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Abstract

Adversarial perturbation constructions have been demonstrated for object detection, but
these are image-specific perturbations. Recent works have shown the existence of image-
agnostic perturbations called universal adversarial perturbation (UAP) that can fool the
classifiers over a set of natural images. In this paper, we extend this kind perturbation to
attack deep proposal-based object detectors. We present a novel and effective approach
called G-UAP to craft universal adversarial perturbations, which can explicitly degrade the
detection accuracy of a detector on a wide range of image samples. Our method directly
misleads the Region Proposal Network (RPN) of the detectors into mistaking foreground
(objects) for background without specifying an adversarial label for each target (RPN’s
proposal), and even without considering that how many objects and object-like targets
are in the image. The experimental results over three state-of-the-art detectors and two
datasets demonstrate the effectiveness of the proposed method and transferability of the
universal perturbations.

Keywords: Universal adversarial perturbation (UAP), image-agnostic, RPN-based detec-
tors, transferability

1. Introduction

Deep Neural Networks (DNN) achieve superior performance in many problems in com-
puter vision, including image classification, object detection and semantic segmentation,
etc. Although deep networks provide the state-of-the-art performance in many tasks, it has
shown that samples which are maliciously altered affect the networks’ prediction drastically.
Szegedy et al. (2014) first showed that adding visually imperceptible perturbations to in-
puts can result in failures for image classification. To date, there has been large effort in
investigating the existence of adversarial perturbations (Goodfellow et al. (2015); Nguyen
et al. (2015); Moosavi-Dezfooli et al. (2017)). It has been shown that many DNN-based
algorithms are vulnerable to adversarial perturbations, which can fool the system into in-
ferring wrong predictions, but they are imperceptible to humans. Investigating adversarial
perturbations not only contributes to understanding the working mechanism of DNN, but
also offers opportunities to improve the robustness of networks.
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Figure 1: Left images: detection results of original natural images. Central image: universal
adversarial perturbation crafted by our method. Right images: detection results
of perturbed images. When the perturbation is added to a natural image, the
detector can not detect the objects.

Multiple researches (Goodfellow et al. (2015); Kurakin et al. (2017); Moosavi-Dezfooli
et al. (2016)) have focused on fooling image classifiers. Goodfellow et al. (2015) proposed
the fast gradient sign method (FGSM) to generate adversarial perturbations based on the
linear nature of DNN. Moosavi-Dezfooli et al. (2016) presented an algorithm to compute the
minimal adversarial perturbation. Recently, developing approaches to attack deep neural
networks beyond classification has attracted many attentions. Xie et al. (2017) proposed
Dense Adversary Generation (DAG) to compute adversarial perturbations for semantic
segmentation and object detection. Lu et al. (2017) attempted to generate adversarial
perturbations on traffic sign and human face to mislead detectors. Li et al. (2018) proposed
the robust adversarial perturbation (R-AP) method which focuses on attacking RPN of
deep proposal-based models without knowing the details of models’ architecture. However,
these methods are image-specific. It means that causing a specific input to be incorrect
prediction they need to regenerate specific perturbation. This kind perturbation has two
limitations: poor transferability, which implies that the specific adversarial perturbation
cannot attack other images, and high computation cost, which means that it takes time to
generate an adversarial perturbation for each image respectively.

Different from the above methods, Moosavi-Dezfooli et al. (2017) showed the existence
of a single perturbation that when added to most of images, could cause wrong predictions.
It is referred to as universal adversarial perturbation. Similar to Moosavi-Dezfooli et al.
(2017), Metzen et al. (2017) developed UAP for semantic segmentation task. Mopuri et al.
showed their techniques (FFF Mopuri et al. (2017), GDUAP Mopuri et al. (2018)) to craft
universal adversarial perturbations that can fool the target model without prior knowledge
about the dataset. They demonstrated that their crafted perturbations were transferable
to three different vision tasks covering classification, depth estimation and segmentation.

