
Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size

Appendix A. First Order Convergence Rate

A.1. Variants of Adam

We list most of the existing variants of the Adam algorithm together with their theoretical
convergence guarantees in Table 2.

Remark 13 The average regret bound result in the last line of Table 2 figures in Luo et al.
(2019). Actually, according to Savarese (2019), slightly different assumptions on the bound
functions should be considered to guarantee this regret rate.

A.2. Proof of Lemma 1

Supposing that ∇f is L−Lipschitz, using Taylor’s expansion and the expression of pn in the
algorithm, we obtain the following inequality:

f(xn+1) ≤ f(xn)− 〈∇f(xn), an+1pn+1〉+
L

2
‖an+1pn+1‖2 (10)

Moreover,

1

2b
〈an+1, p

2
n+1〉 −

1

2b
〈an, p2

n〉 =
1

2b
〈an+1, p

2
n+1 − p2

n〉+
1

2b
〈an+1 − an, p2

n〉. (11)

Observing that p2
n+1 − p2

n = −b2(∇f(xn)− pn)2 + 2bpn+1(∇f(xn)− pn), we obtain after
simplification :

Hn+1 ≤ Hn+
L

2
‖an+1pn+1‖2−

b

2
〈an+1, (∇f(xn)−pn)2〉−〈an+1pn+1, pn〉+

1

2b
〈an+1−an, p2

n〉.
(12)

Using again pn = pn+1 − b(∇f(xn)− pn), we replace pn :

Hn+1 ≤ Hn +
L

2
‖an+1pn+1‖2 −

b

2
〈an+1, (∇f(xn)− pn)2〉

− 〈an+1, p
2
n+1〉+ b〈an+1pn+1,∇f(xn)− pn〉+

1

2b
〈an+1 − an, p2

n〉.

Under Assumption 2, we write: 〈an+1 − an, p2
n〉 ≤ (1 − α)〈an+1, p

2
n〉 and using p2

n =
p2
n+1 + b2(∇f(xn)− pn)2 − 2bpn+1(∇f(xn)− pn), it holds that:

Hn+1 ≤ Hn − 〈an+1, p
2
n+1〉 −

b

2
〈an+1, (∇f(xn)− pn)2〉

+
L

2
‖an+1pn+1‖2 + (b− (1− α))〈an+1pn+1,∇f(xn)− pn〉

+
1− α

2b
〈an+1, p

2
n+1〉+

b(1− α)

2
〈an+1, (∇f(xn)− pn)2〉.

Using the classical inequality xy ≤ x2

2u + uy2

2 , we have :

(b−(1−α))an+1pn+1(∇f(xn)−pn) ≤ |b− (1− α)|
2u

〈an+1, p
2
n+1〉+

|b− (1− α)|u
2

〈an+1, (∇f(xn)−pn)2〉.
(13)

1



Barakat Bianchi

Table 2: Theoretical guarantees of variants of Adam . The gradient is supposed L-
lipschitz continuous in all the convergence results. g1:T,i = [g1,i, g2,i, · · · , gT,i]T .
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Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size

Hence, after using this inequality and rearranging the terms, we derive the following
inequality:

Hn+1 ≤ Hn − 〈an+1p
2
n+1, 1−

an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉

− b

2
〈an+1(∇f(xn)− pn)2,

(
1− |b− (1− α)|u

b
− (1− α)

)
1〉.

This concludes the proof.

A.3. A first result under an upperbound of the step size

Proposition 14 Let Assumption 1 hold true. Suppose moreover that 1− α < b ≤ 1. Let

ε > 0 s.t. asup := 2
L

(
1− (b−(1−α))2

2bα − 1−α
2b − ε

)
is nonnegative. Assume for all n ∈ N,

an+1 ≤ min
(
asup,

an
α

)
.

Then, for all n ≥ 1,

n−1∑
k=0

〈ak+1,∇f(xk)
2〉 ≤ 2(1 + α)

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉
)

Proof This is a consequence of Lemma 1. Conditions An+1 ≥ ε and B ≥ 0 write as follow :

an+1 ≤
2

L

(
1− b− (1− α)

2u
− 1− α

2b
− ε
)

and u ≤ αb

b− (1− α)
.

