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Abstract

Recently, the null category noise model has been proposed as a simple and elegant solution
to the problem of incorporating unlabeled data into a Gaussian process (GP) classification
model. In this paper, we show how this binary likelihood model can be generalised to the
multi-class setting through the use of the multinomial probit GP classifier. We present a
Gibbs sampling scheme for sampling the GP parameters and also derive a more efficient
variational updating scheme. We find that the performance improvement is roughly con-
sistent with that observed in binary classification and that there is no significant difference
in classification performance between the Gibbs sampling and variational schemes.

1. Introduction

In machine learning, we are often faced with the problem of classification — devising a
mapping between an input vector x and some label t that can either be binary (t ∈ {−1, 1})
or discrete over some finite set of classes (t ∈ {1, . . . ,K}). Generally, this mapping is
inferred from some set of training vectors X = [x1, . . . ,xN ]T and their associated labels
t = [t1, . . . , tN ]T . Recently, there has been considerable research interest in whether the
predictions made by such a model could be improved via the inclusion of additional training
vectors for which the true label is unknown. Such a technique would be useful in many
fields where expert labeling of training examples is costly, for example prediction of protein
function from structural information and classification of documents and images on the
internet.

Classification algorithms based on Gaussian Processes (GPs) (e.g. Williams and Barber,
1998) are becoming increasingly popular due to the computational and performance benefits
of their non-parametric nature and the flexibility provided through the large number of
covariance functions available. However, like all discriminative probabilistic classifiers, there
is an inherent problem with the inclusion of unlabeled data. Specifically, through direct
modeling of p(tn|xn) (as is the case with a discriminative model) with no prior assumptions
on the density of the input data, the unlabeled data will have no influence on the inferred
decision function. This point is illustrated nicely via a graphical representation in Lawrence
and Jordan (2006) and an interesting discussion on this subject (outside the realm of GPs)
is given in Lasserre et al. (2006). Incorporating unlabeled data in a generative framework is
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far more straightforward as unlabeled points can easily be used to improve a model of the
density, p(x) from which the data is assumed to be sampled. However, in complicated and
high dimensional domains, modeling p(x) can be very costly, motivating the development
of discriminative classifiers.

Some methods have been proposed to incorporate unlabeled data into GP classifiers (we
are interested primarily in GPs here but solutions have been proposed for other discrimi-
native classification frameworks too). For example, in Seeger (2001), a kernel is introduced
based on a model of p(x) and Chapelle et al. (2003) propose a solution based on kernels
that attempt to enforce the cluster assumption — i.e., decision boundaries should lie in
regions of low data density. Additionally, Zhu et al. (2003) show that a semi-supervised
method based on Gaussian random fields can be viewed within the framework of Gaussian
processes.

In Lawrence and Jordan (2006), the authors take a rather different approach. They
show that for binary classification, the problem can be overcome through the use of the
null category noise model (NCNM). This introduces an extra target category tn = 0 and
an additional set of parameters zn where zn = 0 if the label of xn is observed and zn = 1
otherwise. Crucially, the model is also constrained such that p(zn = 1|tn = 0) = 0 i.e.,
there can be no un-labelled points in the null category. This has the effect of creating a
region in the input space inside which no points (labeled or unlabeled) exist. This forces
the decision boundary to exist in regions of low data density — i.e., it implicitly enforces
the clustering assumption. It is obvious that under these conditions, unlabeled data can
indeed influence the position of the decision boundary and hence future predictions. There
are obvious similarities between this null region and the margin in the context of support
vector machines.

In this paper, we will show how the null-category noise model is closely related to the
binary variant of a recently published GP classification algorithm based on the multinomial
probit likelihood function (Girolami and Rogers, 2006). With this in mind, we will proceed
to show how combining the idea of a null category with the multi-class probit GP results
in a straight-forward algorithm for discriminative semi-supervised learning over multiple
classes.

