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Abstract

Stochastic differential equations arise naturally in a range of contexts, from financial to
environmental modeling. Current solution methods are limited in their representation of
the posterior process in the presence of data. In this work, we present a novel Gaussian
process approximation to the posterior measure over paths for a general class of stochastic
differential equations in the presence of observations. The method is applied to two simple
problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can
be compared to, and the double-well system, for which standard approaches such as the
ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our
variational approximation is viable and that the results are very promising as the variational
approximate solution outperforms standard Gaussian process regression for non-Gaussian
Markov processes.

Keywords: Dynamical Systems, Stochastic Processes, Bayesian Inference, Gaussian
Processes

1. Introduction

Stochastic differential equations are used in a wide range of applications in environmental
modeling, engineering and biological modeling. They typically describe the time dynamics
of the evolution of a state vector, based on the (approximate) physics of the real system,
together with a driving noise process. The noise process can be thought of in several ways.
It often represents processes not included in the model, but present in the real system. In
our work we are motivated by problems arising in numerical weather prediction models,
however the methods we are developing have a far more general relevance.
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To provide a brief insight into the motivation for our work, we consider numerical
weather prediction models, which are based on a discretization of a coupled set of partial
differential equations (the dynamics) which govern the time evolution of the atmosphere,
described in terms of temperature, pressure, velocity, etc. (Haltiner and Williams, 1980).
However, the dynamics do not include all the physical processes acting in the atmosphere
such as radiation and clouds, so these are included, often as empirical parametrizations (the
model physics). These dynamical models typically have state vectors with dimension O(106)
and are currently treated as deterministic models, although there is increasing recognition
that a full stochastic treatment is necessary for progress to be made on probabilistic weather
forecasting (Seiffert et al., 2006). This work is the first step in a move towards methods
that will be able to treat such large, complex models in a fully probabilistic framework. A
particular issue we address in this paper is the use of observations, together with dynamics
defined by a stochastic differential equation to infer the posterior distribution of the state of
the system, a process often referred to in meteorology as data assimilation (Kalnay, 2003).
We do not review data assimilation methods extensively here, but note that recently much
work has been done to address the issue of the propagation of the uncertainty at initial
time through the nonlinear model equations. The most popular sequential method is called
the ensemble Kalman filter, a simplified Monte Carlo approach (Evensen and van Leeuwen,
2000; Whitaker and Hamill, 2002), whereas more advanced techniques include Bayesian
sequential MCMC methods (Golightly and Wilkinson, 2006). A widely used alternative to
sequential treatments of the data assimilation problem is the so called 4DVAR method which
seeks to find the most probable model trajectory over a given time window, typically using
the model equations as a strong constraint, using a simple variational approach (Courtier
et al., 1994).

In this work we seek a variational Bayesian treatment of the dynamic data assimilation
problem. In particular, we focus on the issue of defining a Gaussian process approximation
to the temporal evolution of the solution of a general stochastic differential equation with
additive noise, and the posterior approximation given the observations. We expect the
variational nature of this approximation to make it possible for us to apply these methods to
very large models, by exploiting localization, hierarchical models and sparse representations
(Seeger et al.). We present the results of our initial work, which focuses on theoretical
developments. These are applied to two commonly used stochastic processes, the Ornstein-
Uhlenbeck process and the noisy double well system, to illustrate their application. Further
work is required before these ideas can be applied to complex models, such as those used
in weather forecasting.