We get the assumption made in the proposition by injecting the second condition into the
first one and adding the assumption an+1

an
≤ 1

α made in the lemma. Under this assumption,
we sum over 0 ≤ k ≤ n− 1 Equation (4), rearrange it and use An+1 ≥ ε, B ≥ 0 to obtain :

n−1∑
k=0

ε 〈ak+1, p
2
k+1〉 ≤ H0 −Hn ,

Then, observe that Hn ≥ f(xn) ≥ inf f . Therefore, we derive :

n−1∑
k=0

〈ak+1, p
2
k+1〉 ≤

H0 − inf f

ε
. (14)

Moreover, from the Algorithm 1 second update rule, we get ∇f(xk) = 1
bpk+1 − 1−b

b pk.
Hence, we have for all k ≥ 0 :

∇f(xk)
2 ≤ 2

(
1

b2
p2
k+1 +

(1− b)2

b2
p2
k

)
≤ 2

b2
(p2
k+1 + p2

k) .

3
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We deduce that :

n−1∑
k=0

〈ak+1,∇f(xk)
2〉 ≤ 2

b2

n−1∑
k=0

〈ak+1, p
2
k+1 + p2

k〉

=
2

b2

n−1∑
k=0

〈ak+1, p
2
k+1〉+

2

b2

n−1∑
k=0

〈ak+1, p
2
k〉

≤ 2

b2

n−1∑
k=0

〈ak+1, p
2
k+1〉+

2

b2α

n−1∑
k=0

〈ak, p2
k〉

≤ 2

b2
(1 +

1

α
)

n∑
k=0

〈ak, p2
k〉

≤ 2(1 + α)

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉
)
.

A.4. Proof of Theorem 2

This is a consequence of Lemma 1. Conditions An+1 ≥ ε and B ≥ 0 write as follow :

an+1 ≤
2

L

(
1− b− (1− α)

2u
− 1− α

2b
− ε
)

and u ≤ αb

b− (1− α)
.

We get the assumption made in the proposition by injecting the second condition into the
first one and adding the assumption an+1

an
≤ α made in the lemma. Under this assumption,

we sum over 0 ≤ k ≤ n−1 Equation (4), rearrange it and use An+1 ≥ ε, B ≥ 0 and ak+1 ≥ δ
to obtain :

n−1∑
k=0

δ ε ‖pk+1‖2 ≤ H0 −Hn ,

Then, observe that Hn ≥ f(xn) ≥ inf f . Therefore, we derive :

n−1∑
k=0

‖pk+1‖2 ≤
H0 − inf f

δε
. (15)

Moreover, from the algorithm 1 second update rule, we get ∇f(xk) = 1
bpk+1 − 1−b

b pk.
Hence, we have for all k ≥ 0 :

‖∇f(xk)‖2 ≤ 2

(
1

b2
‖pk+1‖2 +

(1− b)2

b2
‖pk‖2

)
≤ 2

b2
(‖pk+1‖2 + ‖pk‖2) .

We deduce that :

n−1∑
k=0

‖∇f(xk)‖2 ≤
2

b2

n−1∑
k=0

(‖pk+1‖2+‖pk‖2) =
2

b2

(
2

n−1∑
k=1

‖pk‖2 + ‖pn‖2 + ‖p0‖2
)
≤ 4

b2

n∑
k=0

‖pk‖2 .

(16)

4
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Finally, using Equations (15) and (16), we have :

min
0≤k≤n−1

‖∇f(xk)‖2 ≤
1

n

n−1∑
k=0

‖∇f(xk)‖2 ≤
4

nb2

(
H0 − inf f

δε
+ ‖p0‖2

)
.

