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Abstract

In both the real- and imaginary-time formalisms of finite temperature field the-
ory it is shown exactly what types of real-time expectation value are being calcu-
lated. The relationship between these functions is then considered. The conclusion
is that neither the well known results for two-point functions nor the recently ob-
tained results for three-point functions have a simple generalisation to higher order
functions. All the results are valid whatever approximation to the full fields is being
used and whatever types of field are involved.

1 Introduction

In this paper it will be shown that there is at least one aspect of FTFT (Finite Tempera-
ture Field Theory) in which it differs significantly from zero-temperature QFT (Quantum
Field Theory). This is the question of what types of expectation values are being calcu-
lated and the relationships between them. If one uses the standard approach to FTFT,
the ITF (Imaginary-Time Formalism), also known as the Matsubara method [1, 2, 5],
one usually calculates retarded and advanced functions functions, though this is some-
thing that has not previously been proved for the general case. This is to be contrasted
with the time-ordered expectation values normally encountered in zero-temperature QFT.
The time-ordered functions are however obtained directly from the alternative FTFT for-
malisms, which are known as RTF (Real-Time Formalisms) [2, 3, 4, 5]. Thus comparing
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the values of the different types of expectation value, as is done in this paper, is equivalent
to comparing the results most easily obtained from the two different FTFT formalisms.

For the two-point functions, the relationships between the various expectation values
and the results of FTFT calculations have long been known [1, 5, 6]. The purpose
of this paper is generalise the recent work of [7, 8, 9] on three-point functions to N-
point functions. In doing so we shall find that not all the results can be generalised,
at least not in a straightforward way. We shall see that two-point functions are a very
special case, three-point functions are still quite special, and we only see the general
behaviour of N-point functions for N > 4. This work is complementary to that of Kobes
(11, 12, 13, 14, 15].

In section 2 we shall set up the two formalisms of FTFT using a path integral approach,
as in this approach it is clear that both formalisms contain the same physical information
and cannot give different answers for the same object. In section 3 we study the ITF
and derive a precise form for the result of ITF calculations. The relation of the ITF
result to N-point retarded functions is then the subject of section 4. The RTF results
are considered in section 5 and the usual results of the two formalisms are compared in
section 6. The conclusions are given in section 7.

2 The Finite Temperature Formalisms

We start from the generating functional of the path ordered approach to finite tempera-
ture field theory [2, 5],

21j] = Tr{e” ™ T eapla [ dr j'o +6'j}} (2.1)

where the fields ¢(7), ¢'(7) are Heisenberg fields with sources j7(7), j(7), analytically
continued to take values in the complex-time plane. All the times 7 lie on the directed
path C in the complex-time plane. To use the path integral method, the end of the curve
must be —i3 below the starting point and the imaginary time component must always be
decreasing (even if only infinitesimally so) as we move along the curve. While different
choices of C' correspond to ‘different” FTEFT formalisms, whatever C' is chosen the same
physical information is encoded in the path integral. However each formalism differs in
the way that information about the system (i.e. that we have an equilibrium many-body
problem) is encoded in the results. For instance depending on the curve C' chosen, each
formalism generates different types of connected Green functions, I'c, namely

Co(m,Toy e TN) =
TT{@iﬁHTC¢a (Ta)(bb(Tb)...¢N(TN)}/T7”{€7’BH}. (22)

Here the T indicates that the operators are path ordered with respect to the relative
position of their time arguments on the directed path C. We will suppress any spin or
other indices on the fields as they do not effect our arguments. We will likewise only
write explicitly the time and energy variables.
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The Imaginary-Time Formalism (ITF) [1, 2, 5] can be obtained by letting C' = C;
where C; runs from 0 to —2(3, as shown in Figure 1. It is clear that the Green functions
of ITF are thermal expectation values of fields at FEuclidean times which are time ordered
with respect to these Euclidean times.

The alternative finite temperature formalisms are RTF (Real-Time Formalisms). There
are two distinct ways of getting the same equilibrium Feynman rules in this case, the ap-
proach of Umezawa and co-workers called Thermo Field Dynamics [3], which is closely
linked to C*-algebra approaches [5], and the path integral approach of Niemi and Se-
menoff [2, 4, 5. We will use the path integral approach here as it is clear in this approach
that ITF and RTF encode the same physical information.

In a path integral approach the curve in the complex time plane used is C' = Cg
where Cr = C1 @ Cy @ C3 @ Cy runs from —oo to +00 (C}), 400 to 00 —1af (Cy),
+o00 —1af to —oo —waf (Cs), and —oo — a5 to —oo — 18 (Cy) [2, 4, 5]. This is shown
in Figure 1. The parameter o« = 1 — & is arbitrary and it reflects some of the freedom
of choice in the path C'. Physical results should not therefore depend on «. It turns out
that one can usually ignore the vertical sections C3,Cy when, as here, one looks at Green
functions [2, 4, 5]. We then write everything in terms of doublet fields, ¢*(t), of real time
arguments which vary between —oo and 4+o00. Though there are many conventions for
signs we choose

¢“(t)={ o(t), te Oy if =1

ot —wp), t—wapfeCy ifpu=2

and likewise for ¢, where ;1 = 1,2 is the thermal index. To account for the sign discussed
in [16], we define

(2.3)

i o
ot L j<t>7 tECl 1flu_1
0= { —ji(t —wap), t—wafeCy if p=2 (2.4)

and likewise for j(t). These definitions, after the usual path integral manipulations |2, 4,
5], lead to the same scalar propagator and Feynman rules as used in [11], i.e. an overall
factor of —1 for type two vertices over the type one vertex values. The connected RTF
Green functions, as generated by functionally differentiating Z of (2.1), when written in
terms of the thermal doublets, (2.3), are

N —
s (L1 Y21

a=1 ajf];(ta)'ua
= Tr{e” M Todh" (t)dh* (t2)...oN" (tw)}/Tr{e "7}
(2.5)
In relating the various types of function that we shall encounter, it is useful to express
all expectation values in terms of the thermal Wightman functions where the order of
the fields is fixed. The N-point thermal Wightman functions will be denoted by I' with
N subscripts and are defined by
Falag..‘aN (7-17 T2y eeey TN) =

(_1)pTT{€_5H¢a1 (Ta1)Pas (Taz) - Pay (Tay ) }/TT{e_ﬁH}:



where the {7} are complex times, the fields ¢, having been continued to complex times
in the usual spirit of the path integral approach to finite temperature field theory. The
subscripts ay, ag, ..., ay are equal to any permutation of 1,2, ..., N. In (2.6) p is the number
of times we have to swap fermionic fields in going from fields in the order ¢;¢s...¢n to
Doy Pay---Pay -

