλ, ρ) < (1− θ)B then

Set λmax = λ, Break Search and restart algorithm with λ← λ− λstep. (Also Break if
λmax = 0, suggesting the MDP is unconstrained.)

end if
if EvalC(πλ, ρ) > (1 + θ)B then

Set λmin = λ. Break Search and restart algorithm with λ← λ+ λstep.
end if

statistical significance. For example, if EvalC(πλ, ρ) > (1 +θ)B, then with high probability
we have C(πλ, ρ) > B and we can set λmin = λ. On the other hand, if during the search we
have found a policy πλ that is close to feasibility (i.e. C(πλ, ρ) ≈ B), then we make use of
weak duality (Bertsimas and Tsitsiklis (1997)):

R(πλ, ρ) ≈R(πλ, ρ)− λ
(
C(πλ, ρ)−B

)
= D(λ) ≥ R(π?, ρ),

and accept πλ as a near-optimal, near-feasible solution. Of course such cases will not occur
in general. Based on these discussion, we propose one possible Algorithm 2.

Feasibility Mixing. As we have discussed in (23), we need to build an oracle that given
two policies π1, π2 with C(π1, ρ) ≤ B and C(π2, ρ) ≥ B, we can find πt = (1 − t)π1 + tπ2

satisfying C(πt, ρ) = B. Here we make use of oracle EvalC again to present an approximate
algorithm that combines linear interpolation and bisection to quickly search for a feasible
policy. Specifically, for the interpolation part, we notice that, for L ≤ B ≤ U , (1−t)L+tU =
B where t = B−L

U−L . In practice, we may use a direct bisection. Feasibility mixing is
especially practical because we might only obtain approximately optimal candidate policies
π′1, π

′
2 (i.e. they might not be the optimal pair of polices) under two dual variables λ′1 and λ′2

(i.e. they might be different from the desired λ1 and λ2 in Theorem 2) from Algorithm 1 that
in turn might only be approximately optimal for λ′i (meaning that R(π′i.ρ)− λ′i(C(π′i, ρ)−
B) ≤ D(λi)). However, based on the piecewise-linearity and the convexity of D(λ), as long
as feasibility mixing is performed, it is straight-forward to show that the reward function of
the mixing policy πt satisfies D(λ?)−R(πt, ρ) = O(ε1 ·ε2 ·ε3) where ε1 = max1≤i≤2 |λi−λ?|,
ε2 = max1≤i≤2 |D(λi)−D(λ?)| and ε3 = max1≤i≤2 |R(π′i.ρ)− λ′i(C(π′i, ρ)−B)|.

6. Numerical Experiments

6.1. Environment Description and Setup

We evaluate the proposed algorithms on a real world dataset collected from [anonymized for
review purpose] during a sponsored search campaign portfolio which spans over six months
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Algorithm 3 Feasibility Mixing

Input: policies π1, π2 with EvalC(π1, ρ) ≤ B, EvalC(π2, ρ) ≥ B, a tolerance for the
budget τ
Initialize: t← B−EvalC(π1,ρ)

EvalC(π2,ρ)−EvalC(π1,ρ) , (or i← 1, ti ← 1/2 for direct bisection)

Set policy πt = (1− t)π1 + tπ2

if B − τ ≤ EvalC(πt, ρ) ≤ B + τ , then
Break search and accept πt as optimal policy.

end if
if EvalC(πt, ρ) < B − τ then

Update π1 ← πt and t← B−EvalC(π1,ρ)
EvalC(π2,ρ)−EvalC(π1,ρ) , (or i← i+ 1 t← t+ 1/2i)

end if
if EvalC(πt, ρ) > B + τ then

Update π2 ← πt and t← B−EvalC(π1,ρ)
EvalC(π2,ρ)−EvalC(π1,ρ) , (or i← i+ 1 t← t− 1/2i)

end if
Output: t (or πt).

and contains over a million distinct user search trajectories. The dataset provides ad click
records of anonymous users before conversion with their corresponding timestamps. The ad
click records are associated with a matching of the user’s query with a keyword group. This
particular dataset has ten different keyword groups each containing hundreds of keywords.
Similar to other advertiser-specific data, we do not directly observe the events in which the
users did not click on the ad. Similarly, the data does not record the searches for which
the ad was not shown to the user for any reason such as low bid values, budget constraint,
etc. On the other hand, a smaller version of the experiment allows a clear validation of our
key theorem on policy splitting, because the optimal policy and its two splitting policies
in a CMDP is difficult to recover in complicated, large MDPs. However, we note that our
algorithm allows for larger experiments in a model-free algorithm setting.