The issues and contributions raised by this work are as follows. If we want to do the
modeling properly, we have to take into account that in general the prior process is a non-
Gaussian process. Therefore, we cannot deal with the prior in an efficient way just as we
cannot deal with the posterior. Thus this work is significantly different from the Gaussian
process methods recently extensively studied in Machine Learning (see for example Csató
and Opper, 2002; Seeger, 2004). To be more specific, we cannot compute any prior moment
or marginal exactly. When the process is Markovian (not necessarily time-homogeneous),
any marginal can be expressed as the product of the transition probabilities. Even for
the prior, this would require the solution of a Fokker-Planck equation, which is a partial
differential equation. For almost all realistic problems, the solution of the corresponding
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exact Fokker-Planck equation is in practice impossible, so we need to make approximations
(Risken, 1989). Making approximations to solve very difficult problems is not a new idea in
Machine Learning. However, because we can always explicitly compute all prior marginals
(at observations and test points) for a Gaussian process (Csató and Opper, 2002), essentially
nearly all current work in this direction boils down to the approximation of a multivariate
(but finite dimensional) posterior density. Thus, the important feature that a process is
infinite dimensional almost never plays a role in inference. In this work, things are different.

As in many areas of Machine Learning, we are using the variational method of approx-
imating an intractable probability distribution by a tractable one (Jaakkola, 2001; Beal,
2003; Winn, 2003). In contrast to most other works, a factorizing density does not seem to
make sense in an infinite setting. We are thus working with Gaussian variational densities.
This has mostly been ignored in the Machine Learning literature. The Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) between the approximating posterior process
and the exact one is one between processes (i.e., between probability measures over paths)
which makes the computation non-trivial. In the field of data assimilation such a setting is
not new and there has been some work done for computing approximate predictions (Eyink
et al., 2004; Apte et al., 2006). These papers, however, do not provide a natural frame-
work for estimating unknown model parameters, while we can attempt this by a variational
bound for the probability of observed data which can be used within a maximum likelihood
framework.

We start, in Section 2, with a review of the basic setting in which we are working. In
Section 3 we develop the variational approximation methods for the general class of problems
introduced in Section 2. We show how to compute the divergence between the true processes,
and the approximate Gaussian process and derive expressions for the posterior moments of
the approximating process. We use these expressions to derive the relevant Euler-Lagrange
equations for the problem. In Section 3.2 we show how the variational approximation can be
used in a smoother algorithm to approximate the conditional distribution of the state given
a series of observations within a certain time frame, and the process stochastic differential
equation. Section 4 show results of applying the method to two example problems: an
Ornstein-Uhlenbeck process and the noisy double well system. We conclude in Section 5.

2. Basic setting

Consider a finite set of d-dimensional noisy observations {yn}Nn=1 of a D-dimensional hidden
state x(t). It is assumed that the time evolution of x(t) is described by an (Ito) stochastic
differential equation (SDE):

dx(t) = f(x)dt+
√

Σ dW(t) (1)

where for simplicity, we assume that Σ = diag{σ2
1, . . . , σ

2
D} is diagonal, with f(x) a nonlinear

function and dW(t) a standard (multivariate) Wiener process.
We do not attempt any rigorous presentation of such processes (which would involve

proper Ito-calculus) in this paper, but rather resort to an intuitive picture where we under-
stand such a process as an appropriate limit of a discrete time process xk. To be precise,
we use the Euler-Maruyama representation of (1):

∆xk ≡ xk+1 − xk = f(xk)∆t+
√

∆t Σ εk . (2)
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∆t is the time increment and εk denotes a sequence of independent Gaussian random vectors
εk ∼ N (0, I). Note that the the noise scales with

√
∆t, which is necessary to obtain the

non-trivial limit of a diffusion process. Such stochastic processes are widely used in physics
and finance to model continuous random systems that evolve continuously over time (e.g.,
Brownian motion and other diffusions). In fact, it can be viewed as a limiting case of a
random walk as the time increment goes to zero. The non-trivial scaling also prohibits us
from writing the SDE using ordinary derivatives, because sample paths are continuous but
not differentiable with probability one. Note that this form can be used for approximate
(in the sense of discretizing a differential equation) generation of samples from the (prior)
process (Kloeden and Platen, 1992, ch. 9).