In this paper, we go one step further to propose a generic universal adversarial per-
turbation (G-UAP) method to craft universal adversarial perturbations to fool detectors.
Specifically, by adding such an unique perturbation to natural images, the prediction esti-
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mated by RPN-based detectors is wrong (see Fig. 1). The proposals predict that the objects
in images are all backgrounds, so there are no bounding boxes marked in the images. Sim-
ilar to Xie et al. (2017); Li et al. (2018), our G-UAP algorithm also focuses on attacking
detection models based on RPN and we mainly study Faster-RCNN Ren et al. (2017) which
is one of the state-of-the-art object detectors. Xie et al. (2017) assigned an adversarial label
for each proposal region and then performed iterative gradient back-propagation to mis-
classify the proposals. The similar method is also presented in Li et al. (2018). Besides,
Wei et al. (2019) proposed the Unified and Efficient Adversary (UEA) for image and video
object detection. For universal adversarial prediction and many unknown images, it is im-
practical to assign adversarial labels to proposals. Because an image has many objects and
object-like targets (proposals) and for detectors based on RPN, one object in an image has
multiple targets to predict it. Although we successfully fool a target, any other targets can
still correctly predict this object. Considering that there are orders of magnitude more tar-
gets in an image, we propose to mislead RPN into wrongly classifying a target uniformly. In
other words, attacking RPN to make targets misclassify the foreground as the background
as much as possible no matter how large the number of targets is. Our experimental results
demonstrate that the learned perturbations by G-UAP can significantly degrade the per-
formance of detectors, albeit being imperceptible to human observers. Furthermore, we use
the universal adversarial perturbation computed by one network to attack another network
in order to investigate the transferability of the generated perturbations. Specially, the
Region Fully Convolutional Network (R-FCN) Dai et al. (2016) with RPN network works
as a black-box detector to demonstrate cross model generalizability. Besides, Single Shot
MultiBox Detector (SSD) Liu et al. (2016) without RPN also works as a black-box detector
to test the feasibility of our method in comparison. In addition, an extended experiment
has been done. Note that although the pertubations by our method can reduce the detec-
tion performance of most images in test set, there are still some images that are hard to
fool, especially large objects like people in the images as Fig. 5 shows. As for the failed
images, we can use G-UAP to fine-tune the learned universal perturbation exclusively for
this image, which is denoted as FG-UAP. And it’s noted that this process speeds up the
generation of the single specific perturbation.

Our contributions are summarized in the following:

• We propose a novel algorithm called G-UAP that can explicitly degrade performance
of RPN by merely disturbing the proposal label prediction of foreground in RPN.

• To the best of our knowledge, G-UAP is the first work to craft universal adversarial
perturbations to fool the RPN-based detectors.

• Extensive experiments demonstrate that the proposed algorithm can generate pertur-
bations that exhibit cross model generalizability.

2. Proposed Approach

In this section, we introduce G-UAP algorithm to compute universal adversarial perturba-
tions that can effectively disturb the predictions of RPN-based detectors. The objective
is to mislead RPN into wrong predictions about foreground. In others words, making the
detectors detect nothing as much as possible. Section 2.1 reviews the conception of RPN.
Section 2.2 describes the notations and details for our G-UAP algorithm.
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Figure 2: Overview of our G-UAP method. Object Detection Network is easily fooled by
perturbed images that are produced by our algorithm which attacks RPN of
detectors in order to make it mistake the foreground for the background. We
updates the unique perturbation by our loss function mentioned in Sec. 2.2, with
iterating through a series of images.

2.1. Region Proposal Network

Region Proposal Network is a kind of fully-convolutional network for object proposal gen-
eration. The RPN takes an image as input and outputs confidence scores for object-like
targets. The RPN simultaneously predicts k region targets (k is 9 in Faster-RCNN). The
layer of binary classification outputs 2k scores that predict probability of forground / back-
ground for each target.

At training phase, each target is matched to ground-truth label. For RPN, the prediction
of target is a problem of binary classfication. Classification loss function for an image is
defined as:

L(pi) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ), (1)

where the cls layer is a two-class softmax layer, pi is the predicted probability of proposal
i being an object and p∗i is the ground-truth label.

At testing phase, the predictions of all targets are generated by cls layer within a single
forward. We can get the output of the cls layer when adding perturbation to an image and
feeding it to the detector.

2.2. G-UAP Algorithm

First, We formalize the notion followed throughout the paper. Let X denotes a distribution
of images in Rd, f denotes the network of the detector and lcls denotes the two-class softmax
layer that maps an input image x ∼ X to its probability output. δ denotes the image-
agnostic perturbation learned by our algorithm. Similar to input x, δ also belongs to Rd.

Algorithm. Let {x1, ..., xm} be a set of images sampled from the distribution X .
To craft the adversarial perturbation which is quasi-imperceptible for humans, the pixel
intensities of perturbation δ should be restricted. Existing works (eg: Moosavi-Dezfooli
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et al. (2017); Mopuri et al. (2017); Mopuri et al. (2018)) imposed an l∞ constraint ξ
(ξ = 10 less than 8% of the data range) to control the magnitude of the perturbation to
realize imperceptibility.