A.5. Proof of Theorem 3

The proof of this proposition mainly follows the same path as its deterministic counterpart.
However, due to stochasticity, a residual term (the last term in Equation (17)) quantifying
the difference between the stochastic gradient estimate and the true gradient of the objective
function (compare Equation (17) to Lemma 1) remains. Following the exact same steps of
Appendix A.2, we obtain by replacing the deterministic gradient ∇f(xn) by its stochastic
estimate ∇f(xn, ξn+1) :

Hn+1 ≤ Hn − 〈an+1p
2
n+1, 1−

an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉

− b

2
〈an+1(∇f(xn, ξn+1)− pn)2,

(
1− |b− (1− α)|u

b
− (1− α)

)
1〉

+ 〈∇f(xn, ξn+1)−∇F (xn), an+1pn+1〉 . (17)

Using the classical inequality xy ≤ x2

2η+ ηy2

2 with η = 1/2 and the almost sure boundedness
of the step size an+1, we get :

〈∇f(xn, ξn+1)−∇F (xn), an+1pn+1〉 ≤ 〈(∇f(xn, ξn+1)−∇F (xn))2 +
1

4
p2
n+1, an+1〉

≤ āsup‖∇f(xn, ξn+1)−∇F (xn)‖2 +
1

4
〈an+1, p

2
n+1〉 .

Therefore, taking the expectation and using the boundedness of the variance, we obtain
from Equation (17) :

E[Hn+1]− E[Hn] ≤ −E
[
〈an+1p

2
n+1,

3

4
− an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
〉
]

+ āsupσ
2 .

Then, the proof follows the lines of Appendix A.3. Hence, we have

E[Hn+1]− E[Hn] ≤ −E
[
〈an+1p

2
n+1, ε1〉

]
+ āsupσ

2 .

We sum these inequalities for k = 0, · · · , n − 1, inject the assumption an+1 ≥ δ and
rearrange the terms to obtain

δ E

[
n−1∑
k=0

‖pk+1‖2
]
≤ E

[
n−1∑
k=0

〈ak+1, p
2
k+1〉

]
≤ H0 − inf f

ε
+
nāsupσ

2

ε
. (18)

Then, using ∇f(xk, ξk+1) = 1
bpk+1 − 1−b

b pk and a similar upperbound to Equation (16)
we show that

5
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n−1∑
k=0

‖∇f(xk, ξk+1)‖2 ≤ 4

b2

n∑
k=0

‖pk‖2 . (19)

Therefore, combining Equations (18) and (19), we establish the following inequality

E

[
n−1∑
k=0

‖∇f(xk, ξk+1)‖2
]
≤ 4

b2

(
H0 − inf f

δε
+ ‖p0‖2

)
+

4āsupn

δεb2
σ2 .

Finally, we apply Jensen’s inequality to ‖ · ‖2 and divide the previous inequality by n to
obtain the sought result

1

n

n−1∑
k=0

E
[
‖∇F (xk)‖2

]
≤ 4

nδb2

(
H0 − inf f

δε
+ ‖p0‖2

)
+

4āsup

δεb2
σ2 .

Remark 15 Following the derivations in Appendix A.3, note that we also obtain the fol-
lowing result

E

[
n−1∑
k=0

〈ak+1,∇f(xk, ξk+1)2〉
]
≤ 2(1 + α)

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉+

nāsupσ
2

ε

)
.

A.6. Comparison to Ochs et al. (2014)

We recall the conditions satisfied by αn and βn in Ochs et al. (2014) in order to traduce
them in terms of the algorithm (1) at stake. Define :

δn :=
1

αn
− L

2
− βn

2αn
γn := δn −

βn
2αn

.

Conditions of Ochs et al. (2014) write: αn ≥ c1 βn ≥ 0 δn ≥ γn ≥ c2 where c1, c2 are
positive constants and (δn) is monotonically decreasing.

One can remark that algorithm (1) can be written as (3) with step sizes αn = ban+1 and
inertial parameters βn = (1− b)an+1

an
. Conditions on these parameters can be expressed in

terms of an. Supposing c2 = 0, the condition γn ≥ c2 is equivalent to

an+1

an
≤ 2

2− b(2− anL)
. (20)

Note that the classical condition an ≤ 2/L shows up consequently. Moreover, the condition
on (δn) is equivalent to

1

an+1
≤ 3− b

2

1

an
− 1− b

2an−1
for n ≥ 1. (21)

Note that we get rid of condition (21) while allowing adaptive step sizes an (see Proposi-
tion 14).

