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Abstract

We propose a novel approach for detection of salient image points and estima-
tion of their intrinsic scales based on the fractional Brownian image model.
Under this model images are realisations of a Gaussian random process on
the plane. We define salient points as points that have a locally unique image
structure. Such points are usually sparsely distributed in images and carry
important information about the image content. Locality is defined in terms
of the measurement scale of the filters used to describe the image structure.
Here we use partial derivatives of the image function defined using linear scale
space theory. We propose to detect salient points and their intrinsic scale by
detecting points in scale-space that locally minimise the likelihood under the
model.

Keywords: Image analysis, salient image point detection, scale selection,
fractional Brownian images

1. Introduction

Following the widely recognised paradigm by Marr (1982), image feature detec-
tion is the basis which many vision and image analysis algorithms build upon.
The definition of what constitutes an image feature is debatable, but there is
a common agreement that it is either a point or curve at which the image in-
tensities have a visual information carrying geometry. Examples of curve-like
features include edges formed by abrupt contrast changes and ridges formed by
bar- or valley-like intensity structures. Examples of point features include T-
junctions formed by two edges crossing (usually caused by occluding objects),
corners formed by two edges ending at a point, and blobs which are local ex-
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trema of the image intensity function. The term image feature (or just feature)
should not be confused with the term feature common in pattern recognition.
The former is represented by a position in the image domain.

An image feature has an intrinsic scale that describes its extent in space, e.g.
a blob has a certain width and an edge has a certain sharpness. In this paper we
use linear scale space theory (Koenderink, 1984; Witkin, 1983) for the analysis
of local image geometry or structure at different scales. In this theory the scale
of an image is changed by applying a Gaussian function filter to the image by
convolution. The standard deviation of the Gaussian defines the scale of the
processed image. There are several benefits of this theory, but the main point
we are going to use is that by blurring the image (see Fig. 1 for an example) the
problem of computing derivatives of the image becomes well-posed. The partial
image derivatives describe the differential geometric properties of the image and
are commonly used for defining image feature detectors. As an example, first
order derivatives (the gradient) can be used to define an edge detector (see e.g.
Lindeberg, 1998a).

In applications such as stereo matching, object recognition, and image re-
trieval the features used are often sparsely distributed point features and are
usually denoted salient or interest points. General interest point detectors can
be constructed using the probabilistic scale space framework presented by Ma-
jer (2000) in which pixel positions are considered particularly informative if the
operator response is extremal. The actual type of detected interest point is
dependent on the precise choice of the detection operator. As scale invariance
is generally regarded as a desirable property, popular salient point detectors
employ schemes that rely on some form of automatic scale selection (e.g. Lin-
deberg, 1998b), which makes the detection invariant to scale changes in the
studied image. Classical point detectors, like the Harris corner detector (Harris
and Stephens, 1988), have also been combined with scale selection techniques
(see e.g. Dorké and Schmid, 2006; Mikolajczyk and Schmid, 2004).

Loupias et al. (2000) and Sebe and Lew (2003) propose a different approach
to the detection of salient points in a multi-resolution manner. A wavelet-based
salient point detection scheme is presented that, similar to Lindeberg (1998b,a),
but more heuristically and computationally inexpensive, does an over-scale com-
parison of image features. The point detection strategy is primarily designed
to overcome some of the drawbacks of certain classical interest point detectors,
i.e. corner detectors. It is demonstrated that a gain in performance can be
achieved on, e.g. image retrieval tasks.

Another multi-scale algorithm for the selection of salient regions is intro-
duced by Kadir and Brady (2001). It proposes an improved scale space-based
version of an approach described by Gilles (1998), in which saliency is defined
in terms of local signal complexity based on the Shannon entropy of local image
descriptors. The applicability of this low-level approach is also demonstrated
on several image processing problems.

The approach taken by Kadir and Brady (2001) and Gilles (1998) comes
close to the probabilistic approach, we suggest here. However, the publica-
tions conceptually most closely related to our current work, are those of Loog
et al. (2005) and Walker et al. (1997, 1998). In the latter two references certain
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features (in the pattern recognition sense) are extracted for all points in an
image and a probability density is estimated for this collection of feature vec-
tors. Points in the image that correspond to low-density areas are considered
interesting and identified as salient points.