From the definition of thermal Wightman functions (2.6) we use the fact that the
trace is cyclic and that we can regard the e #H equilibrium density matrix as a time
evolution operator to give

Lajagan({7}) = 0a1Fa2-~.aNa2({7J}> (2.7)

where 7; = 7} except for 7, = 7,, +13. To account for the factor of (—1)? in (2.6), oy, is
+1 (—1) if the field being moved from the front to the back, ¢,,, is bosonic (fermionic)
The N-point functions we are considering are expectation values in which each mem-
ber of a set of N fields {¢;} appears just once. It does not matter whether some or all of
the members of this set are related to each other or not. Lower case Roman subscripts
run between 1 and NV, while we use Greek indices taking values 1 or 2 only for the thermal
labels used by RTF such as in (2.3). Since the order of the fields is completely specified
by the subscripts we do not use the time arguments to indicate any order and we just
write the time argument of the a-th field, ¢,, as the a-th time argument of the thermal
Wightman function from the left. For example, with N=4, ¢; = ¢ a real scalar field,
¢o =1 and ¢3 = ¢ a fermion field and its conjugate, and ¢4 = A a vector field, we have

[a142(r, s, t,u) = —Tr{e_ﬁHiﬂ(t)qﬁ(r)A(u)w(s)}/Tr{e_ﬁH}. (2.8)

3 Imaginary Time Formalism

We will first look at ITF and try to find out exactly what sort of expectation values
are being calculated after one has made the analytic continuation to real energies and
times. It is simplest to work in terms of the constituent thermal Wightman functions
(2.6). First we must first consider the behaviour of the thermal Wightman functions at
complex times. Inserting N complete sets of energy eigenstates we have

Fal...aN(Tla ...,TN) =

(_1)p Z [exp{_ZEml (b — Tay + TaN)}'

mi1,m2,...,MN

(1:[2 exp{—1En, (=74, + Taj_l)}) ) (H hj)]

J=1

where
hi({m}) = (m;ldq,(0)[m11) (3.10)
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and {|m;)} are a complete set of energy eigenstates for temperature 3=! (myn = my).
We have replaced the density matrix e ?# by e™# so that the explicit temperature de-
pendence appears through the complex parameter b. To get the physical Green functions
we just take the limit of b — —1/5. Note that we still work in the energy eigenstate basis
for a temperature $~'. Thus the implicit dependence on 3 remains e.g. in the energy
eigenvalues, {E;}.

What we wish to do is to consider the behaviour of I'y,4,. 4, at complex times {7;}.
We shall assume that if all the exponentials in (3.9) are of the form exp{z;E;}, where
E; is an energy eigenvalue for temperature 57! and so real and positive, then the trace
sum in (3.9) is uniformly convergent (rather than the absolute convergence suggested in
6]) if all the z; have negative real parts. Given this assumption, the thermal Wightman
function, 'y a,. as({7}), is bounded for all values of the time variables provided they
satisfy {7} € Au ay...a3 Where

Avrag.an = {H{Tars Tags s Tan F HHM(Tay ) = Im(Tay_,) > ..
o> Im(1,,) > Im(7,, +0)}. (3.11)

Being bounded in this region implies that the thermal Wightman function is also analytic
in this region [17].

Now we can express the ITF Green functions in terms of these thermal Wightman
functions at complex times. We can do this by extending the definition of the time-
ordered function, T1H11 of (2.5), from real-times to complex times. We can define a
bounded expectation value of path ordered fields, I'y, by

Iy({7}) = Tag.a({7})
if {T} ey
and 0] > 7o, | > |Ta| > oo > [Ty | (3.12)

where Cj, is a straight line running from 0 to b in the lower half of the complex time plane.
The condition that {7} € A of (3.11) is satisfied given the restriction of b to the lower
half plane, so that I'y is bounded. This is a very useful function because it is bounded
as b — —if i.e. as C, — (7, the path used for ITF, and thus we will use it to obtain
the ITF Green functions. In the limit of b — co — 18 we obtain the time-ordered Green
functions. The cyclicity of the trace has a simple form, namely

L({r}) = alv({7'}) (3.13)
where the label [ is associated with the field whose time argument is the largest, i.e.
71| > |Tpest], and 77 = 7 — b, 7} = 7; (j # ). This (anti-)periodicity of I', of (3.12) then
allows us to look at the Fourier series of the I', function and, given that the function is

bounded, the Fourier coefficients, v,,,. ., , are well defined and given by

N-1
71/171/2,---7VN — bEII}LIB 5{1/} jgl /C’b 7—]

627|'1(V1T1+V2T2+~-+VN—17'N—1)/b

Fb(leTQ,...,TN_ljo). (314)

6{1/} = 51/1,1/2,....,1/]\/ (315)
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where the v; is (half) integer if the j-th field is bosonic (fermionic) and we have shifted
T; — T; — Tn, i.e. we use translational invariance to extract the delta function.

We now look at the inverse Fourier transform of the thermal Wightman functions so
that we can write the ITF result (3.14) in terms of the thermal Wightman functions at
real energies. Again, because the thermal Wightman functions are assumed well behaved
when {7} € A,, 4, we have

N
’7(11(12...aN(p17p2,...,pN) = (H/ dtje-l—zpjtj)
j=17

Falag...aN(ttha -'-atN)
N ()
Corag.an(T1, T2y ey TN) = (H(Qﬂ')_l/ dpje_”?m) .
j=1 -
Yaiaz...an (p17p27 "'7pN)
(3.16)

where we take {t} € C} of RTF that runs along the real time axis with an infinitesimal
slope to ensure that {t} € A4, 4. We will often use the energy space version of (2.7),
the N-point version of the well known KMS (Kubo-Martin-Schwinger) condition [1, 2, 3,
4,5, 6]. In our notation it is

falfYalaQ..‘aN (p1>P2> "-apN) = Yaz...aya1 (plap% "'7pN) (317)

where
f] = O'jeiszj, (318)

and o; = +1 (—1) if the j-th field, ¢;, is bosonic (fermionic). We substitute (3.16) into
(3.14) using (3.12) so that we can get v,,.. ., the ITF function, in terms of the thermal
Wightman functions at real energies. Thus we have

71/17112 ,,,,, VN T

N-1
Oy limy, 5 ( 11 /C drjexp{d 27rz(1/j7j)/b}> .
j=1 /G j
Fb(Tl,TQ,...,TNfl,O) (319)
We can now use (3.12) and we find that if we further limit b such that Re(b) > 0 then