The process x(t) is a continuous time, but, unfortunately, non-Gaussian (if f(x) is
nonlinear) Markov process. It is not required that this process is time-homogeneous. It
defines a probability measure psde over paths {x(t)}t∈I , where I = [0, T ] is a time interval
over which we would like to perform our inference.

As usual, in the presence of observations, the posterior measure is given by

dppost

dpsde
=

1
Z
×

N∏
n=1

p(yn|x(tn)), (3)

where y1:N = (y1, . . . ,yN ) are observed at the discrete times {t1, . . . , tN} and Z is the
normalizing constant. The likelihood p(yn|xn) is assumed to have the form of a multivariate
Gaussian density:

p(yn|x(tn)) = N (yn|Hx(tn),R), (4)

where H ∈ Rd×D defines a linear transformation and R ∈ Rd×d is the noise covariance
matrix. In future work we will generalize this to arbitrary nonlinear observations operators
h(x(t)).

3. Variational approximation

We consider the approximation of the true posterior measure by a Gaussian measure (i.e.,
by a Gaussian process), such that the KL divergence between the two is minimized. We will
construct such a measure by the following idea: since the posterior process is Markovian,
we will also use a Gaussian Markov process as its approximation. The assumption of
Gaussianity implies that such a process must be governed by a linear SDE:

dx(t) = fL(x, t)dt+
√

Σ dW(t), (5)

where

fL(x, t) = −A(t)x(t) + b(t). (6)

The matrix A(t) ∈ RD×D and the vector b(t) ∈ RD are functions to be optimized in the
variational approach. They must be time dependent to account for the non-stationarity in
the process caused by the observations. Note, that the use of the same noise variance Σ
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for both processes is not a restriction, because a different choice would lead to infinite KL
divergences.

The KL divergence of the two measures over the time interval [0, T ] is computed in
Appendix A, giving

KL [q‖ppost] =
∫
dq ln

dq

dp
=

∫ T

0
E(t)dt+

Nd

2
ln(2π) +

N

2
ln |R|+ lnZ, (7)

with

E(t) = Esde(t) + Eobs(t)

and

Esde(t) =
1
2

〈
(f(x)− fL(x, t))TΣ−1(f(x)− fL(x, t))

〉
qt
, (8)

Eobs(t) =
1
2

N∑
n=1

〈
(yn −Hx(t))TR−1(yn −Hx(t))

〉
qt
δ(t− tn), (9)

where δ(t) is the Dirac function and 〈·〉qt
indicates the expectation with respect to the

marginal distribution qt of the process at time t. As usual, the fact that KL [q‖ppost] ≥ 0
gives an upper bound on − lnZ. So far, we have not used the assumption that fL is linear.

3.1 Gaussian Process posterior moments

To evaluate the expression of the KL divergence and to permit its subsequent minimization,
we need the functional dependency on the variational parameter functions A(t) and b(t))
of the marginal distributions of the process q at any time t. For a Gaussian (i.e. fixed form)
variational q, we can write

qt(x) = N (x|m(t),S(t)). (10)

One might expect that the time evolution of qt(x) can be described by a set of ordinary
differential equations (ODEs) for the mean m(t) and the covariance matrix S(t). As shown
in Appendix B these are given by

dm
dt

= −A(t)m(t) + b(t), (11)

dS
dt

= −A(t)S(t)− S(t)AT(t) + Σ. (12)

3.2 Variational approximation of the posterior

In order to compute the parameters and the required moments, we minimize the KL diver-
gence (7) subject to the constraints (11) and (12), with respect to independent variations
of A(t), b(t), m(t) and S(t). Therefore, we look for the stationary points of the following
Lagrangian:

L =
∫ T

0

{
E − tr

{
Ψ

(
dS
dt + AS + SAT −Σ

)}
− λT

(
dm
dt + Am− b

)}
dt (13)
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where Ψ(t) ∈ RD×D and λ(t) ∈ RD are Lagrange multipliers. Note that matrix Ψ is
symmetric. To allow for an explicit variation, we perform an integration by parts, which
gives