A similar notion of saliency is used in the current work where it is integrated
into the scale selection framework earlier presented by some of the authors
(Loog et al., 2005). The latter presents a probabilistic localised scale selection
principle based on maximum likelihood estimation under a Brownian image
model. For each image point a generic scale is selected by maximising the
likelihood of the image structure under the model. The hereby selected scale is
considered as the intrinsic scale of the local image structure. Contrary to other
scale selection approaches this method allows us to assign scales to all image
positions irrespectively of whether they are image feature points or not.

In this paper, a similar approach is taken, however it is based on the idea
that minimum likelihood (contrary to maximum likelihood) indicates that the
measured local structure do not fit the underlying stochastic image model well
and therefore indicates a point of interest. More specifically, we propose a
definition of features and their scales as points in scale space occurring rarely
locally under a stochastic model of generic images. The rationale is that image
features or salient points are sparsely distributed rare events. This definition
allows us to detect points in which the image structure differ from the structure
found in the surrounding neighbourhood. As an example one may think of a
texture consisting of a dotted pattern in which a box suddenly appears. In
this case we would like to detect the centre of the box as the salient point of
this pattern. We define locality in terms of the scale of the operators used
to describe the point-wise image structure. Using this principle, the method
simultaneously detects features and their intrinsic scales.

The proposed feature detection framework allows in general the use of var-
ious stochastic image models and descriptions of local image structure. In this
paper we use the so-called scale space jet as descriptor of the local structure.
The scale space jet is a vector of the partial derivatives of the image up to some
order k and can be considered as a representation of a truncated (at order k)
Taylor expansion of the image function. Using the jet representation allows us
to study image structures at different differential orders. As an example of a
stochastic image model we use the fractional Brownian image model as defined
by Pedersen (2003) and Markussen et al. (2005). The motivation for using this
model is based on the fact that the fractional Brownian image model has been
proposed by several authors (Pentland, 1984; Pesquet-Popescu and Vehel, 2002;
Pedersen, 2003) as a model of natural images which captures the self-similarity
and other important properties of the covariance structure of such images. This
image model is a zero mean Gaussian process model and is as such fully de-
scribed by its covariance structure. The covariance structure for scale space
jets of fractional Brownian images has been studied by Pedersen (2003) and
Markussen et al. (2005) and an analytical expression for the covariance matrix
of scale space jets can be derived. Based on this model we can calculate scale
dependent likelihoods. Local minima in this likelihood ‘scale space’ can then
be interpreted as image locations which, in the neighbourhood defined by the
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scale of the jet measurements, are unlikely and therefore interesting or, for that
matter, salient. Contrary to other methods for image feature detection we do
not rely on an explicit model of the image features we want to detect.

The apparent discrepancy between maximising (Loog et al., 2005) and min-
imising (the here presented method) the likelihood in order to select a scale is
caused by the difference in goals in the two methods. In Loog et al. (2005) the
purpose is to assign a scale independent of an image feature. Here we search
for image features which are rare events in space and similarly we define the
scale of the feature as a rare change of the image structure across scale.

2. Scale-Space and Scale-Space Jets

In order to describe local image geometry we use the scale space jet repre-
sentation proposed by Koenderink and van Doorn (1987). The scale space
L :R?2x R, — R of an image f : R?> — R is given by convolution with a
Gaussian blurring kernel

L(x;0) = (G * f)(x) (1)

where o is the measurement scale, x = (z, )7, and

Galo) = gz (- @)

T 2702

So-called scale normalised scale space derivatives may be computed by

n-+m an+mG0
The scale space k-jet at an image point is the vector of partial scale space
derivatives up to order k of the image intensity function at that point,

Jo(X) = (Lay Ly, - -+, Lgnym) " (x;0) (4)

where n+m = k. The scale space k-jet describes the local differential geometry
at position x measured at scale 0. We disregard the zeroth order term since it
does not carry any relevant geometric information except a linear displacement
of the intensity. Figure 1 displays examples of a scale space and corresponding
derivatives.