N=1 r,.
T,y T 5{11} Z (H /0 dTaj)
=1

perm.{a}tlan=N \ j=

( 1:_[1(27)1/dka].exp{z Z(Zm/b)(yj — ko, )Ta, }) Vrirs.ry

(3.20)

where ap = 0, 7,, = 70 = b. The first sum takes the sequence {a;} over all permutations
of 1,...,N subject to the limitation that ay = N. The further restriction on b was
6



imposed merely for convenience in defining the order in which the 7 integrals are done
for a given thermal Wightman function. Doing the time integrals is we find that in ITF
one is calculating

Yooy = 6({7/})(1)({2] = 27”Vj/ﬁ})’ (3'21)

where the result of the ITF calculation is a function of the imaginary Matsubara energies,
{z; = 2mw;/B}. At complex energies {z} the function ® is chosen to be

@({=))
= (-7

||:]2

N
@m)" [ diy) 276(3 k)
=1 j=1

J

Z Yorbs.. bN {k}) H ( )_1 (322)

perm.{b} Jj=2

= CYIen [ m(; k)

> Poubeiy ({K}): H (3.23)

perm.{b} Jj=2

where the first sum takes {b;} through all permutations of the numbers (1,2,..., N) and

m

B;n = Z(Zbl_kbz)7 (324)
Poibs. by ({K}) = ;(Vblbz...bzv({/f})+(—1)N_1%Nl..b2b1({k}))-

(3.25)

Note that to get a nice form for ® we have introduced an N-th redundant complex energy
variable defined through the constraint

N
Sz =0, (3.26)
j=1

There is an implicit analytic continuation involved here as ® of (3.22) is a function
of complex energies but it is defined in terms of the ITF result in (3.21). To go from the
definition in terms of discrete imaginary energy values, 2mw; /3, to complex energies is
not a uniquely defined analytic continuation. Other possible expressions for ® also satisfy
(3.21), such as those that are similar to (3.22) but with extra factors of o,exp{2mw,/5}
inserted anywhere.

The choice we have made corresponds to the simplest one where all factors of exp{2mw, /5}
are put equal to o,. To be more precise about the form for ¢ in (3.22) which we have
chosen, we look at the analytic and asymptotic behaviour of this form as is done with

the two-point functions [6]. We see this form for ® satisfies two conditions
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(A) ¢({z}) is analytic for {z} € Q where
Q= {2}V coza & Re V{c,} where ¢, = 0,1},

(B) ®({z}) — 0 as we take any number of the z, to infinity while remaining in €.

Note that € is an disconnected open set with the hyper-surfaces of real energies splitting
it into a number of connected open subsets. The number of these subsets will be noted
later.

It remains to be shown that these conditions are sufficient to make the choice of the
form of ® unique. This can be done by building on the proof given for functions of one
variable in [6]. There it was shown that conditions (A) and (B) were sufficient to fix the
continuation of a function of one complex variable from an infinite set of points in the
upper half complex plane, a constant distance apart and lieing on a straight line, to the
whole of the upper half complex plane.

In the present case we start by considering ® as a function of only one variable, say
2,4, holding the others constant. Then we know from [6] that (A) and (B) ensure that
the continuation in z, is unique in any connected subset of 2 which contains the points
2, = 2mw,/B as v, — oo. However, this does not fix the continuation of ® in the
remaining connected subsets of {2 as in such regions there are not an infinite number of
points where we know the function ® and thus we can not use the result of [6].

The trick is to look at the behaviour of ® along a different set of lines in each of
the different connected subsets of 2. The simplest choice is pick lines each of which lie
parallel to a different >N"!c,2, € Re boundary hypersurface (where the ¢, are those
used in the definition of ). It is always possible to find a set of lines of this kind
as none of the hypersurfaces are parallel and they have the origin as a common point.
Further we choose these lines such that they pass through Matsubara energy values at
regular and finite intervals. The lines chosen in each region form a basis though not in
general an orthogonal one. We can use the proof of [6] that conditions (A) and (B) are
sufficient to fix the continuation along each of these lines in the connected subset of (2
being considered. Having shown that the analytic continuation is unique in each of these
directions separately it is straightforward to see that the continuation as a function of
all N — 1 variables is therefore unique [17] in each one of the connected subsets of (2.
Therefore (A) and (B) are sufficient to ensure that the analytic continuation from the
Matsubara energies is unique in the several variable case.

For example, consider the case of three-point functions in I'TF. Then we are looking
at a function of two independent variables, ®(zy, 25) which is not analytic when z; € Re,
z9 € Re, or z; + 2o € Re. Thus it is defined in a region 2 made up of six disconnected
regions, I to VI, which are shown in fig.(2). The real parts are not important so they have
been projected out. Take region V and consider a pure bosonic function for instance. We
can consider ® along the lines (i) z; = 2m1/3, 2o = —2mun; /B and (ii) (21 +22) = —2m1/f,
(21 — 29) = 2m1(2n9 — 1)/ where the n, are real parameters. The value of ® is known at
the Matsubara energies where 7, is a (half-)integer for bosons (fermions). We first look
at ® along the straight line (i). One can then apply the proof of [6] directly to show (A)
and (B) fix the continuation of ® uniquely in region V along this line as a function of z;.
This is repeated for the second line to fix ® as a function of z; — z3. Thus the behaviour
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of ® as a function of the {z} near the intersection of these lines, the point n; = 2, 7y, = 2,
is now completely fixed. Thus the analytic continuation for the whole region is fixed [17].

Lastly, we started to consider the conditions (A) and (B) as a way of fixing the
analytic continuation only after we used the ad-hoc prescription of choosing the simplest
form for ® in (3.22), namely dropping all possible exponential terms. An alternative
way to motivate this stage is to look at the definition of various types of real-time Green
functions, as we shall do in the next section, and to study their analytic and asymptotic
behaviour. Then one could try to choose the form of ® that matched the behaviour of the
function desired at real-times. This presupposes that one knows what can be extracted
from I'TF which as we shall see is not obvious in general.

Now we have given some additional conditions and fixed the ITF result at complex
energies, we can proceed to examine what we have obtained at real physical energies. We
look at @ of (3.22) as z, — p, € Re. However we must specify how we approach the real
energy axes because there the B terms in (3.22) are singular. There are many different
ways of doing this. We are going to start by looking at the simplest approach. The usual
and simplest analytic continuation from the imaginary, discrete energies of ITF in (3.21)
to real physical energies is

Za = Pa + €4, (3.27)

where the €, are infinitessimal real constants which may be positive or negative and need
not be all the same size.