Our proposed algorithm seeks a universal perturbation δ, such that ‖δ‖∞ < ξ, while lead-
ing to wrong predictons at cls layer which predicts foreground or background and thereby
misleading the results of the following layers. That is, making RPN mistake the foreground
for the background. This problem can be considered as the following optimization problem.

lcls obj(xi + δ) ≈ lcls obj(xi) + Jlcls obj
(xi)δ,

lcls bg(xi + δ) ≈ lcls bg(xi) + Jlcls bg
(xi)δ,

(2)

where Jl(xi) is Jacobian matrix, lcls obj(xi + δ) is the probability scores of foreground that
we want them to be 0 and lcls bg(xi + δ) is the probability scores of background that we
want them to be 1 in the output at layer of cls when xi + δ is fed to the network f . Eq. 2
means that adjusting δ to make the right side of the first line equation close to 0 and the
second line equation close to 1.

The problem of this perturbation generation can be casted as an optimization problem
of binary classification. This binary classification task has only two categories including
foreground and background and the sum of the probability is 1, so we only need to reduce
the probability of the foreground. For this classification problem, we use Cross Entropy
Loss as our loss function:

L(δ) = −[l log(l̂(xi + δ)) + (1− l) log(1− l̂(xi + δ))], (3)

where l represents the label 0 specified for the foreground and l̂(xi+δ) is same as lcls obj(xi+
δ) metioned above. Thus, when l is equal to 0, the Eq. 3 becomes:

L(δ) = − log(1− l̂(xi + δ)). (4)

Minimizing this loss is equivalent to decreasing confidence score of foreground and in-
creasing confidence score of background in cls layer. Then the objective is to solve for:

δ∗ = arg min
δ

L(δ). (5)

Algorithm 1 presents the detailed algorithm. We apply a gradient descent algorithm
for optimization. The re-scaling optimization by Mopuri et al. (2018) avoid accumulating
δ beyond the imposed max-norm constraint (ξ). In particular, we randomly choose 1000
images from PascalVOC-2012 training set as data points x. And we will examine the
influence of the size of X on the quality of the universal perturbations in Sec. 3.4.

1208



Short Title

Algorithm 1: Computation of universal perturbations.
Input: Data points X , Network f
Output: Universal perturbation vector δ, Mean average precision mAP
Initialize δ ← U(-10,10).
Initialize mAP ← 100.
Initialize Stop ← 0.
while Stop<10 do

for each datapoint xi ∈ X do
∆δi ← ∇L(δ)
Perform adaptive re-scaling on δi
Compute current mAP on dataset V
if current mAP<mAP then

mAP ← current mAP
δ ← δi

end
else

Stop←Stop+1
end

end

end
return δ, mAP

3. Experiments

In this section, we evaluate our approach on several state-of-the-art object detectors. Sec-
tion 3.1 describes implementation settings of our G-UAP algorithm. Section 3.2 compares
our results with the baseline models on object detectors. Section 3.3 investigates the trans-
ferability of the generated perturbations. Section 3.4 analyses the performance of our algo-
rithm.

3.1. G-UAP Setup

We evaluate our method by measuring the drop in detection accuracy using the original test
images and the ones after adding adversarial perturbations. Mean average precision (mAP)
is an evaluation criterion for object detection and Peak Signal-to-Noise Ratio (PSNR) is
used as an approximation of image quality. Less perturbation results in higher PSNR. We
study four state-of-the-art object detectors, including two Faster-RCNN models based on
the 16-layer VGGNet Simonyan and Zisserman (2015), 101-layer ResNet He et al. (2016),
the Region Fully Convolutional Network (R-FCN) Dai et al. (2016) based on the 101-layer
ResNet and VGG-based Single Shot MultiBox Detector (SSD) Liu et al. (2016). The Faster-
RCNN object detectors we use are implemented by Chen and Gupta (2017). Faster-RCNN
are either trained on the PascalVOC-2007 trainval set or PascalVOC-0712 trainval set.
These four models are denoted as FR-V16-07, FR-V16-0712, FR-R101-07 and FR-R101-
0712, respectively. We use the PascalVOC-2007 test set (V in Algorithm 1) which has
4952 images to evaluate our algorithm. Besides, we also select a KITTI dataset with 156
consecutive frames to learn the perturbation and verify the universality of our approach.
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Similar to the existing approaches (Moosavi-Dezfooli et al. (2017); Mopuri et al. (2017,
2018)), we restrict the pixel intensities of the perturbation to lie within [-10,+10] range by
choosing ξ metioned in Sec. 2.2 to be 10.