6
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A.7. Performance of gradient descent in the nonconvex setting.

In the nonconvex setting, for a smooth function f , we cannot say anything about the
convergence rate of the sequences (f(xk)) and (xk). Nevertheless, as exposed in (Nesterov,
2004, p.28), we can control the minimum of the gradients norms. We prove this result in the
following for completeness.

Consider the gradient descent algorithm defined by : xk+1 = xk − γ∇f(xk). Assume
that γ > 0 and 1− γL

2 > 0.
Supposing that ∇f is L−Lipschitz, using Taylor’s expansion and regrouping the terms,

we obtain the following inequality:

f(xk+1) ≤ f(xk)− γ
(

1− γL

2

)
‖∇f(xk)‖22.

Then, we sum the inequalities for 0 ≤ k ≤ n− 1, lower bound the gradients norms in the
sum by their minimum and we obtain for n ≥ 1 :

min
0≤k≤n−1

‖∇f(xk)‖22 ≤
f(x0)− inf f

nγ(1− γL
2 )

.

Appendix B. K L Convergence Analysis

B.1. Three abstract conditions

Inspired from the abstract convergence mechanism of Bolte et al. (2018, Appendix), we
show that similar conditions hold in our case. We highlight that these conditions are slightly
different here, since we do not deal with gradient-like descent sequences (for which the
objective function is nonincreasing over the iterations). Conditions below are closer to
those of Ochs et al. (2014) which studies a non-descent algorithm. Note however that the
Lyapunov function H and the sequence (zk) we consider are different.

Lemma 16 Let (zk)k∈N be the sequence defined for all k ∈ N by zk = (xk, yk) where
yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from a starting point z0. Let

Assumptions 1 and 2 hold true. Assume moreover that condition (5) holds. Then,

(i) (sufficient decrease property) There exists a positive scalar ρ1 s.t. :

H(zk+1)−H(zk) ≤ −ρ1 ‖xk+1 − xk‖2 ∀k ∈ N.

(ii) There exists a positive scalar ρ2 s.t. :

‖∇H(zk+1)‖ ≤ ρ2 (‖xk+1 − xk‖+ ‖xk − xk−1‖) ∀k ≥ 1.

(iii) (continuity condition) If z̄ is a limit point of a subsequence (zkj )j∈N, then lim
j→+∞

H(zkj ) =

H(z̄).

Remark 17 Note that the conditions in Lemma 16 can be generalized to a nonsmooth
objective function. Indeed, in Bolte et al. (2018, Appendix), the Fréchet subdifferential
replaces the gradient.
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Proof

(i) From Theorems 1 and 2, we get for all k ∈ N:

H(zk+1)−H(zk) ≤ −ε〈ak+1, p
2
k+1〉 ≤ −ε〈ak+1,

(
xk+1 − xk
−ak+1

)2

〉 ≤ − ε

asup
‖xk+1−xk‖2.

We set ρ1 := ε
asup

.

(ii) First, observe that for all k ∈ N

‖∇H(zk+1)‖ ≤ ‖∇f(xk+1)‖+
1

b
‖yk+1‖ . (22)

Now, let us upperbound each one of these two terms. Recall that we can rewrite our
algorithm under a ”Heavy-ball”-like form as follows:

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1) ∀k ≥ 1.

where αk := bak+1 and βk = (1− b)ak+1

ak
are vectors.

On the one hand, using the L-Lipschitz continuity of the gradient, we obtain

‖∇f(xk+1)‖2 ≤ 2
(
‖∇f(xk+1)−∇f(xk)‖2 + ‖∇f(xk)‖2

)
≤ 2

(
L2 ‖xk+1 − xk‖2 + ‖∇f(xk)‖2

)
Moreover,

‖∇f(xk)‖2 =

∥∥∥∥xk − xk+1

αk
+
βk
αk

(xk − xk−1)

∥∥∥∥2

≤ 2

∥∥∥∥xk − xk+1

bak+1

∥∥∥∥2

+ 2

∥∥∥∥1− b
b

1

ak
(xk − xk−1)

∥∥∥∥2

≤ 2

b2δ2
‖xk+1 − xk‖2 +

2(1− b)2

b2δ2
‖xk − xk−1‖2

≤ 2

b2δ2
(‖xk+1 − xk‖2 + ‖xk − xk−1‖2).