Note that at this stage we have a unique function, ®({z}) of (3.23), as the ITF result at
complex energies {z}. The arbitraryness in the continuation from energy values 2mw; /3
to general complex energies has been dealt with. The choice left in the continuation from
imaginary energies, which we are looking at in (3.27) and in the rest of this paper, is how
to approach the real energy axes. This choice exists because in general ¢ has cuts along
the whole length of every real energy axis and in general the value of both the real and
imaginary parts of ® are discontinuous there.

To see what the analytic continuation of the ITF calculation to real energies has
produced, we do the inverse Fourier transform through

N

o({thi{e}) = (I1Em™ [dpe™) @({z = p, +¢;}).
"~ (3.28)
Using
a(t) = (27)! / dpe”’tp_f_% (3.29)
we find that

O({t};{e}) = (=DN1 Y7 Doy ({t}).

perm.{b}

(H w;vg(¢;v<tb] - tbj—l)))

J=2
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(3.30)
= (=D > sy ({t)

perm.{b}
(1:[ w]N0<ng<tbg - tbjl)))
(3.31)
where
w;n = 9(?2_:] Ebj+l) - 6(_ ?Z_:] 6bj+l)7
Pt (D) = 5 (P (D) + ()Y Ty (1))
(3.32)

This is the clearest form for the ITF result in that it tells us that every thermal Wightman
function appears once in (3.30), each multiplied by a single known product of theta
functions of the times (rather than sums of products of theta functions that we started
with). Studying the terms of the first form (3.30), we see that the coefficient of any
thermal Wightman function is the same, up to a possible minus sign, as the coefficient
in front of the thermal Wightman function with indices in the reverse order. This fact is
reflected in the second form, (3.31). These pairs of thermal Wightman functions are the
spectral functions for general N-point ITF functions.

It is now immediately obvious that there are many results coming out of an ITF
calculation where the usual simple type of analytic continuation, (3.27), has been used.
One can choose the set of infinitesimal €’s to have many different values and signs, always
subject to the constraint 25:1 €, = 0, and there are distinct choices for these €’s. These
correspond to different results which have different sets of theta functions in front of
each thermal Wightman function. However, precisely what type of functions have been
calculated in ITF is not clear.

4 N-Point Retarded Functions and
other ITF results

When one uses the simple prescription (3.27) to extract real-time results from an ITF
calculation of a two-point function that one obtains the real-time retarded and advanced
two-point functions [1, 5, 6]. More recently [7, 9] it was shown that the same is true for
three-point functions. We therefore try to rewrite the N-point retarded function formula
in a form similar to (3.30). The N-point retarded functions R, are given as multiple
commutators [18]. For pure bosonic fields they are defined to be

Ro(t1,ta, ..., tn) =
10



N-1

Z e(taj-u - taj)[["'[[gbaa ¢a1\171]’ ¢a1\r72]’ ]’ ¢a1]

perm.{a}lan=a j=1

(4.33)

where ¢, = ¢q(t,). The sum is over {a;}, j =1 to N, running through all permutations
of the numbers 1 to N subject to the constraint ay = a. The advanced functions R, are
defined in a similar manner except we replace all the 6(t) by 6(—t) and add an overall
factor of (—1)V~1, c.f. the two-point case in [1, 5].

The general formula for the N-point retarded functions, R,({t}), is

Ra<t1, tQ, ceey tN) =
N-1 N-1

Z H e(taj+1 o taj) Z Z(_l)N_s_lrlnbz....bN
perm.{a}lany=a j=1 s=0 {q}

(4.34)

The sum over {¢} is a sum over all possible values of a set of the s integer variables, {q},
which satisfy 0 < ¢1 < ¢2 < ... < ¢ < N. The indices, {b;}, of the thermal Wightman
functions, I'y, 4, , are then defined through

q=7 < by_ip1=aq,
a1 <j<q < bi1=a
Vist 1<]i<s+1 (4.35)

with g = 0 and ¢s11 = N. What this definition means is that each term in (4.34) has come
from a term in R, where we have taken the first term of s of the commutators in (4.33), i.e.
replaced [A, B] by AB s times, while we take the second term, [A, B] - —0BA (where
o = +1 unless A and B are fermionic, see below), of the other N — 1 — s commutators.
The sum over the ¢’s is then all ways of choosing s of the N — 1 commutators for which
we will take the first term of the commutator. We will take (4.34) as the definition of the
retarded functions of fields of mixed statistics. We then see that the sign in the definition
of the thermal Wightman functions (2.6) then absorbs the change of sign in replacing the
relevant commutators by anti-commutators so that the definition (4.33) holds for fields
of mixed statistics.

From the definitions (4.33) and (4.34), we see that the retarded function is (anti-
Jsymmetric in N — 1 fields. We can thus give the N distinct retarded functions a single
label a (=1, ..., N), the label of the one field, ¢,, that plays a special role in the definitions
(4.33) and (4.34).

We can now swap the order of the sums in (4.34) to give

N-1
Ra(tl,tz,...7tN) = Z(_1>N—s—1z Z
=0 {a} perm{a}lan=a
n—1
H e(taj+l - taj)rblbg....bl\, (436)
j=1
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Since for given s and {q}, (4.35) is a 1 : 1 map for {a} <> {b}, we can replace the sum
over permutations of {a} by a sum over {b} being all permutations of the numbers 1 to
N, so that

N—-1
Ra(t17t27"'7tN) = Z(_l)NﬁS*lz Z
s=0 {q} perm.{b}
1

e(t(l]’+1 - taj)rlnbg....b]v (437)

3
|

<.
Il
—_

=z

(_1)N_8 Z Fblbz....bN

perm.{b}

n—1
11 0(ta,.. —ta,) (4.38)
g} j=1

I
g

i
o

-~

The task now is to try to do the sum over the ¢’s and reduce the coefficients to a single
product of theta functions so that we can compare N-point retarded function with (3.30).

We find that

Ra(t17t2,...,t]\[> - (_1>N_1 Z Fblbg...AbN

perm.{b}
N—-1 N—-s—1
H (_e(tbj - tbj+1)) e(tbjﬂ - tbj)
j=N—s Jj=1

(4.39)

where s is now defined via the relation by_s = a.