3. The Fractional Brownian Image Model

We will assume that images of naturally occurring scenes can be modelled as
samples from the fractional Brownian image (fBi) model. This model is a
non-stationary zero mean Gaussian random field with stationary increments
and long range dependencies. The model was first considered by Mandelbrot
and van Ness (1968) and there are several similar definitions of the fractional
Brownian image model, see e.g. Pesquet-Popescu and Vehel (2002).

We will use the definition referred to as Levy Brownian motion (Pesquet-
Popescu and Vehel, 2002). Following this definition a fractional Brownian image
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Figure 1: Fauvist scale space for a blue nude (#2) by Matisse (1952). The top
row displays normal linear scale space at scales €?, el,...et. Middle
and last row show the corresponding derivatives L, and L, respec-
tively, in which the same scales are used as for the first row. Note
that for every image the intensities have been scaled linearly so to
span the whole intensity range.

is a non-stationary zero mean Gaussian random field By (x) with stationary
increments By (x) — By (y). The correlation between two points By (x) and
Bp(y) has the form

Ry (x,y) oc g (IxIP" + Iy P = lIx = y]*) ()

where H is known as the Hurst coefficient and can take the values 0 < H < 1.
This parameter dictates the spatial correlation structure of the model as well as
its scaling behaviour ranging from self-similarity to true scale invariance. For
H = % the process Bp(x) corresponds to Brownian motion. The (3 constant
describes the variance of the intensities. The increment process By (x) — B (y)
is a zero mean Gaussian process with variance proportional to ||x — y||?//. The
increments are in general dependent, but independent only for H = %

Even though the fBi model is non-stationary it is possible to define a power
spectrum of the fBi in terms of the spectral properties of the stationary in-
crements. Reed et al. (1995) does this by constructing a generalised power
spectrum and Flandrin (1989) and Hoefer et al. (1993) uses the Wigner-Ville
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spectrum. By using such techniques it is possible to derive a meaningful power
spectrum of the fBi and it is proportional to |w|™%, where & = 2H + 1 and
1 < a < 3. Using the form of the power spectrum the covariance matrix
of scale normalised jets of fractional Brownian images can be computed ana-
lytically (see derivation in Pedersen, 2003). In the following nim; and nomo
indicates the derivation order for both filters. The covariance is

{o,a} — (— HTm-l-nQ—l—mgB(n_l)”(m_l)” n+m-—u«o
St =(=1) gy -] r 5 t1 (6)

whenever both n = nq + ny and m = mi1 + mo are even integers, otherwise
w7} = 0. Double factorial is defined as n!l = n(n —2)(n —4)---. Choosing
H = % (implying a = 2), leads to the scale invariant Brownian image model
which can be seen by the fact that the scale dependence of the covariance matrix
»{7a} given in (6) vanishes.

Since the fractional Brownian image is a zero mean Gaussian process and
due to the linearity of the scale-space derivative filters, we have that the prob-
ability density on jets must be zero mean Gaussian

_ 1 1. 1.
palia(0) =  exp (=572 ) 1)) ")
where Z is a normalisation constant and the covariance %1% is given by (6).

4. Detecting Salient Points and Scales

As stated in the introduction, we define salient points and their intrinsic scale
as points in scale space of locally minimal probability of occurrence under the
fractional Brownian image model, i.e. a probabilistic feature detector based on
local minimum likelihood.

Our method can be summarised as follows: For a particular choice of «,
we find points in scale space (Z,y,6) which locally minimise the likelihood
Pa(jo(x)) under the model given by (7). In practise, this is done by comparison
of the probability at the current position (x,y, o) with its six nearest neighbours
in the sampled scale-space.

The probabilities at the detected points p,(js(X)) give us a measure of
saliency by which we can order the detected points.

We find it interesting to note that minimising the likelihood bears some
resemblance to the well-known feature and scale detection method proposed by
Lindeberg (1998b). Lindeberg maximises so-called measures of feature strength
which are polynomials of image derivatives. In our setting, —% jg(E{"’a})*l Jo
correspond to such a feature strength, and maximising this measure is equiva-
lent to minimising the likelihood.