Hence,

‖∇f(xk+1)‖2 ≤ 2
(
L2 ‖xk+1 − xk‖2 + ‖∇f(xk)‖2

)
≤ 2

(
L2 +

2

b2δ2

)
‖xk+1 − xk‖2 +

4

b2δ2
‖xk − xk−1‖2

≤ 2

(
L2 +

2

b2δ2

)
(‖xk+1 − xk‖2 + ‖xk − xk−1‖2) .

Therefore, the following inequality holds :

‖∇f(xk+1)‖ ≤
√

2

(
L2 +

2

b2δ2

)
(‖xk+1 − xk‖+ ‖xk − xk−1‖) .
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On the otherhand,

‖yk+1‖ = ‖√ak+1pk+1‖ =

∥∥∥∥xk+1 − xk√
ak+1

∥∥∥∥ ≤ 1√
δ
‖xk+1 − xk‖ .

Finally, combining the inequalities for both terms in Equation (22), we obtain

‖∇H(zk+1)‖ ≤ ρ2(‖xk+1 − xk‖+ ‖xk − xk−1‖) ∀k ≥ 1 .

with ρ2 :=
(√

2
(
L2 + 2

b2δ2

)
+ 1

b
√
δ

)
.

(iii) This is a consequence of the continuity of H.

B.2. Proof of Lemma 6

(i) By Theorem 2, the sequence (H(zn))n∈N is nonincreasing. Therefore, for all n ∈ N,
H(zn) ≤ H(z0) and hence zn ∈ {z :H(z) ≤ H(z0)} . Since f is coercive, H is also
coercive and its level sets are bounded. As a consequence, (zn)n∈N is bounded and
there exist z∗ ∈ Rd and a subsequence (zkj )j∈N s.t. zkj → z∗ as j → ∞. Hence,

ω(z0) 6= ∅ . Furthermore, ω(z0) =
⋂
q∈N

⋃
k≥q{zk} is compact as an intersection of

compact sets.

(ii) First, critH = critf × {0} because ∇H(z) = (∇f(x), y/b)T . Let z∗ ∈ ω(z0). Recall
that xk+1 − xk → 0 as k →∞ by Theorem 2. We deduce from the second assertion of
Lemma 16 that ∇H(zk) → 0 as k → ∞ . As z∗ ∈ ω(z0), there exists a subsequence
(zkj )j∈N converging to z∗. Then, by Lipschitz continuity of∇H, we get that∇H(zkj )→
∇H(z∗) as j → ∞ . Finally, ∇H(z∗) = 0 since ∇H(zk) → 0 and (∇H(zkj ))j∈N is a
subsequence of (∇H(zn))n∈N .

(iii) This point stems from the definition of limit points. Every subsequence of the sequence
(d(zk, ω(z0)))k∈N converges to zero as a consequence of the definition of ω(z0).

(iv) The sequence (H(zn))n∈N is nonincreasing by Theorem 2. It is also bounded from
below because H(zk) ≥ f(xk) ≥ inf f for all k ∈ N. Hence we can denote by l its
limit. Let z̄ ∈ ω(z0). There there exists a subsequence (zkj )j∈N converging to z̄ as
j →∞ . By the third assertion of Lemma 16, lim

j→+∞
H(zkj ) = H(z̄) . Hence this limit

equals l since (H(zn))n∈N converges towards l. Therefore, the restriction of H to ω(z0)
equals l .