It is now easy to compare with the ITF result (3.30). Suppose in (3.30) we pick out one
epsilon, and set it positive, and then set all the other epsilons negative, say €, = (N —1)e,
€other = —€ Where € is an infinitesimal positive quantity. Thus we have continued from
imaginary energies to just below the real energy axes except for the energy of the a’th
field which we approach from above. The ITF result in this case is, from (3.30), just
(4.39), and we have

OV ({t}iea > 0, €oner < 0) = Ru({t}). (4.40)

So we have shown that at least a subset of the possible ITF results, the ones with only
one epsilon positive in (3.21), always lead to the N retarded functions.

The advanced functions, R,, are obtained in an identical manner except that the
theta functions are reversed in time and an overall factor of (—1)Y¥~! is added. This
corresponds to switching the signs of all the epsilon in (3.22) terms so we have

OV ({t)ien < 0, comer > 0) = Ra({t)). (4.41)

We shall now examine whether or not I'TF only calculates the N retarded and the N
advanced functions. For the two-point functions, N = 2, the formula (3.30) only depends
12



on the sign of the one independent e since Zé»v:l €; = 0. In this case then there are only
two distinct choices for the €’s and so only two independent results [1, 5, 6]. They are also
equivalent to all the independent choices of the epsilon’s which satisfy €, > 0, €..5; < 0 or
€q < 0, €05t > 0. Thus the retarded and advanced functions exhaust the possible results
for N = 2.

In the case of the three-point functions, N = 3, while the sum of two epsilons appears
in the formula (3.30) for the result of an ITF calculation, because the sum of epsilons is
always zero, we can again always express the answer (3.30) in terms of just single epsilons.
The result then depends only on the signs of the individual epsilons and one epsilon will
always have a different sign from the other two. Thus from (4.40) and (4.41) the retarded
and advanced functions again exhaust all possible results of a three-point ITF calculation
[7, 8, 9]. We give all possible results of an ITF calculation of a three-point function using
(3.27) in table 1, each distinct result being characterised by a unique set of values for the
set of variables s; = 6(¢;) — 6(—¢;). In each case one example set of values for the ¢;’s is
given, in terms of an infinitesimal positive quantity, €.

Beyond this things are not so simple. For N > 4 the constraint Z;-V:l e; =0 (3.26)
does not ensure that one of the epsilons has a different sign from all the others. There are
of course 2V — 2 ways of choosing the signs of individual epsilons, once the constraint has
been accounted for, whereas there are only 2N retarded and advanced functions (though
for N = 2 only two of these are independent). It is therefore clear from these simple
arguments that N = 2,3 are special cases and only for these cases is the result of an [TF
calculation using the simple analytic continuation (3.27) always one of the retarded and
advanced functions.

The situation for N > 4 is actually more complicated still. As can be seen from (3.30),
the result of an ITF calculation always depends not only on the sign of the individual
epsilons but also on the signs of all possible sums of subsets of the epsilons. The constraint

;V:l ¢; = 0 does not allow us to remove all the dependence in (3.30) on the sign of sums
of epsilons when N > 4. Therefore using the simple analytic continuation with ITF leads
to more than 2V different results depending on how the €’s are chosen.

For instance for N = 4 each distinct result can be characterised by a unique set of
values for the six variables s1, 53, 53, 512, S13, S23 as can be seen from (3.22). The s; are
the signs of a single epsilon variable as defined above while s;; = 0(e; +€;) — 0(—€; — €;).
Some examples are given in table 2 where the @;; and Q;; functions are the new types
of function that we shall discuss in a moment. There are in fact 32 distinct results from
a four-point ITF calculation with the usual analytic continuation, of which only 8 are
retarded or advanced functions compared, with the 14 ways of choosing different signs s;
for the single epsilons. This is to be compared with the fact that there are 16 distinct
RTF four-point functions with two identities between them, as we shall see later.

It is possible to find and count distinct ITF results, and the results of a computer
search are shown in table 3. The number of distinct ITF results is also the same as the
number of distinct connected subsets of 2 discussed earlier in the context of fixing the
analytic continuation. From table 3, we see that the number of different ITF results is
vast, larger and growing faster than any other type of relevant function. Studying these
new ITF functions a little more confirms that they are not very simple. Equation (3.30)
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shows that the results from an ITF calculation using the simple analytic continuation
(3.27) satisfy the following rule:

Let S be the set of all sums of y different €’s, where one epsilon, €,
is always included in the sum. Then if all the elements of Sy are positive
(negative) for y = 1 to z, the function being studied (the ITF result (3.30)
with this {e}) is zero unless the a-th time variable (that of the a’th field ¢,)
is bigger (smaller) than at least x of the other time variables, though it is not
restricted with respect to comparisons with the remaining (N — 1 — z) time
arguments.

The case where © = N — 1 is just the retarded or advanced function case. This rule
emphasises the fact that the new functions are nothing very obvious. In table 2 we have
used this rule to label the new four-point functions. We define QZ(?) (QE;I)) to be the result
of an ITF calculation using the simple analytic continuation (3.27) where we have chosen
si=s5j =41 (=1), sp =—1 (+1)and s;p = +1 (=1), k #i,j (4, j, k =1,2,3,4).

Thus, from this rule, we see that ITF using the usual analytic continuation does not
only produce the 2N retarded and advanced functions. All of the retarded and advanced
functions can always be calculated in ITF, they are the results found when we use the
simple analytic continuation (3.27) and pick one epsilon to have a different sign from
all the others as (4.40) and (4.41) show. However there are many other choices for the
epsilons that lead to distinct results when N > 4. This is important when we try to
compare ITF and RTF calculations as the latter calculates 2V functions and there are
always two relations between the RTF functions.

5 RTF Functions

From (2.5), we have that the Green functions of RTF are of the form

[rapz-in({t}) = ZFa1...aN2aN2+1---aN({T}) ﬁ e(taﬂ' a tajfl)

Jj=2

N-1
H e(t%‘ - taj+1)

Jj=N2+1

(5.42)

where 7; =t if p; = 1 and 7; = t —18a if p, = 7 and N, is the number of thermal indices
; that equal two. The sum ), is over certain permutations of the {a} indices, namely

_ aj....an, ANy+1----ON
(Uw:%> (mm:u> >4
i.e. the subscripts ay,...,an, (@n,+1, ..., ay) run through all permuations of the numbers
that are the indices of the type two (one) fields, those with a thermal label =2 (u = 1)

. In this way the fields whose time arguments lie on C; (Cs) are the ones labelled a;...ay,
14



(any41.-.an) and they are all on the left (right) in the thermal Wightman functions in
(5.42) as demanded by the path ordering in the definition of RTF Green functions (2.5).
Taking a Fourier transform, we have

(k) =3 (1_1(2@—1 / dpaj)

A({k = ph)-X*({1} AP} Voras.an {P})-P({k = p}) (5.44)
where
[ 2r6(D)2rs(DY) if 0 < Ny < N
Ak—r}) = { 2716 (DY) if Ny=0or N
5.45)
X({u} o)) = {~|H— }eﬁpﬂ‘ (5.46)
(H] 2 1(D}? +1€)” 1) .
P _ (M, Dsr 4107 i 1< Np< N -1
B HJQZ(DN“rze) ) if Ng=N-1lorN
Hj-V:NIQH (DM,+1 + 16)_1) if No=1or0
(5.47)
|m—jln
D' ({k —p}) = Z (Kajor = Daysr)- (5.48)

The factor X takes care of the fact that the fact that the time arguments lying on Cs
have a constant imaginary part.