(a)GNRM[-10,10] (b)GNRM[-65,65] (c)GDUAP[-10,10] (d)G-UAP[-10,10]

Figure 3: Four kind perturbed images. (a)(b) by adding Gaussian noise perturbations with
different pixel intensities, (c)(d) by GD-UAP and our G-UAP algorithm from
FR-V16-07. PSNR is displayed in each image.

Table 1: Performance of four kind perturbations on detection accuracy degradation (mea-
sured by mAP, %). ORIG represents the accuracy obtained on the original image
set D. GNRMs are obtained after Gaussian noises with different pixel intensities
are added. GDUAP is obtained by baseline model and G-UAP represents the
accuracy obtained by our method.

Network ORIG GNRM-10 GNRM-65 GDUAP G-UAP

FR-V16-07 70.8 69.1 30.4 47.7 31.2
FR-V16-0712 75.7 73.9 41.4 57.3 33.7

3.2. Experimental Results

In order to bring out the effectiveness of our image-agnostic perturbations, we compare
the performance of our learned perturbations with the state-of-the-art method GD-UAP
Mopuri et al. (2018). The reason why we select this baseline is because there is no method
of craft universal perturbation especially for fooling detectors to compare. And GD-UAP
is generalizable across different vision tasks, so we apply it to fooling detectors and observe
its performance. In addition, we also generate Gaussian noise (random) perturbations as
baselines to demonstrate the effectiveness of G-UAP in comparison.

Fig. 3 shows Gaussian noise (random) perturbations, image-agnostic perturbations δ
crafted by GDUAP and our proposed method. Table 1 summarizes degradation of the
detection performance after applying four perturbations to images. The GNRM-10 column
of the table shows that adding random Gaussian noise with same pixel intensity as the
perturbation to be ineffective in attacking, with only < 2% performance degradation. Al-
though GNRM-65 can degrade the performance of detetors closing to ours as Table 1 shows,
its PSNR is too low. In contrast, our G-UAP leads to large degradation of the detection
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Figure 4: Detection results of sample perturbed images by various methods. The first row
shows the detection results of the original images. And the rest rows show the
detection results of corresponding adversarial images.

performance than GDUAP in both FR-V16-07 and FR-V16-0712. And note that the per-
turbation crafted by GDUAP looks more conspicuous than perturbation by G-UAP (the
latter’s PSNR is higher).

In Fig. 4, all the clean images shown in the figure are correctly detected. Note that
adversarial images can still be correctly detected when adding Gaussian noise (random)
perturbation to clean images. There are still partially correct detections when adding per-
turbation by GDUAP. In contrast, perturbations crafted by our G-UAP algorithm can lead
the detector to detecting nothing for most images. As for the failed images, we can use
G-UAP to fine-tune the learned universal perturbation exclusively for this image, which
is denoted as FG-UAP. Fig. 5 shows that the failed targets can get fooled entirely after

1211



Wu Huang

Figure 5: The fine-tuning results of our method for the failed images.

we fine-tune the perturbation and it costs little time (5∼10 iterations less than 150∼200
iterations for taking a start from the head to compute a specific perturbation by DAG Xie
et al. (2017)). Experiments show that by fine-tuning all failed targets, we can get nearly 0%
mAP. This demonstrates that the universal perturbation can be used as an initialization to
speed up the generation of the single specific perturbation. Fig. 6 presents the detection
results of another dataset. We select one image every ten frames to examine the detec-
tion performance on adversarial examples in order to demonstrate the effectiveness of our
algorithm for attacking tracking detection. These results demonstrate that perturbations
crafted by our method achieve excellent attacking performance on different datasets.

Figure 6: First row presents detection results of clean images from KITTI dataset. Second
row shows the results of adversarial examples. In particular, the perturbation is
learned from KITTI.
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(a)FR-V16-07 (b)FR-V16-0712 (c)FR-R101-07 (d)FR-R101-0712

Figure 7: Universal adversarial perturbations crafted by our G-UAP algorithm. Corre-
sponding target network architecture is mentioned below each image.

Table 2: Performance of G-UAP on 6 state-of-the-art object detectors. ORIG column rep-
resents the accuracy of five models obtained on the original dataset D. Besides,
each row of the table shows the detection accuracies for adding the perturbations
learned from the Faster-RCNN models (column).