B.3. Proof of Theorem 10

The first step of this proof follows the same path as Bolte et al. (2018, Proof of Theorem 6.2,
Appendix). Since f is coercive, H is also coercive. The sequence (H(zk))k∈N is nonincreasing.
Hence, (zk) is bounded and there exists a subsequence (zkq)q∈N and z̄ ∈ R2d s.t. zkq → z̄ as

9
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q →∞ . Then, since (H(zk))k∈N is nonincreasing and lowerbounded by inf f , it is convergent
and we obtain by continuity of H,

lim
k→+∞

H(zk) = H(z̄) . (23)

Using Theorem 2, observe that the sequence (yk) converges to zero since (ak) is bounded
and pk → 0. If there exists k̄ ∈ N s.t. H(zk̄) = H(z̄) , then H(zk̄+1) = H(z̄) and by
the first point of Lemma 16, xk̄+1 = xk̄ and then (xk)k∈N is stationary and for all k ≥ k̄ ,
H(zk) = H(z̄) and the results of the theorem hold in this case (note that z̄ ∈ critH by
Lemma 6). Therefore, we can assume now that H(z̄) < H(zk)∀k > 0 since (H(zk))k∈N is
nonincreasing and Equation (23) holds. One more time, from Equation (23), we have that for
all η > 0, there exists k0 ∈ N s.t. H(zk) < H(z̄) + η for all k > k0. From Lemma 6, we get
d(zk, ω(z0))→ 0 as k → +∞ . Hence, for all ε > 0, there exists k1 ∈ N s.t. d(zk, ω(z0)) < ε
for all k > k1 . Moreover, ω(z0) is a nonempty compact set and H is finite and constant on
it. Therefore, we can apply the uniformization Lemma 8 with Ω = ω(z0). Hence, for any
k > l := max(k0, k1), we get

ϕ′(H(zk)−H(z̄))2 ‖∇H(zk)‖2 ≥ 1 . (24)

This completes the first step of the proof. In the second step, we follow the proof of Johnstone
and Moulin (2017, Theorem 2). Using Lemma 16 .(i)-(ii), we can write for all k ≥ 1,

‖∇H(zk+1)‖2 ≤ 2ρ2
2 (‖xk+1 − xk‖2 + ‖xk − xk−1‖2) ≤ 2ρ2

2

ρ1
(H(zk−1)−H(zk+1)) .

Injecting the last inequality in Equation (24), we obtain for all k > k2 := max(l, 2),

2ρ2
2

ρ1
ϕ′(H(zk)−H(z̄))2 (H(zk−2)−H(zk)) ≥ 1 .

Now, use ϕ′(s) = c̄sθ−1 to derive the following for all k > k2:

[H(zk−2)−H(z̄)]− [H(zk)−H(z̄)] ≥ ρ1

2ρ2
2 c̄

2
[H(zk)−H(z̄)]2(1−θ) . (25)

Let rk := H(zk)−H(z̄) and C1 = ρ1
2ρ22 c̄

2 . Then, we can rewrite Equation (25) as

rk−2 − rk ≥ C1r
2(1−θ)
k ∀k > k2 . (26)

We distinguish three different cases to obtain the sought results.

(i) θ = 1 :
Suppose rk > 0 for all k > k2 . Then, since we know that rk → 0 by Equation (23), C1

must be equal to 0. This is a contradiction. Therefore, there exist k3 ∈ N s.t. rk = 0
for all k > k3 (recall that (rk)k∈N is nonincreasing).
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(ii) θ ≥ 1
2 :

As rk → 0, there exists k4 ∈ N s.t. for all k ≥ k4, rk ≤ 1 . Observe that 2(1− θ) ≤ 1
and hence rk−2 − rk ≥ C1rk for all k > k2 and then

rk ≤ (1 + C1)−1rk−2 ≤ (1 + C1)−p1rk4 . (27)

where p1 := bk−k42 c . Notice that p1 >
k−k4−2

2 . Thus, the linear convergence result
follows. Note also that if θ = 1/2, 2(1− θ) = 1 and Equation (27) holds for all k > k2 .

(iii) θ < 1
2 :

Define the function h by h(t) = D
1−2θ t

2θ−1 where D > 0 is a constant. Then,

h(rk)− h(rk−2) =

∫ rk

rk−2

h′(t)dt = D

∫ rk−2

rk

t2θ−2dt ≥ D (rk−2 − rk) r2θ−2
k−2 .