L =
∫ T

0

{
E − tr

{
Ψ

(
AS + SAT −Σ

)}
− λT (Am− b) + tr

{
dΨ
dt S

}
+ dλT

dt m
}
dt

− tr {Ψ(T )S(T )}+ tr {Ψ(0)S(0)} − λT(T )m(T ) + λT(0)m(0). (14)

At the latest time we only take variations with respect to A(T ) and b(T ), such that Ψ(T ) =
0 and λ(T ) = 0. For simplicity, we also fix the values of S(0) and m(0) rather than
optimizing them. Hence, taking the derivatives of L with respect to A, b, S and m leads
respectively to the following Euler-Lagrange equations:

∂E

∂A
− 2ΨS− λmT = 0, (15)

∂E

∂b
+ λ = 0, (16)

∂E

∂S
− 2ΨA +

dΨ
dt

= 0, (17)

∂E

∂m
−ATλ +

dλ

dt
= 0. (18)

It follows from (15) and (16) that the variational functions Ã(t) and b̃(t) at each time
can be expressed as a function of the Lagrange multipliers Ψ(t) and λ(t), as well as the
moments m(t) and S(t):

Ã(t) = −
〈
∂f
∂x

〉
qt

+ 2ΣΨ(t), (19)

b̃(t) = 〈f(x)〉qt
+ Ã(t)m(t)−Σλ(t), (20)

where we have used the fact that
〈
xxT

〉
qt

= mmT + S and
〈
f(x)(x−m)T

〉
qt

=
〈

∂f
∂x

〉
qt

S
for any Gaussian qt, along with the following results:

∂E

∂A
= Σ−1

(〈
f(x)xT

〉
qt

+ A
〈
xxT

〉
qt
− b

〈
xT

〉
qt

)
, (21)

∂E

∂b
= −Σ−1

(
〈f(x)〉qt

+ A 〈x〉qt
− b

)
. (22)

Smoothing algorithm

We propose the following smoothing algorithm. Make some initial guesses for A(t) and b(t)
and choose a sufficiently small relaxation parameter ω.

Repeat until the KL reaches its minimum value:

1. Solve (11) and (12) forward in time for fixed variational parameters A(t) and b(t), as
well as fixed Ψ(t) and λ(t).
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2. With m(t) and S(t) found for 0 ≤ t ≤ T , solve backward in time with Ψ(T ) = 0 and
λ(T ) = 0:

dΨ
dt

= 2Ψ(t)A(t)− ∂Esde

∂S
, (23)

dλ

dt
= AT(t)λ(t)− ∂Esde

∂m
. (24)

When there is an observation, use the following jump-conditions:

Ψ(t+n ) = Ψ(t−n )− 1
2
HTR−1H, (25)

λ(t+n ) = λ(t−n ) + HTR−1(yn −Hm(tn)). (26)

The amplitude of the jumps are found by evaluating the derivatives of Eobs with
respect to S and m at time t.

Meanwhile, update the variational parameters as follows:

A(t)← A(t)− ω{A(t)− Ã(t)}, (27)

b(t)← b(t)− ω{b(t)− b̃(t)}, (28)

where 0 < ω ≤ 1.

The underlying motivation for using the updates (27) and (28) rather than directly using
(19) and (20) is to avoid numerical instabilities due to possibly too large update steps.

If d ≤ D, then the complexity of the smoothing algorithm is O(KMD3), where K is
the number of sweeps (or iterations) and M = T/dt.