Network ORIG V16-07 V16-0712 R101-07 R101-0712

V16-07 70.8 31.2 28.3 34.7 35.1
V16-0712 75.7 34.1 33.7 44.3 44.2
R101-07 75.7 57.0 56.0 50.3 46.9
R101-0712 79.8 63.4 62.3 56.9 52.8

R-FCN 73.8 50.4 49.4 48.2 45.4
SSD 77.8 70.1 67.7 71.0 71.2

3.3. Transferability Across Network

We now examine perturbations’ cross-model universality. We compute universal perturba-
tion on one specific network and observe its ability to fool other networks. Fig. 7 shows
the universal perturbations δ obtained for the networks by using our proposed method.
Note that the perturbations are visually different for each network architecture. Table 2
illustrates the performance of perturbations generated from four different object models by
G-UAP. Each column in the Table 2 indicates one target model employed to learn perturba-
tions and the rows indicate that various models are attacked using the learned perturbations
except for ORIG column. Diagonal values in bold are white-box attack. In addition, the
R-FCN and SSD work as black-box detectors in our experiment. Results show that the
learned algorithm can generate perturbations that exhibit cross model generalizability. The
perturbations generated from one model can effectively reduce the detection performance
of other models and perturbations crafted by robust model have stronger attack ability. It
can be observed that universal perturbations computed for FR-ResNet101 are more valid
for FR-VGG16. Besides, observing that in the R-FCN row of Table 2, the perturbations
generated from V16-07, V16-0712, R101-07 and R101-0712 of Faster-RCNN can effectively
reduce the detection performance of R-FCN. But for SSD, there is no significant effect. The
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main reason is related to the network structure of the SSD, which is not based on RPN
network. However, our algorithm mainly aims at attacking RPN.

3.4. Discussion and Analysis
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Figure 8: (a)quantities of object prediction for original images and adversarial images.
(b)the influence of X ’s size on mAP.

In this section, to gain insights on the effect of universal perturbations on images, we
visualize our method to prove the validity of the algorithm. First, we randomly choose 100
images to observe the change of quantity of object prediction before and after adding the
perturbation. Second, we examine the influence of the size of X on the decrease of detection
accuracy. Besides, we adjust pixel intensities of δ to see the effect it has on mAP. Finally,
we analyse the effect of class label distribution of the selected training data. Here the notion
of ’Fooling rate’ has been well defined for the degradation percentage of detection accuracy
for each class.

Fig. 8 (a) shows that the number of object prediction significantly decreases and the
detector detects nothing in most images after adding the perturbation. Most of the points
in G-UAP are distributed on the 0-scale line, which means that foreground predictions of
proposals are misled into background largely. We attribute this ability of our algorithm
to the effectiveness of the proposed objective in the loss. Fig. 8 (b) demonstrates that no
matter how large the size of X is, the mAP for baseline model is still high. This figure
also proves that our method only need a small number of data points to achieve good
performance.

Fig. 9 (a) shows that when the intensity of pertubation δ increases, mAP decreases. But
(b) suggest that it is not possible to increase the pertubation’s intensity blindly, which will
deteriorate the image quality (The dotted line indicates that the PSNR is decreasing when
δ is increasing.). Similar to works (Moosavi-Dezfooli et al. (2017); Mopuri et al. (2017);
Mopuri et al. (2018)), we impose an l∞ constraint ξ (ξ = 10 less than 8% of the data range)
to control the magnitude of the perturbation to ensure PSNR at a higher value in order to
make perturbation quasi-imperceptible for humans.
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Figure 9: (a)llustration of mAP under different δ value. (b)llustration of PSNR under
different δ value.

(a) (b)

Figure 10: (a)class label distribution of the selected training data X . (b)’Fooling rate (%)’
for different classes

Comparing the Fig 10 (a) and (b), we find that though the number of person class is
highest, its ’Fooling rate’ is not the highest one. The same is true for many other classes.
The main reason is that the feature complexity of each class is different. For example, the
characteristics of sheep are simple and the characteristics of people are complex. Simple
objects are easy to fool, but complex objects are different. The universal perturbation
cannot take into account every feature of person class.

4. CONCLUSION

In this paper, we show the existence of small universal perturbations that can fool state-of-
the-art detectors on natural images. To the best of our knowledge, this work is the first to
investigate the universal adversarial perturbations for attacking Object Detection Networks.
Our G-UAP algorithm focuses on attacking RPN of detectors to mislead RPN into inferring
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wrong prediction for foreground. Experiments demonstrate that our algorithm significantly
reduce detection performance of state-of-the-art object detectors. Furthermore, it has been
shown that the learned universal perturbation can be used as an initialization to speed up
the generation of the single specific perturbation. This work may reveal something about
what is important to a detector and opens up a new opportunity on how to effectively
improve the robustness of RPN-based detectors.

However, our method has some limits. There is still much room for improvement in the
effects of universal adversarial perturbations. Besides, our generated adversarial pertuba-
tions have low success rate to attack other detection methods without RPN. Therefore, it
is an important research direction to be focused on building generic methods to attack all
kinds of detetors in the future.
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