The remainder of the paper is organised as follows. In section 2 we will review the null
category noise model used by Lawrence and Jordan (2006). In section 3 we will show how
this model is closely related to the probit GP and hence show how the idea can be extended
to perform multi-class classification through Markov chain Monte-Carlo. An efficient vari-
ational approximation is provided in section 4, in section 5 we provide some experimental
results and in section 6 draw some conclusions.

2. The null-category noise model

The standard (binary) GP classification model can be defined as follows

p(t|X) =

∫
p(t|m)p(m|X)dm

where m|X ∼ GP (0,C) (i.e. a Gaussian Process with a zero mean and covariance matrix
C, the ijth element of which is some covariance function evaluated at xi,xj) and p(tn|mn)
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is the noise model or likelihood, the definition of which distinguishes most GP classification
methods. Here we are interested in the null-category noise model which, with the addition
of a set of auxiliary variables yn such that yn|mn ∼ N (mn, 1), is defined in Lawrence and
Jordan (2006) as

p(tn|yn) =





δ(yn < −1
2) for tn = −1

δ(yn > −1
2) − δ(yn > 1

2 ) for tn = 0
δ(yn > 1

2) for tn = 1

where δ(expr) = 1 if the expression expr is true and zero otherwise.

The introduction of an additional set of fully observed binary indicator variables zn

such that zn = 1 if the label for the nth data point is not observed and zn = 0 otherwise
enables us to draw samples from the posterior p(y,m|X, t, z) using a Gibbs sampler as
follows (conditioning on any parameters of the covariance function is implicit). Firstly,
standard results for the product of two exponential forms give m ∼ N (Σy,Σ) where Σ =
C(C+IN)−1, C is the GP covariance and IN is an N ×N identity matrix. More interesting
however is the sampling distribution for each yn. These can be split into two cases, those
where the label is observed (zn = 0) and those where it isn’t (zn = 1). For the former, we
obtain the following distribution

p(yn|X, t, z,m) ∝

{
Nyn(mn, 1)δ(yn < −1/2) for tn = −1, zn = 0.
Nyn(mn, 1)δ(yn > 1/2) for tn = 1, zn = 0

This is a Gaussian either truncated above at −1/2 or below at 1/2. When zn = 1, we
marginalise the unobserved tn (via p(zn = 1|yn) =

∑
tn

p(tn|yn)p(zn = 1|tn)) resulting in
the following distribution

p(yn|mn, zn = 1) ∝ γ−δ(yn < −1/2)Nyn(mn, 1) + γ+δ(yn > 1/2)Nyn(mn, 1)

where γ− = p(zn = 1|tn = −1) (likewise for γ+). Defining the pdf of a Gaussian truncated
below at a as N>a

y (m, 1) = [Φ(m− a)]−1δ(y > a)Ny(m, 1) and one truncated above at a as
N<a

y (m, 1) = [Φ(a−m)]−1δ(y < a)Ny(m, 1) we can re-write the conditional distribution as

Z−1[γ−Φ(−1/2 − mn)N<1/2
yn

(mn, 1) + γ+Φ(mn − 1/2)N>1/2
yn

(mn, 1)]

where Z = γ−Φ(−1/2−mn)+γ+Φ(mn−1/2). This is a mixture of two truncated Gaussians,
and is visualised in Figure 1. These three distributions are all that is required for the
Gibbs sampler and sampling from each of them is straightfoward. However, in practice an
approximation is likely to be more computationally appealing and so the authors embed
the NCNM into a sparse scheme based on the informative vector machine (IVM).

3. Probit GP

Recently, Girolami and Rogers (2006) showed that exact Bayesian inference is possible in
binary and multi-class GP classification through augmenting a GP classifier with Gaussian
latent variables and a probit likelihood function. In the binary case, the only difference
with the model described above is in the choise of noise model which, in this case is defined
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Figure 1: Example conditional posterior for yn in the binary NCNM. In this case, mn = 0.4
and we see how the posterior pushes yn outside the null region. The effect mn

has on the mixture weights is obvious. As mn is close to the right hand edge of
the null region, the right hand Gaussian is weighted much higher than the left
hand one.

as p(tn = 1|yn) = δ(yn > 0), p(tn = −1|yn) = δ(yn < 0). Gibbs sampler updates for yn are
therefore

p(yn|mn, tn) ∝

{
δ(yn < 0)Nyn(mn, 1) for tn = −1
δ(yn > 0)Nyn(mn, 1) for tn = 1.