4. Experiments

In this section, the approach is validated on two 1-dimensional examples: the Ornstein-
Uhlenbeck (OU) process and the double-well (DW) system. The OU process is a mathe-
matical model of the velocity of a particle undergoing Brownian motion (Uhlenbeck and
Ornstein, 1930). It is here considered as a reference example. Actually, we know the ex-
act solution for the kernel covariance function, which is induced by the corresponding prior
Gaussian Markov process. One can thus perform standard Gaussian Process (GP) regression
(Rasmussen and Williams, 2006, ch. 2) for computing the posterior process. The variational
approximation leads in this case to the same exact result. By contrast, the DW system is a
standard data assimilation benchmark (see Miller et al., 1994; Eyinck and Restrepo, 2000).
Its prior Markov process is non-Gaussian as there are two equally likely equilibria, resulting
in psde being bimodal. Therefore, the posterior process is necessarily non-Gaussian, but can
be well approximated by a Gaussian one given appropriate observations.

4.1 Ornstein-Uhlenbeck process

The SDE of the Ornstein-Uhlenbeck (OU) process is defined as follows:

dx = −γxdt+ σ2dW, (29)

7



Archambeau, Cornford, Opper and Shawe-Taylor

where γ is the drift parameter. The induced stationary covariance kernel is given by

K(t, t′) =
σ2

2γ
e−γ|t−t′|. (30)

This kernel can be plugged into the GP regression formulae to compute the exact posterior
process and make prediction on unseen data.

Next, let us consider the approximation of the scalar SDE defined by the linear function
fL(x, t) = −αx+ β. The variational fixed points parameters are given by

α = γ + 2ψσ2, (31)

β = (α− γ)m− λσ2, (32)

where ψ(t) and λ(t) denote the scalar Lagrange multipliers. The parameters are updated
after each set of forward and backward passes.

The forward pass consists in propagating the mean and the variance using the discretized
Euler-Lagrange equations corresponding to (11) and (12). The backward pass uses the
discretized ODEs of the Lagrange multipliers, along with the jump conditions:

ψ(t+n ) = ψ(t−n )− 1
2σ2

, (33)

λ(t+n ) = λ(t−n ) +
1
σ2

(yn −m(tn)). (34)

The specific OU ODEs are given by

dψ

dt
= 2αψ − dEsde

ds2
, (35)

dλ

dt
= αλ− dEsde

dm
, (36)

where Esde = (α−γ)2

2σ2

〈
x2

〉
qt
− β(α−γ)

σ2 m+ β2

2σ2 .
Figure 1 shows a realization of the OU process and compares the posterior solution

found by GP regression and the variational method. The true states are corrupted by zero-
mean Gaussian noise. The noise levels are assumed to be known. Observe how the resulting
smoothers are identical, except at the first observation where we have set m(0) = y0 and
s(0) = σ2

y for initializing the smoothing algorithm. Figure 2 shows the time evolution of the
variational parameters and the Lagrange multipliers after convergence. Due to the jump
conditions, the value of the Lagrange multipliers jumps when there are observations, as does
the value of the variational parameters. Nevertheless, the posterior process is smooth and
continuous over time (but not differentiable at times where there are observations).

4.2 Double-well system

The second example that we consider is the double-well system, which is highly nonlinear.
The force f arises from a double-well potential u(x) = −2x2 + x4. The SDE is given by

dx = fdt+ σ2dW, (37)
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(a) GP regression. (b) Variational approximation.

Figure 1: Ornstein-Uhlenbeck example. The true process is indicated in grey and the noisy
observations are marked by crosses. The left panel shows the expected posterior
process (solid) and the 1-standard deviation tube (dashed) obtained by GP re-
gression, while the right one shows the same quantities obtained by the Gaussian
variational approximation.

Figure 2: Variational parameters and Lagrange multipliers vs. time.
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where f(x) = du(x)
dx = 4x(1 − x2). Due to the driving noise, the solution x(t) fluctuates

around one of the two minima located at ±1. Occasionally, however, larger fluctuations
arise, possibly leading to the transition to the other well. Therefore, the associated Markov
process is non-Gaussian.