For the experiment setup, we first retrieve the cost information for our sampled dataset
with CPC (cost per click) metric averaged at the keyword group level for the similar time
period as the collected data. The average cost for the ten keyword groups in our experiment
is estimated to be [0.2, 0.4, 0.25, 0.5, 0.3, 0.6, 0.5, 0.3, 0.3, 0.4] in dollars. Additionally, the
reward for converting a user is estimated to be worth $10 for this campaign. Then, we
follow the framework in Archak et al. (2012) to establish a CMDP. In particular, user
state represents the matching of the user’s last query with any of the keyword groups that
translates to ten states in our experiment. Then, our action space is binary and includes
“advertise” and “do not advertise” actions and transition probabilities between states are
directly estimated from the data. In order to overcome the issue of estimating transition
probabilities for “do not advertise”, we follow the remedy suggested by Archak et al. (2012).
That is, we assume the transitions between states are independent of the ad presented to the
user if the time period between two consecutive searches is longer than one day. Moreover,
we bundle all possible advertisement keywords in 10 keyword groups. Finally, we add 4
states, which contain a beginning state, a conversion state, a non-conversion state and
eventually the final state to incorporate the situation where users may convert temporarily
but eventually become disinterested in the ad push (see Figure 1). Consequently, we have
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14 states in our environment in total with a transition probability matrix in R2×14×14. We
run Algorithm 1 with hyper-parameters λmin = 0, λmax = 2, M1 = 105, E1 = 3.5 × 105,
M2 = 104, E2 = 2× 105, αe = 9

9+0.2e , εgreedy = 0.2, B = 0.45, γ = 0.6, τ = 10−4 and early

stopping criterion requires ‖ · ‖∞ norm within 10−4. The metrics here for reward and cost
are averaged accumulative rewards and averaged accumulative costs defined in (1), In order
to show the advantage of our method, we pick RCPO as a baseline. For the sake of fairness,
all experiments are implemented in Python 3.7 and executed on a standard 1.7 GHz
Dual-Core Intel Core i7.

Figure 1: MDP on advertisement (red node denotes a conversion/non-conversion state).

6.2. Algorithm Performances

Figure 2(a) demonstrates the averaged accumulative costs of the two candidate policies
(Policy 1 and Policy 2) selected by Algorithm 1. Moreover, for each λ, D(λ) can be computed
efficiently with RL-methods and its convexity is shown in Figure 2(b). After identifying two
candidate policies from Algorithm 1, we run Algorithm 3 which mixes the policies to satisfy
the budget constraint. As shown in Figure 2(c), we start with Policies 1 and 2 corresponding
to t = 0 and 1 and use a simple bisection to search for the target value of t. Figure 2(d)
shows the searching process stabilizes after a few iterations and the corresponding long-run
budget for different mixture policies gradually converges to the target budget value. As
we expect, in this case the optimal policy comes from the mixture, one policy going over
budget and the other under.

To show the robustness of the procedure, we perform a large number of experiments
to see the effectiveness of Algorithm 1 in recovering the correct pair of optimal policies.
Figure 3 (a)(b) shows that, in this example, the correct pair of policies can be recovered
in 78% of the experimental repetitions. More importantly, we plot the distribution of the
reward-budget pairs of the resulting mixture policy across all experiments and show that,
among the occasions Algorithm 1 does not pick the correct pair, the resulting mixture is
still approximately optimal and feasible, within a controllable error margin, showing the
stability of the procedure. In addition, we compare the performances between our method
and RCPO. As shown in Figure 3(c), the learning curve on rewards of RCPO is between
the learning curves of two candidate policies. However, as shown in Table 1 and 3(d), our
mixing method can find a randomized policy that has a higher average accumulative reward
in lesser time. As discussed, RCPO converges fast initially, yet the convergence slows down
and exhibits a zigzag motion when it is quite close to the optimal λ. Advantageously, our
mixing method bypass this problem around convergence.
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Methods Accumulative Rewards Accumulative Costs Clock Time (s)

RCPO 1.229 0.405 924.961
Policy Mixing (τ = 1e-4) 1.271 0.449 839.708
Policy Mixing (τ = 1e-3) 1.277 0.449 702.927
Policy Mixing (τ = 1e-2) 1.276 0.449 558.763

Table 1: Performance comparison summary (Bold means either the best or valid).

(a) (b)

(c) (d)

Figure 2: (a) Budget estimates of policies with different λ; (b) Convexity of D(λ); (c) Accumulative
adjusted rewards during policy mixing; (d) Accumulative costs during policy mixing.

(a) (b)

(c) (d)
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Figure 3: (a) Occurrences of policy pairs (Label 0 denotes valid policy pairs with only one state with
different actions); (b) Joint distribution of averaged reward and cost, where each dot represents each
experiment and the heat map is estimated from kernel density estimation; (c) Learning curves of
policies 1, 2 and RCPO. A tick on x-axis denotes 500 episodes and y-axis denotes the total rewards
for every 500 episodes; (d) MC evaluation of averaged accumulative rewards.

7. Conclusion

We focus on solving CMDPs which, although arise frequently in practice, are not amenable
to efficient solution techniques offered by most established RL-methods on unconstrained
problems. Through incorporating the “splitting” property of CMDP in a Lagrangian for-
mulation, our approach investigates the potential issues around convergence for current
primal-dual RL-methods and offers a suitable alternative. The approach aims to identify
two candidate optimal policies which through mixing would result in an optimal random-
ized policy of the CMDPs. We illustrate our performances through an online advertising
problem with budget calibrated by real-world data.
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