The similarity between this and the NCNM updates (when zn = 0) is obvious. The only
difference is in the truncation points of the Gaussians and as such, the probit model could
be viewed as a special case of the NCNM where a = 0 (recall that originally, the width
of the null region was defined by a). As an aside, it is intuitive to see what happens if
unlabeled data is added to the probit model. Following the same notation as before, we
find that

p(yn|zn = 1,mn) = Z−1[γ−Φ(−m)N<0
yn

(mn, 1) + γ+Φ(m)N>0
yn

(mn, 1)].

Where Z = γ−Φ(−m)+γ+Φ(m). Under the standard assumption that γ− = γ+, this reduces
to the prior p(yn|mn) and it is obvious why adding unlabeled data makes no difference in
the standard GP framework.

3.1 From binary to multi-class

In the previous section, we described the binary probit GP and its similarity (and crucial
difference) to the NCNM. The multi-class classification scheme presented in Girolami and
Rogers (2006) has two major advantages compared to other multi-class GP schemes. Firstly,
exact inference can be achieved via Gibbs sampling based MCMC and secondly, the scaling
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is linear with respect to K, the total number of classes. It is defined as follows

mk ∼ GP (0,C)

yk ∼ Nyk
(mk, IN )

p(tnk = 1|yn) = δ(ynk > yni∀i 6= k)

where k = 1 . . . K — the total number of classes, M and Y are both N × K matri-
ces that can either be decomposed by columns M = [m1, . . . ,mk, . . . ,mK ] or rows M =
[m1, . . . ,mn, . . . ,mN ]T where mn denotes a K × 1 vector and mk a N × 1 vector (resp. for
Y,yn,yk). Additionally, tn is now a 1 × K binary vector with a one corresponding to the
particular class assigned to this point and zeros elsewhere. Note that in our notation we
have assumed that there is one global covariance matrix for all of the K GPs, relaxing this
assumption is straightforward. The Gibbs distribution for yn is given by

p(yn|mn, tn) =

K∑

k=1

Nyn(mn, IK)δ(ynk > yni∀i 6= k)δ(tnk = 1),

which is a Gaussian located at mn truncated such that the component corresponding to
the class label is largest. It is possible to visualise this truncation for the case K = 3 as can
be seen in Figure 2(a) where the sphere represents an iso-contour of a Gaussian with mean
zero and the planes represent the boundaries between the truncation regions. An example
of a dataset drawn from the prior defined by this model can be seen in Figure 2(c).

As we have seen, the inclusion of a null region can give unlabeled points some influence
in the position of our decision boundary. We propose the construction of a null region in
the multi-class setting through use of the following modification of the multi-class probit
likelihood:

p(tn|yn) =

{
δ(ynk > yni + ǫ ∀i 6= k) for tnk = 1

1 −
∑

k δ(ynk > yni + ǫ ∀i 6= k) for
∑

k tnk = 0

where ǫ is a parameter that controls the width of the null region and points in the null
region are characterised by having no assigned label (

∑
k tnk = 0). A visualisation of the

truncation defined by this model can be seen in Figure 2(b) where the sphere has now
been broken into segments. The null region is clearly visible. We denote this scheme as
ǫ-truncation. An example dataset drawn from this prior can be seen in Figure 2(d).