Now we can use time translation invariance by assuming that the Fourier trans-
form of the thermal Wightman functions, the 7., ., ({p}) of (3.16), are proportional
to (311 p;). The §(DY) in A then gives us an overall §(3-I, k;) as expected. We also
find that we can pull the factor X outside the integral and this gives

DU ({k}). X~ ({u}, {k})
— Dk

- ¥ (jljjl(QW)_l/dpaj)

Ak = PP Vararan ({P}). P({E = p}). (5.49)

Note that the right hand sides of (5.49) are independent of «. Also note that if one

sets o = 1 at the start of the derivation, in the definition of the RTF Green functions

(5.42), we find that in deriving the equality between the two right hand sides of (5.49),
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no assumption of equilibrium or time-translational invariance is made. Thus the o = 1
limit of the right hand sides of (5.49), when written in space-time coordinates rather than
momentum, is true out of equilibrium . While this is not immediately obvious, the fact
that there is no factor X and so no explicit temperature factor from the density matrix in
the a = 1 limit of (5.49) is indicative of this. For the a = 1 case both type one and type
two fields are the physical field at real times. We shall return to this point in a moment.

Now at this point, we can manipulate the above formula (5.49) into a similar one for
XeT{ just by using the cyclicity of the trace and we find that

P ({k}).o({u})-X({n}, {k})
= T (RD .o (1)

=¥ (E(zw)‘l/dpaj) A({k—p})

*

’Va1a2~--aN({p})'P*({k - p}>7 (550)
where P* is the complex conjugate of (5.47) and

c = ] o; (5.51)
{7lm;=2}

However, this approach hides the fact that the a = 0 limit of the right hand sides of
(5.50) can actually be derived without using equilibrium or time-translational invariance
in a similar way to the a = 1 case of (5.49). This is clear if we realise that the RTF can
be derived by using the curve C' = C] & C & C§ & C} from 400 to —oo (C]), —o0 to
—o0 —af (Ch), —oo —waff to +oo — w8 (C4), and +oo — w5 to +oo — 18 (CY). This
is equivalent to the usual curve used in RTF when one uses the periodicity of the fields
(up to a minus sign for each fermionic field whose time argument lies on Cs). The o = 0
limit of C’ then involves the physical fields at real-times.

There are some useful formulae involving all the RTF functions known for two-point
functions [5, 19] and only more recently for three-point functions [8, 9, 11] that tell us
that certain sums of all the RTF functions are zero and other such sums are equal to one
of the retarded or advanced functions, i.e. the usual results of an I'TF calculation. We
will now consider whether these results can be generalised for N-point functions.

The quickest way to get at these results is to look at RTF in the rather special a =1
limit. In this limit the choice of curve coincides with that used in the CTP (Closed-Time
Path) approach to non-equilibrium problems [5, 20]. As we have already noted above,
in this a = 1 limit of RTF, we are merely manipulating Green function definitions and
have no need to call upon the cyclicity of the trace or time translation invariance in order
to deal with fields whose time argument lies on C5. In particular, we can draw on the
results of the report by Chou et al. [20] as their G, ;.  functions correspond to
the RTF Green functions, ['"#}, of (2.5) in the o = 1 limit with a 4+ (—) index in [20]
corresponding to a type one (two) index in the RTF functions here. From [20], we see
that in our notation

> (Cyr, - o 552
{u}=12
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even out of equilibrium. N is the number of type two thermal labels in each term. Thus
we have for the equilibrium case, by using (5.49), that

S o(=pMexTer = g (5.53)
{u}=12
This is in fact equivalent to the identity noted by Kobes and Semenoff [19] which stated
that the sum over all possible ways of circling the vertices of graphs within their formalism
was zero, a result derived from their largest time equation (see also [11, 12, 13, 14]).

We can then go beyond the results of [20] by looking at the time reversed version of
the closed time path, our &« = 1 RTF path. The equivalent of the simple non-equilibrium
a = 1 result is found then for the case of & = 0 and is best thought of using the alternative
RTF time curve mentioned above. As before all that changes is P — P* and a minus sign
for every type two fermionic field. What we find is a version of the equation of Kobes and
Semenoff derived from their smallest time equation [11, 19] but now directly in terms of
the RTF functions (for any «) rather than in terms of the circled and uncircled graphs
used in [11, 12, 13, 14, 19] or the @ = 1 graphs of CTP as used in [20]. In our notation
this equation is

S (=1)Mexertt = o, (5.54)
{u}=12
where ¢ was defined in (5.51).

Moving on, another key result in the CTP approach is one giving the retarded func-
tions in terms of the RTF functions. Again this can be found in the the paper by Chou
et al. [20] for the non-equilibrium « = 1 case. We can then use our general « equilibrium
relation (5.49) and this gives

R, = > (—1)Nex—opin (5.55)
,Ufa,:ly{lh“est}:]-yz
_ 3 (—1)Nr i (5.56)

,Ufa,:ly{lh“est}:]-yz
One can then go beyond the results of [20] as before by finding the equivalent relation
for the o = 0 limit. This is found to be

R, = 3 (—1)M2gxorin (5.57)
Mazly{ﬂrest}zlyz
_ 3 (—1)NoT i, (5.58)

Ha=1{ftrest}=1,2
Again this can be derived from (5.56) by using the cyclicity of the trace (2.7) though
this hides the fact that the a = 0 limit can be derived without assuming equilibrium or
time-translation invariance.

We should note that relations similar to (5.53), (5.54), (5.56) and (5.58) can be found
within the circled /uncircled graph formalism of Kobes and Semenoff [11, 12, 13, 14, 19].
The precise connection between those results and those given above was pointed out
recently by Kobes [14].