We disentangle now two cases :

(a) Suppose 2r2θ−2
k−2 ≥ r2θ−2

k . Then, by Equation (26), we get

h(rk)− h(rk−2) = D (rk−2 − rk) r2θ−2
k−2 ≥

C1D

2
. (28)

(b) Suppose now the opposite inequation 2r2θ−2
k−2 < r2θ−2

k . We can suppose without
loss of generality that rk are all positive. Otherwise, if there exists p such that
rp = 0, the sequence (rk)k∈N will be stationary at 0 for all k ≥ p . Observe that
2θ − 2 < 2θ − 1 < 0, thus 2θ−1

2θ−2 > 0 . As a consequence, we can write in this

case r2θ−1
k > q r2θ−1

k−2 where q := 2
2θ−1
2θ−2 > 1 . Therefore, using moreover that the

sequence (rk)k∈N is nonincreasing and 2θ − 1 < 0, we derive the following

h(rk)−h(rk−2) =
D

1− 2θ
(r2θ−1
k −r2θ−1

k−2 ) >
D

1− 2θ
(q−1)r2θ−1

k−2 >
D

1− 2θ
(q−1)r2θ−1

k2
:= C2 .

(29)

Combining Equation (28) and Equation (29) yields h(rk) ≥ h(rk−2) + C3 where
C3 := min(C2,

C1D
2 ) . Consequently, h(rk) ≥ h(rk−2 p2) + p2C3 where p2 := bk−k22 c .

We deduce from this inequality that

h(rk) ≥ h(rk)− h(rk−2 p2) ≥ p2C3 .

Therefore, rearranging this inequality using the definition of h, we obtain r1−2θ
k ≤

D
1−2θ (C3 p2)−1 . Then, since p2 >

k−k2−2
2 ,

rk ≤ C4 p
1

2θ−1

2 ≤ C4

(
k − k2 − 2

2

) 1
2θ−1

.

where C4 :=
(
C3 (1−2θ)

D

) 1
2θ−1

.

We conclude the proof by observing that f(xk) ≤ H(zk) and recalling that z̄ ∈ critH .

11



B.4. Proof of Lemma 11

Since f has the K L property at x̄ with an exponent θ ∈ (0, 1/2], there exist c, ε and ν > 0
s.t.

‖∇f(x)‖ 1
1−θ ≥ c(f(x)− f(x̄)) (30)

for all x ∈ Rd s.t. ‖x − x̄‖ ≤ ε and f(x) < f(x̄) + ν where condition f(x̄) − f(x)
is dropped because Equation (30) holds trivially otherwise. Let z = (x, y) ∈ R2d be s.t.
‖x− x̄‖ ≤ ε , ‖y‖ ≤ ε and H(x̄, 0) < H(x, y) < H(x̄, 0) +ν . We assume that ε < b (ε can be
shrunk if needed). We have f(x) ≤ H(x, y) < H(x̄, 0) + ν = f(x̄) + ν . Hence Equation (30)
holds for these x.

By concavity of u 7→ u
1

2(1−θ) , we obtain

‖∇H(x, y)‖ 1
1−θ ≥ C0

(
‖∇f(x)‖ 1

1−θ +
∥∥∥y
b

∥∥∥ 1
1−θ
)

where C0 := 2
1

2(1−θ)−1
.

Hence, using Equation (30), we get

‖∇H(x, y)‖ 1
1−θ ≥ C0

(
c (f(x)− f(x̄)) +

∥∥∥y
b

∥∥∥ 1
1−θ
)
.

Observe now that 1
1−θ ≥ 2 and

∥∥y
b

∥∥ ≤ ε
b ≤ 1. Therefore,

∥∥y
b

∥∥ 1
1−θ ≥ ‖y/b‖2 .

Finally,

‖∇H(x, y)‖ 1
1−θ ≥ C0

(
c (f(x)− f(x̄)) +

2

b

1

2b
‖y‖2

)
≥ C0 min

(
c,

2

b

) (
f(x)− f(x̄) +

1

2b
‖y‖2

)
= C0 min

(
c,

2

b

)
(H(x, y)−H(x̄, 0)) .

This completes the proof.