Introducing a new set of variables, zn as before, we can formulate the conditional dis-
tributions for yn

p(yn|zn,mn, tn) ∝

{
δ(ynk > yni + ǫ ∀i 6= k)Nyn(mn, IK) for zn = 0, tnk = 1∑

k γkδ(ynk > yni + ǫ ∀i 6= k)Nyn(mn, IK) for zn = 1

where γk = p(zn = 1|tnk = 1). As in the binary case, this is a truncated Gaussian when
the label is observed and a mixture of truncated Gaussians when it is not. Denoting by
N k,ǫ

yn (mn, IK) = Z−1
nk δ(ynk > yni+ǫ∀i 6= k)Nyn(mn, IK) a Gaussian truncated such that the

kth component is the largest, where Znk = Ep(u)[
∏

j 6=k Φ(u + mnk −mnj − ǫ)], u ∼ N (0, 1)
(for details, see appendix A), we can normalise this conditional distribution to give

p(yn|zn = 1,mn) =

∑K
k=1 γkZnkN

k,ǫ
yn (mn, 1)∑

k′ γk′Znk′

.

21



Rogers and Girolami

(a) A visualisation of the truncation caused by
the standard multi-class probit model

(b) A visualisation of the truncation caused by
the multi-class probit model with a null region

(c) Example 3 class dataset drawn from the prior
of the standard probit GP. Data points are uni-
formly spaced and the function has been drawn
from a GP prior with an rbf covariance function.

(d) Example 3 class dataset drawn from the prior
of the probit GP with null category.

Figure 2: Visualisation of the addition of a null region to the probit GP.

This is all we need to implement a Gibbs sampler. To summarise, the required distributions
are

mk|yk ∼ Nm(Σyk,Σ)

yn|zn = 0,mn, tn ∼
K∑

k=1

N k,ǫ
yn

(mn, I)δ(tnk = 1)

yn|zn = 1,mn ∼

∑K
k=1 γkZnkN

k,ǫ
yn (mn, 1)∑

k′ γk′Znk′

where Σ = C(I + C)−1 as before.
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3.2 Making Predictions

Following Girolami and Rogers (2006), we can obtain the predictive distribution for a new
point by marginalising the GP variables, M

P (tnew = k|xnew,X, t, ǫ) =

∫
P (tnew|m

new, ǫ)p(mnew|xnew,X, t)dmnew.

Samples from the Gibbs sampler can be used to obtain a Monte Carlo estimate of the
above expectation. For each sampled Y, an additional set of samples mnew,s

k is drawn from
Nm(µnew

k , σ2
k,new) where µnew

k = yT
k (I+C)−1Cnew and σ2

k,new = cnew−Cnew(I+C)−1Cnew,
where Cnew is the covariance function evaluated between the new point and the training
points and cnew is the covariance function evaluated at just xnew. The predictive distribution
is then given by

1

Nsamps

Nsamps∑

s=1

Ep(u)




∏

j 6=k

Φ(u + mnew,s
k − mnew,s

j − ǫ)



 .

However, as mentioned in Lawrence and Jordan (2006), we have a finite probability of our
new point belonging to the null class (1 −

∑
k p(tnew = k|xnew,X, t, ǫ) > 0). We can over-

come this problem, as in Lawrence and Jordan (2006), by the reasonable assumption that
znew = 1 — i.e. that the label for the new point has not been observed. In this case, by
definition, p(znew = 1|tnew = 0) = 0 and so there is zero probability of the new data point
belonging to the null class. We can therefore re-normalise our predictive probabilities so
that they sum to one over the K legitimate classes.

A sampling scheme such as this, whilst providing samples from the true posterior, is not
very appealing from a computational point of view, motivating the creation of a suitable
approximation.

4. A Variational Approximation

As in Girolami and Rogers (2006), it is straightforward to obtain a variational Bayes ap-
proximation (Beal (2003); Jordan et al. (1999)) in which the posterior over Y and M is
approximated through a factored posterior p(M,Y|X, t, z, ǫ) ≈

∏
i Q(Θi) = Q(Y)Q(M).