5. Illustrative Results

As a demonstration of our method, we include examples of detecting features
on a photo of a painting by Matisse (1952) and four images (see Figures 1 and
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Figure 2: Four images used in the following demonstration. These are refer-

ence images taken from the Affine Covariant Features image database
(ACF, 2006).

2) taken from the Affine Covariant Features image database (ACF, 2006) which
has been used in various evaluation studies of salient point and region detectors
(e.g. Mikolajczyk and Schmid, 2004, 2005). The free parameters of the method
are « and the jet order k. The (§ constant is estimated for each image as the
variance of the intensities in the image. We applied our method to these images
using jet orders k = 1,2, 3,4, model a = 1.5,2, 2.5, and logarithmically sampled
scales o in the range 0.6 to 54. We also include examples of ranking the detected
points after the saliency measure p,(jz(X)).

Figures 3 and 4 show detected points on the Matisse painting including
respectively all detected points and the 10% lowest probability points. Figure
5 shows results on an image of a wall with graffiti including the 30% lowest
probability points. Finally to show the variation for different images Figure 6
show results on the four images from Figure 2. Here the model is a = 2 and
the jet order k = 2 and we show the 20% lowest probability points.

As one would expect the k = 1 jet seem to detect edges for v < 2. For the
k = 2 jet the method seems to detect corners, blobs and ridges for any a. The
k =3 and k = 4 jets seem to detect combinations of edges, ridges, corners, and
blobs and other higher order structures.

65



PEDERSEN, LOOG AND VAN DORST

The scales being selected changes with the choice of a. There is a general
trend that for o > 2 our method selects mostly small scales whereas for a@ < 2
the method prefers large scales. This corresponds well with the fact that for
a > 2 samples from the fractional Brownian image model will consist mostly of
large scale structures making small scale structures unlikely events. Similarly,
for a < 2 samples from the model will in general include mostly small scale
structures, hence large scale structures will become unlikely and will therefore
be preferred by our method.

As mentioned in the introduction the most popular salient point detectors
are based on some form of corner detectors. Our method clearly finds other
types of points. Looking at the results for £k = 2 and o = 2 we see that, besides
corners, we also detect blobs at scales comparable to the underlying image
structure. These points do indeed represent salient structure if we look at
higher scales. However, a thorough evaluation and comparison of our method
with other detectors is needed in order to judge the quality of the detected
points. Such an evaluation could follow the method used by both Schmid et al.
(2000) and Mikolajczyk and Schmid (2005). This, however, is not a trivial task
and we consider it outside the scope of this workshop publication and leave it
for future work.

6. Conclusion

We proposed a novel method for detecting salient points in images and their
intrinsic scales. This was done by finding local minima in scale space of the
likelihood of the local image structure under the fractional Brownian image
model. In principle our method performs a variable threshold outlier detection,
where the threshold is determined based on the neighbouring image structure.
We presented promising illustrative results demonstrating the method. The
next step is a thorough evaluation on a large set of natural images. Such an
evaluation could follow the method used by both Schmid et al. (2000) and
Mikolajczyk and Schmid (2005).
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Figure 3: First row shows results on a painting by Matisse (1952) for jet order
k=1and a=1.5,2,2.5. The other rows show similar results for jet
order k = 2,3,4. The circles are centred on the detected points and
the radii correspond to the selected scales.
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Figure 4: First row shows the 10% lowest probability points for jet order k = 1
and a = 1.5,2,2.5. The other rows show similar results for jet order
k = 2,3,4. The circles are centred on the detected points and the
radii correspond to the selected scales.
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Figure 5: First row shows the 30% lowest probability points for jet order k = 1
and « = 1.5,2,2.5. The other rows show similar results for jet order
k = 2,3,4. The circles are centred on the detected points and the
radii correspond to the selected scales.
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Figure 6: Each image shows the 20% lowest probability points detected using
the model @ = 2 and the jet order £k = 2. The circles are centred on
the detected points and the radii correspond to the selected scales.
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