Finally, one should note that the approach used here does not make use of any her-
mitian properties to derive (5.50), (5.54) and (5.57) from (5.49), (5.53) and (5.55).
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6 Comparing ITF and RTF

The derivation of the FTFT formalisms using the path integral method [2, 5] shows
that ITF and RTF contain the same physical information. It is also clear from the work
above that ITF, using the usual analytic continuation (3.27), gives retarded and advanced
functions (and other functions for N > 4) while the I'''! functions of RTF are the time-
ordered expectation values. Thus the formalisms as usually used are calculating different
quantities. The question asking how are ITF and RTF results related becomes how are
the retarded and time-ordered functions related?

What we would like to do is invert the expressions (5.56), (5.58) to find an expression
for the time-ordered function in terms of the retarded and advanced functions.

Unless otherwise specified, all the functions here are functions of energies {p}. The
functions are defined in terms of time (2.5) and (4.34) and the Fourier transforms are
defined as in (3.28).

The relationship between ITF and RTF two-point functions is summarised in what is
called the spectral representation of RTF [5, 22]. However it is best to consider them in
a new and unusual way if we wish to generalise to higher point functions. There is also
one small point that is worth clarifying regarding the relationship of these RTF spectral
representations to retarded and advanced functions. Using the definitions of retarded
and advanced and of the RTF functions, together with equilibrium and time translation
invariance (so p; + p2 = 0), gives us the relations

Fll _ O_(O_fQ)al*\lQ o O_(O_fl)al—\Ql + F22 = 0 ( )
Fll o (O_fz)f&FIQ - (O,fl)f&I'Ql 4 F22 = 0 ( )
' — (ofy)°r? = RP (6.61)
T — (0o fo)°T2 = REQ) ( )

where f; was defined in (3.18). These are the N = 2 versions of (5.53), (5.54), (5.56) and
(5.58) where we have 01 = 09 = 0. The two-point retarded and advanced functions, Rj@)
and Rgz)’ are defined as functions of time by (4.34)

RO(to,ty) = 0(ta — t)Tr{e ™ [a(ta), d(ts)]}/Trie "},
(6.63)

Rz(zg) (tm tb) = _e(tb - ta)TT{e_ﬂH[¢a(ta)7 gbb(tb)]U}/TT{e_BH}a
(6.64)

where [A, B], = AB — 0 BA. 1t is straightforward to invert these relations to give

M = (1-f)Y(R? - ARP)

I = o(of)*(1— f) "(RY - RY)

' = (of)*(1— f) (R - RY)

2 = (1-fi) (AR — RO)) (6.65)
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Note that we only have factors of ¢’ as this is what comes directly from the cyclicity
of the statistical trace (2.7) and the e ## density matrix, as seen in (3.17). However, we
now depart from the usual approach and summarise these relations directly in a 2 x 2
matrix relation using e’ not e=PIPsl. We find then

Priss = g e frs (6.66)
where
INZRZ 0 _R§2)II;L718_1/2
v = (g o)
L1
U — ( 1+ Ufgj)lﬂ/bijRj o5n;*b; /br; )
’ 1y or; /b, (1+ajn;)/%b;br,
(6.68)
wo= 2h— e (6.69
J
1
by, = cap{=Pp;(5 — @)} (6.70)
ny
_ 71
s [ (6.71)

The by, parameters do not effect physical results and it has been included as the
usual form for U quoted for the o # 1/2 case involves a particular choice for by. The s
parameter in I' takes account (remembering that o; = o9 in this two-point case) of the
fact that there can be factors of 2 from the square roots.

We can also rewrite these equations in a more familiar way, which is easier to use
when we are considering two-point functions. Assuming that the two fields involved have
the same statistics, o1 = 09, as they must for a non-trivial two-point function, we find
that

Hik2 — Uiulylﬁl/lyQ(Ul_l)VQM (6.72)

where
N R(Q) 0 )
II = 1 _ (6.73)
( 0 —R{?
U-il = Tnging (674)

J

with 73 the usual Pauli spin matrix. All we used was

1 V22
v —_ 0 s72b /bL2
Ub2v2 — (U71)heme . L1 . 6.75
e G (6.75)

While (6.66) is similar to the form usually seen [2, 3, 4, 5, 22], it still involves e’P not
e PPl We note that in this form the non-zero entries in the diagonal matrix II are just

the retarded and minus the advanced propagators. A form similar to (6.72) was also
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noted in [21] though without the connection between II and the retarded and advanced
two-point functions being made.

To get usual form [2, 3, 4, 5, 22], which involves involves e ?IP| factors, we manipulate
the negative energy part of (6.72) to give

~

[rane Uflylﬂyly2(U2 yrake (6.76)
where
T ( RP0(p) + R 6(~p) 0 )
2 0 ~RP0(~p) - 0(p) RY”
(6.77)
A= (eI —aj)1/2 (6.78)

Here U (U 1) is defined precisely as U (U~!) except we replace n by 7 in (6.68) (so the
br parameter remains as defined in (6.70)) and as a result we have the familiar result
that limg_, U — 1. Note that in this form involving e’I?l we do not get the retarded
and advanced functions, RgQ), R?), appearing as the elements of the diagonal matrix I
in the middle of the representation. However the only difference is a change of sign in

the imaginary parts for negative energies only, i.e.
I1 = Re{Il} + O(p)Im{I1} — (—p)Im{II} (6.79)

The direct connection between the retarded and advanced functions (the usual results
obtained from ITF two-point calculations) and the entries of the core matrix in such RTF
representations of propagators is possible only when one works in terms of n of (6.69) and
U of (6.68), functions of the energy, not the modulus of energy. This accounts precisely
for the sign difference at negative energies in the imaginary part of self-energies found by
Kobes and Semenoff [19] when they compared the result of a two-point ITF calculation,
i.e. the true retarded and advanced functions, with the matrix II calculated from RTF
results.