Applying Jensen’s inequality to the marginal likelihood, results in the following familiar
lower bound p(t|X,Y,M, z, ǫ) ≥ EQ(Θ){log p(t,Θ|X, t, z, ǫ)} − EQ(Θ){log Q(Θ)} that is
minimised by distributions of the form Q(Θi) ∝ exp(EQ(Θ/Θi){log p(t,M,Y|X, z, ǫ)}). The
form of Q(M) is as given in Girolami and Rogers (2006) and is

Q(M) =

K∏

k=1

Q(mk) =

K∏

k=1

Nmk
(m̃k,Σk)

where ã = EQ(a)(a) and m̃k = Σỹk and Σ = C(I + C)−1. Q(Y) is more interesting and
can be factored into the terms corresponding to labeled training examples nl = 1 . . . L and
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unlabeled nu = 1 . . . U . For the labeled data points, Q(ynl
) =

∑
k N

k,ǫ
ynl

(mnl
, I)δ(tnk = 1),

giving, if tnli = 1 (i.e. xnl
belongs to class i),

ỹnlk = m̃nlk − Z−1
nl

Ep(u)



Nu(m̃nlk − m̃nli + ǫ, 1)

∏

j 6=i,k

Φ(u + m̃nli − m̃nlj − ǫ)





for k 6= i and

ỹnli = m̃nli +
∑

k 6=i

(m̃nlk − ỹnlk)

(for details, see appendix B). For the unlabeled data, we again marginalise over the unob-
served tnu and obtain

Q(ynu) =

∑
k γkZnukN

k,ǫ
ynu

(m̃nu , I)∑
k′ γk′Znuk′

which is a mixture of truncated Gaussians as before. ỹnu is then given by a weighted com-
bination of the expectations of ynu under each of the k truncations which can be calculated
as described above. It is interesting to compare this variational approximation with the
Gibbs sampler. It is clear that whilst the Gibbs sampler will always sample a value of y

that will move the point out of the null region (or, more accurately, move the null region
away from the point), there is no guarantee that ỹ will not be inside the null region. For m

right in the centre of the null region, the Gibbs sampler will jump to one side or the other
whilst the variational approximation will not move. We will discuss this point further when
we compare the two algorithms in the experimental section.

4.1 Variational Predictions

To obtain the predictive distributions, we first marginalise the GP variables to give

p(ynew|xnew,X, t, ǫ) =

K∏

k=1

Nynew
k

(m̃new
k , ṽnew

k )

where ṽnew
k =

√
1 + σ̃2

new

k . Applying the ǫ-truncation to this distribution, yields

p(tnew = k|xnew,X, t) = Ep(u)




∏

j 6=k

(
1

ṽnew
j

[uṽnew
k + m̃new

k − m̃new
j − ǫ]

)
 .

As previously, we will need to re-normalise the predictive distributions over the K legitimate
classes due to the constraint p(znew = 1|tnew = 0) = 0.

5. Experimental Results

5.1 Illustrative Example

We will start with a toy example for ease of visualisation. Data are sampled from three Gaus-
sians with means [−3, 0]T , [0, 0]T , [3, 0]T and a shared covariance matrix with an identity on
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the diagonal and 0.9 on the off-diagonal elements. Labels are removed from points whose
squared euclidean distance from the mean of the distribution from which they were drawn is
greater than 0.75. For both the variational approximation and the Gibbs sampling scheme,
a value of ǫ = 1 is used with an RBF covariance function C(xi,xj) = exp(−s||xi − xj ||

2)
with parameter s = 0.5. However, as described in Girolami and Rogers (2006), the kernel
parameter (or parameters) could be inferred during the training process. Additionally, ǫ
could be treated as an additional model parameter. However, following Lawrence and Jor-
dan (2006), we fix it to a constant value (in all experiments, ǫ = 1) and let the GP handle
the overall scale. The decision boundaries provided by a classifier trained only on the la-
beled data and those for the semi-supervised approach can be seen in Figure 3. It is clear
that the semi-supervised approach is able to use the information present in the unlabeled
data to build a more accurate classifier.

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

Figure 3: Example semi-supervised problem. Labeled data from three classes is shown as
black squares, circles and diamonds. Unlabeled data is shown as grey dots. The
decision boundaries without the unlabeled data are shown as dotted lines. When
the labeled data is included, the decision boundary is shown as a solid line. The
classifier with the unlabeled data more accurately reflects the structure present
in the data. There is no visual difference between the Variational approximation
and the solution from the Gibbs sampler.