For the fixed point variational parameters of the approximate SDE, we have

α = −4(1− 3m2 − 3s2) + 2ψσ2, (38)

β = −4
〈
x3

〉
qt

+ (4 + α)m− λσ2. (39)

The ODEs describing the time evolution of the Lagrange multipliers are then

dψ

dt
= 2αψ − dEsde

ds2
, (40)

dλ

dt
= αλ− dEsde

dm
, (41)

where Esde = 8
σ2

〈
x6

〉
qt
− 4(4+α)

σ2

〈
x4

〉
qt

+ 4β
σ2

〈
x3

〉
qt

+ (4+α)2

2σ2

〈
x2

〉
qt
− β(4+α)

σ2 m + β2

2σ2 . The
jump conditions are given by (33) and (34).

In the experiments we consider the same sample as the one considered by Miller et al.
(1994); Eyink et al. (2004) and the parametrization is identical: the time step ∆t is equal
to 0.01; there are 7 noisy observations in the time window; the variance of the observation
noise is equal to 0.04 and the driving noise σ2 is equal to 0.5. Also, only one transition
occurs in the time window.

First, we compare the variational solution to the one obtained by GP regression using
the OU kernel and the standard RBF kernel (see Figure 3). The observation noise is set
to its true value. The OU drift parameter and the RBF kernel width are selected as the
ones maximizing the evidence, that is the marginal probability of the observations. Both
regressors are able to locate the transition. However, they are not able to estimate the
wells accurately. Note also how the GP using the OU kernel overestimates the posterior
covariance. These results are not surprising as the GPs do not make use of the knowledge
of the dynamics and assume the observation noise is small. By contrast, the variational
solution is expected to be much closer to the true posterior process. Indeed, a good solution
needs not necessarily to be closer to the true history, but to its most probable value. The
noise tube is also more informative in this case. Qualitatively, this solution is the same as
the one obtained by Eyink et al. (2004), who recently introduced an alternative mean field
approximation approach to data assimilation. These authors also noted that the popular
ensemble Kalman smoother fails to correctly locate the transition (Eyinck et al., 2006). As
a matter of fact, it lags by one measurement and this failure is not cured by the backward
pass.

Figure 4 shows the evolution of the KL divergence as a function of the number of
sweeps for different values of the under-relaxation parameter ω, which has an effect on
the convergence rate. The higher it is the faster the algorithm converges. However, when
too large, numerical instabilities may occur leading to the smoothing algorithm to diverge.
For reasonable values of ω the algorithm converges relatively fast, that is in less than 100
sweeps. Finally, note that the evolution of the Lagrangian is identical to the evolution of
the KL as a function of the number of sweeps. This can be understood by noticing that the
constraints (11) and (12) are satisfied by construction after each forward sweep.
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(a) GP with the OU kernel.
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(b) GP with the RBF kernel.
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(c) Variational approximation.
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(d) Sample path.

Figure 3: Double-well system. (a) and (b) show the GP regression solution for two different
kernels while (c) is the optimal variational solution. (d) Shows the true history
(or sample path). The solid lines are the posterior means and the dashed ones
the posterior means ± the posterior 1-standard deviation.
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Figure 4: Double-well system. Evolution of the KL divergence as a function of the number
of iterations (i.e. sweeps) for different values of the under-relaxation parameter
(solid: ω = 0.5; dash: ω = 0.25; dash-dot: ω = 0.1; dot: ω = 0.05).

5. Conclusion

In this paper we have introduced a novel variational approximation to the posterior distribu-
tion of a system governed by a general stochastic differential equation. The main innovation
of the work is that the posterior distribution is over paths, rather than a finite dimensional
multivariate posterior as in standard Gaussian process inference. We have shown how to
incorporate observations into the approximation scheme, proposing a smoothing algorithm.
Results of applying the method to two example systems are very promising. On the one
hand, the approach is consistent, i.e. the variational solution is identical to the exact so-
lution when the stochastic process is a Gaussian one. On the other hand, the method is
able to cope with strongly nonlinear systems (for example inducing multimodal probability
measures), in contrast to most approximate state-of-the-art techniques.