5.2 Wine Dataset

We now turn our attention to the wine dataset from the UCI machine learning repository
D.J. Newman and Merz (1998). The dataset consists of 178 instances spread reasonably
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(a) Effect of varying percentage of training
points labeled on classification performance for
variational approximation. Error bars show stan-
dard error over 10 re-samplings, arrows show
points where difference is significant at 5% un-
der a paired t-test.

0 20 40 60 80 100
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Percentage Labels Present

P
re

di
ct

iv
e 

Li
ke

lih
oo

d

Semi−supervised
Standard

(b) Effect of varying percentage of training
points labeled on predictive likelihood for Gibbs
sampler. Error bars show standard error over 10
re-samplings and the semi-supervised approach
is significantly better at all percentages between
30 and 80 inclusive.
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(c) Scatter plot showing comparison of perfor-
mance with and without unlabeled data at 20%
labeled. Circles represent results using Gibbs
samples, dots the variational approximation.
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(d) As (b), but at 30% labeled.

Figure 4: Effect of varying the proportion of training points left unlabeled for the wine
dataset.

evenly across three classes. Twelve features are measured and, due to the large difference
in their scales, we re-scale them by subtracting the mean and dividing by the standard
deviation of the training data. The dataset is randomly partitioned into 100 training and
78 testing points and we investigate the effect of removing different proportions of the labels
of the training data. We use an RBF kernel and fix both the kernel parameter s = 0.1 and
the width of the null region, ǫ = 1. Figure 4(a) shows how the test error varies as the
proportion of labeled training data is increased. We see that at the lowest percentages of
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labeled data, the performance for the semi-supervised approach is significantly inferior to the
standard classifier and performances for both approaches are characterised by a very large
variance. As the percentage is increased, the performance of the semi-supervised approach
improves rapidly and at 30% and 40% is significantly better than the performance with the
labeled data alone. However, closer analysis of these results suggests that simply comparing
the means under the different approaches does not provide the full story. In Figures 4(c)
and 4(d) we compare the error rates achieved for both the variational approximation and
the Gibbs sampler over 100 re-samplings of the data (to ease visualisation, a small quantity
of random jitter has been added to the points — without it, many points lie on top of
one another due to the small dataset size). The two plots correspond to 20% labeled
(where the mean performances are indistinguishable) and 30% labeled where the semi-
supervised approach is significantly better. Also shown on the plots are the percentage of
cases in which semi-supervised learning gave an improvement. We see that in both cases,
the performance under the majority of partitions was improved when unlabeled data was
added. However, particularly in the 20% labeled case, the improvements are reasonably
modest when compared to the few cases where the performance is substantially reduced.
Although this is only one dataset and empirical performance is likely to vary substantially
across different domains, this is an important point and will be discussed further in the
conclusions. In addition to the test error, as we have a probabilistic classifier, we can also
monitor the predictive likelihood. Figure 4(b) shows how the average predictive likelihood
varies as the percentage of data labeled is increased. The semi-supervised approach has
significantly higher predictive likelihood than the standard approach for all percentages
between 30 and 80 inclusive. This suggests that whilst there are only modest increases in
performance with respect to test error, there is a larger difference in the predictive likelihood
— the unlabeled data is providing increased certainty in predictions. In both the test error
and predictive likelihood, there is no significant difference in the performance of the Gibbs
sampler and variational approximation. This generally agrees with the results for standard
classification presented in Girolami and Rogers (2006).

5.3 USPS Digits

Finally, we turn our attention to a much larger problem. The USPS digits dataset (Hull,
1994)1consists of 9298 images of the digits 0-9 split into equal training and test sets. Each
image is described by 256 features (corresponding to the 16×16 grey level pixel intensities).
A discriminative classifier is particularly appropriate in examples such as this as building
a model of p(x) in such a high dimensional space would be incredibly difficult. In all
experiments, an RBF kernel was used with s = 0.01. As in the previous section, labels
were removed with probability ranging between 0.01 and 0.5 and at each probability, the
experiment was repeated 10 times. Figures 5(a) and 5(b) show the test error and predictive
likelihood for the semi-supervised and standard approached as the percentage of labeled
points is increased. As in the previous example, we see that at very low percentages, the
performance of the semi-supervised technique is much worse than using the labeled data
alone. However, as the proportion of labels is increased, the performance of the semi-

1. Particular version used here is available from http://www.gaussianprocess.org/gpml/data/
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(a) Effect of varying the percentage of labeled
points on test error in the 10-class USPS hand-
written digits dataset
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Figure 5: Performance on large-scale USPS dataset

supervised approach improves and for 10 and 20 percent, there is a considerable advantage
in including the unlabeled data.

6. Conclusions

In this paper, we have shown how the null category noise model (NCNM), as introduced
into the GP literature by Lawrence and Jordan (2006) can be incorporated into a multi-
class setting through the multinomial probit GP of Girolami and Rogers (2006) and thus
allow semi-supervised learning to take place in a multi-class, discriminative setting. Semi-
supervised learning in a discriminative setting is desirable as there is no need to make
often computationally costly approximations of the data density p(x). One of the major
advantages of the probit GP is that it allows exact inference through MCMC. To this end,
we present a Gibbs sampler and also provide a more computationally attractive variational
approximation.

Answers to such questions as to whether or not semi-supervised learning will offer
great improvements over standard approaches and whether generative or discriminative
approaches will prove more useful, while important, are certainly not the aim of this paper.
This explains the relatively short experimental section. However, some interesting questions
arise from our results. Particularly, at (relatively) small percentages of labeled samples (a
scenario which is common and motivates the use of semi-supervised approaches) the very
similar mean performances mask considerable differences between the performances of the
standard and semi-supervised approaches. For example, in our experiments on the wine
dataset, at 20% labeled data the majority of partitions are improved by the addition of un-
labeled data. However, there is no significant difference between the mean performances of
the semi-supervised and standard approaches due to the small number of partitions where
performance is substantially hampered by the unlabeled points — incusion of unlabeled
data is risky. It would seem reasonable to assume that in order to gain benefit from in-
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cluding unlabeled data, the distribution of the labeled data needs to be biased with respect
to the true distribution from which the data was generated. The addition of more data
(be it labeled or unlabeled) has the potential to help correct this bias. However, large
decreases in performance with the inclusion of unlabeled data could be due to the distri-
bution of the labeled data being too different from the true distribution, effectively causing
unlabeled points to sit on the wrong side of the decision boundary. It would be interesting
to see whether it would be possible to gain an insight, given a particular dataset, into likely
improvements/reductions in classification performance without the aid of testing and val-
idation data. However, it is difficult to see how this would be possible without creating a
model of p(x) - exactly what we are trying to avoid in the discriminative framework.

Whilst any improvements found in the test error were modest, we see a far more signifi-
cant improvement in the predictive likelihood. This suggests that, over a certain percentage
of labeled points, the addition of unlabeled data helps to make the predictions more certain
even if no significant difference in test error is observed. Additionally, it is possible that the
rather modest improvements found were in part due to the method of randomly removing
labels. Such a process doesn’t reflect the likely real scenario of the distribution of labeled
data systematically deviating from the underlying data distribution. Whilst this makes
the classification task more difficult it may mean that semi-supervised results look more
promising as the performance of algorithms trained only on the labeled data is likely to
diminish.

One of the major drawbacks of using a GP for classification in many practical settings is
the dominant O(N3) scaling resulting in the inversion of the covariance matrix. Producing a
sparse solution to the classification problem (i.e. using a subset of training points S << N)
is one way to overcome this problem, for example the IVM (Lawrence et al., 2005) or
the sparse online GPs of Csato and Opper (2002). In Girolami and Rogers (2006), we
showed how the multi-class probit GP could be made sparse through IVM-like updates. It
is interesting to consider how such an algorithm would behave in the presence of unlabeled
data. For example, what proportion of unlabeled data do we have in the final solution
and when choosing a new point, should we make allowances for the potential additional
information that is available from a labeled data point. These are interesting questions for
future research.