This work represents an initial step towards the application of variational Bayesian in-
ference methods to general stochastic differential equation based models. Much remains to
be done to enable us the apply these methods to the very large, complicated models used
in weather forecasting (see for example Dance, 2004, for a discussion of current issues).
Future work will explore further the links between our methods and the cutting edge data
assimilation methods developped by Eyink et al. (2004); Apte et al. (2006) and will focus
on a better smoothing algorithm. One area we expect to make progress in is the application
of our methods to spatially distributed systems since we are able to control the complexity
of the posterior approximation by defining the class and representations of linear models,
fL(x, t) used in our method, for example by constraining −A(t) to have some simplified
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form, such as a sparse representation or a tri-diagonal form. Another interesting applica-
tion of our methods would be to situations where the system model f(x, t) is known only
approximately, but the magnitude of the model errors is not well known; employing our vari-
ational framework would allow us to make inference of the model error, represented by Σ,
which would produce better estimates of the posterior uncertainty after data assimilation.
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Appendix A. Kullback-Leibler divergence along a state path

To derive the result for the KL divergence, we use the following discrete time heuristics (a
derivation in continuous time using Girsanovs theorem (Kloeden and Platen, 1992) will be
given elsewhere): Consider the discretized version (2) of the SDE (1) and the corresponding
version for the approximate linear one (5):

∆xk ≡ xk+1 − xk = f(xk)∆t+
√

Σ∆t εk, (42)

∆xk ≡ xk+1 − xk = fL(xk, tk)∆t+
√

Σ∆tεk, (43)

where εk is drawn from a multivariate Gaussian density with identity covariance.
Hence, the probability density of a discrete time path, i.e. a sequence x1:K = (x1, . . . ,xK)

generated by the true prior process (i.e., without observations) and the approximate process
posterior are respectively given by

p(x1:K) =
K−1∏
k=1

N (xk+1|xk + f(xk)∆t,Σ∆t), (44)

q(x1:K) =
K−1∏
k=1

N (xk+1|xk + fL(xk, tk)∆t,Σ∆t). (45)

The KL divergence between q(x1:K) and p(x1:K) is given by

KL [q(x1:K)‖psde(x1:K)] =
∫
dx1:K q(x1:K) ln

q(x1:K)
p(x1:K)

=
K−1∑
k=1

∫
dxk q(xk)

∫
dxk+1 q(xk+1|xk) ln

q(xk+1|xk)
p(xk+1|xk)

=
1
2

K−1∑
k=1

∫
dxk q(xk) (f − fL)TΣ−1(f − fL)∆t, (46)
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where we have used the fact that 〈∆xk|xk〉q = fL(xk, tk)∆t. It is possible to pass to the
continuum limit ∆t → 0 on the time interval [0, T ], because all terms have the ordinary
linear scaling with ∆t of Riemann sums. It can be shown that if we had not assumed that
both processes have the same noise variance Σ, the corresponding sum would have diverged.

Hence, in the limit, we obtain the KL divergence between the two probability measures
for state paths in this time interval:

KL [q‖psde] =
1
2

∫ T

0

〈
(f − fL)TΣ−1(f − fL)

〉
qt
dt, (47)

where 〈·〉qt
indicates the expectation with respect to qt(x), which is the marginal density of

x at time t.

Appendix B. Ordinary differential equations for the GP parameters

The ODEs of the means (11) and the covariance matrices (12) follow from (5) when ne-
glecting terms beyond first order in dt:

dm(t) = E{x + dx} − E{x}
= −A(t)m(t) dt+ b(t) dt, (48)

dS(t) = E{(x−m + dx− dm)(x−m + dx− dm)T} − E{(x−m)(x−m)T}
= −A(t)S(t) dt− S(t)AT(t) dt+ Σ dt+O(dt2), (49)

where we have used the fact that W(t) is a Wiener process, such that E{dW(t)} = 0 and
E{dW(t)dWT(t)} = dtI.
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