Finally, we have not made any mention of suitable values for ǫ. The optimum value
is likely to be dependent on both the particular dataset being used and the form of the
covariance function. For example, given a particular dataset, as ǫ is increased, the GP
will require more flexibility to ensure that the closest points to the decision boundary do
not invalidate the necessary constraints. This implies that for a given covariance function,
different values of ǫ may favour completely different decision functions. An investigation
into the role the value of ǫ plays and whether or not it can be learnt from the data is an
interesting avenue for future work.
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Appendix A. Normlisation constant of conically ǫ-truncated Gaussian

The normalisation constant can be calculated as follows

Zni =

∞∫

yni=∞

Nyni(mni, 1)
∏

k 6=i

∞∫

ynk=−∞

Nynk
(mnk, 1)δ(yni > ynk + ǫ)dynkdyni

=

∞∫

yni=∞

Nyni(mni, 1)
∏

k 6=i

yni−ǫ∫

ynk−∞

Nynk
(mnk, 1)dynkdyni

=

∞∫

yni=∞

Nyni(mni, 1)
∏

k 6=i

Φ(yni − mnk − ǫ)dyni.

Making the substitution u = yni − mni leaves us with

Zni =

∞∫

u=∞

Nu(0, 1)
∏

k 6=i

Φ(u + mni − mnk − ǫ)du

= Ep(u)


∏

k 6=i

Φ(u + mni − mnk − ǫ)




where p(u) = Nu(0, 1).

Appendix B. Expected value of a conically ǫ-truncated Gaussian

Firstly, assume that tni = 1, i.e. the nth point belongs to class i. So, starting with
ỹnk ∀k 6= i, we have

ỹnk = Z−1
n

∫ ∞

−∞

∫ ∞

−∞

ynkNyni
(m̃ni, 1)

∏

j 6=i

Nynj
(m̃nj , 1)δ(ynj < yni − ǫ)dynjdyni.

Zn = Ep(u)

{∏
j 6=i Φ(u + mni − mnj − ǫ)

}
as we have shown previously. Expanding this

expression gives

ỹnk = Z−1
n

∫ ∞

−∞

yni−ǫ∫

ynk=−∞

ynkNynk
(m̃nk, 1)

∏

j 6=i,k

Nyni
(m̃ni, 1)Φ(yni − m̃nj − ǫ)dynidynk.

Applying the substitution u = ynk − m̃nk results in

ỹnk = Z−1
n

∫ ∞

−∞

yni−ǫ−m̃nk∫

u=−∞

(u + m̃nk)Nu(0, 1)
∏

j 6=i,k

Nyni
(m̃ni, 1)Φ(yni − m̃nj − ǫ)dynidu

= m̃nk − Z−1
n Ep(u)



Nu(m̃nk − m̃ni + ǫ, 1)

∏

j 6=i,k

Φ(u + m̃ni − m̃nj − ǫ)




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where we have used the results for a standard one-dimensional truncated Gaussian. For
ỹni, we have

ỹni = Z−1
n

∫ ∞

−∞

yniNyni
(m̃ni, 1)

∏

j 6=i

Φ(yni − m̃nj − ǫ)dyni.

Again, substituting u = yni − m̃ni

ỹni = Z−1
n

∫ ∞

−∞

(u + m̃ni)Nu(0, 1)
∏

j 6=i

Φ(u + m̃ni − m̃nj − ǫ)du

= m̃ni + Z−1
n Ep(u)



u

∏

j 6=i

Φ(u + m̃ni − m̃nj − ǫ)



 .

Using the result that for u ∼ N (0, 1) and any differentiable function g(u), Ep(u)[ug(u)] =
Ep(u)[g

′(u)] (where g′(u) = dg(u)/d(u)), it follows that the expectation for yni can be
calculated from the the expectations for ynk, k 6= i via

ỹni = m̃ni +
∑

k 6=i

m̃nk − ỹnk.
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