The essential elements of (6.66) are that for each field we have a factor U with pa-
rameters appropriate for that leg and then a core matrix, I'"*}, that has zeros for the
{v} =1 entry and another zero for the {v} = 2 entry. These zeros correspond to the two
relations that we always have between the RTF functions, equations (5.53) and (5.54).
The other entries are then related to the retarded and advanced functions, i.e. represent
the equations (5.56) and (5.58). We can try to find a similar matrix structure for the
three-point functions. From these equations we have

RY = (1-f)™" {Fm - l(abfb)_&ﬂ =2 ]

{b,c} Ha=pc=1
_fa(gafa)_aF| pa=2 + (O'afa)ar| pa=1
/'LTCSt:l ﬂrcst:2
+ Z [fa(abfb)ar‘ pup=1 ] - faF222} (680)
{b,c} Ha=Hc=2
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R = (1—fa1)1{F111— > [Ub(abfb)ar| =2 1

{b,c} Ha=pc=1
_(O'afa)idrlua:%"est:l + aa(aafa)*aﬂ #a:12
Hrest=
+ > lO'bf (oufo) L] =1 ] S A
{b,c} Ha=pc=2
(6.81)
3 —
0 = I - Z [(Uafa>am Ha=2 ]
a Nrestzl
3 —
+ Z [(aafa>ar| Ha=1 ] - F222 (682)
a=1 Urest=2
3
0 = T3 o0 T s |
a=1 N'restzl
3
+ Z [Ua(aafa)_ar| pa=1 ] - FQQQ.
a=1 llfrest:2
(6.83)

In the above the labels a,b,c = 1,2, or 3, a is fixed and the sum over {b, ¢} means taking
the subscripts b, ¢ over all values subject to a # b # ¢. In going from (5.56) and (5.58) to
(6.80) and (6.81) where the latter now involve all the RTF functions, we have used (6.82)
and (6.83). We have eight equations involving the eight RTF three-point functions and
we can invert these expressions to find

D (ky, ko, kg) = Z ganyne(RY + RY fa)
a;ébcb<c
DR (K kg k)| e = (0afa)® {Rgg)”bncaa + R nneoy f!
)u'b,c:1

+R§3)nanbacfa_1 + R((lg)nbnco-a
+ R ngn.onf, + R@nanbacfc}
DHers (ky ko, k)| a1 = (0afa) ™" fa { nnega + By mancofy

)u'b,c:2
+Rg3)nanb0-cfc + szg)nbnco-a
+R(3)nancabf_l + Rﬁg)nanbcfcfa_l}

[222(ky kg, ks) = Z Tanpe( (S)fa+R¢(13))
a;ﬁbcb<c

(6.84)
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where n, etc. were defined in (6.69) and here we always choose a,b,c = 1,2, or 3, a # b, ¢
and b < ¢. The R®) and R® are the six different expectation values of retarded and
advanced three-point functions in Fourier space. The retarded functions in space-time
are

ROty ty,t3) =
Ot — t5)0(ty — tc) TT{Q_BH[Wa(ta)a ®(to)] o, ¢C(t0)]a}/TT{e_ﬁH}
+‘9(ta - tc>8(tb - tb) TT{Q_BHHQSa(ta)a ¢c(tc>]0a be(tb)a}}/TT{e_ﬂH}
(6.85)

where (abc) is any permutation of (123) and we are not summing over repeated indices.
The commutators are given by [A, B], = AB+ BA where we take the + sign unless A and
B are fermionic. The advanced function is the same, except we switch the arguments of
all the theta functions, 8(t —t') — 6(t' —t). There is no overall sign change for three-point
functions.

Motivated by (6.66), we can try to write the three-point function as

3
[ H1k2H3 (kla kg, kS) — (H Ua(ka)uava>f‘l/1u21/3(k1a kQ, k3)>

a=1
(6.86)
and it is straightforward to show that this is possible with
flll(k17k27k3> = 07
1/2 1/2 brib
fwlugug ki ko k . _ R(?,) n, n. .. LbVLc
( 1, 2, 3)|Vb¢jc—:21 a (1+O_ana)1/20' bLa
1/2 1/2 b
fwlzxgug ki ko ke o — R(3) ny 1. ' La
( 1, 2, 3)|1/b(jc_:12 a (1+O.ana)l/2 bLbch
2% (ky, ko, k3) = 0. (6.87)

Thus we have a three-point spectral function representation in RTF (6.86) as well as a
two-point representation (6.66).

For N > 4-point functions we see that the form (6.86) can always be written down.
To do this we define the core matrix I' through the relation

[HIR2BN (fy kg ky) =

N
(TT Ua(kea) a7 ) T%25 (e kg, .., i) (6.88)
a=1

It is simple to invert this relation and we then find that

Pl _ pe22.2 _ (6.89)
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because they are proportional to (5.53) or (5.54) respectively. The entries with only one
index different from the others are known in terms of the expressions (5.56) and (5.58)
for retarded and advanced functions. For instance we have

FV“ZQ,Vrestzl (vazl(l _'_ O—Cnc>1/2bLC)

= c R 6.90
(L4 ouna) P2(na) 262, (6.90)

While it is straightforward to find expressions for the other entries, simple counting
arguments show they can not be in one-to-one correspondence with the other ITF func-
tions. There are 2V entries in I. However there are only 2N retarded and advanced
functions and just two identities, (5.53),(5.54), so for N > 4 so there is no simple one-
to-one relation with these functions. In total there are far more than 2V different results
that can be calculated using ITF so again there is no obvious one-to-one correspondence.

We note that so far everything has been done in terms of expectation values of Heisen-
berg fields not 1PI functions. It is simple derive the 1PI relations and it allows us to find
the generalisation of the results of Kobes [11]. We merely remove the full propagators
from each leg using the form (6.66) for the propagators and we find

T AEY) = (T Ualka) )T ({K)) (6.91)

=

1

a

where
i) = (T ) P (6.2

and IT was the diagonal matrix defined in (6.72). The F%}I matrix has zeros for the entries
when all the thermal indices, {v'}, are 1 or when all are equal to 2, and these correspond
to the 1PI version of the equations (5.53) and (5.54) when we invert (6.91). The entries
in f?ﬁ} with just one index different from the others gives retarded and advanced 1PI
functions (with an overall factor similar to the connected function case (6.90)).

Finally, one can consider analytic continuations in ITF other than the simplest one
of (3.28) that we have also referred to as the usual analytic continuation. In particular
one might consider trying a Feynman prescription

= Da + Ga(e(pa> - 9(_pa)) (693)

n (3.22). The epsilon terms in the denominators { B} of (3.22) would then look like the
ones seen at zero temperature in the Feynman propagator which there we associate with
time-ordered functions. However, by comparing (5.44) with (3.22), we see that this does
not give the time-ordered functions, I'*'1-1 directly in ITF. There is no analytic contin-
uation in I'TF that gives the time-ordered expectation value directly. It also shows that
the time-ordered functions (5.44) can not be written in terms of the spectral functions,
Pay..an Of (3.25), as easily as the retarded, advanced and other functions found using ITF
(3.23) can be. That the time-ordered function is not simply related to the ITF result
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found using the analytic continuation (6.93) can be seen explicitly elsewhere for the case
of the two-point functions, for instance in equation (3.1.19) of [5].

Since the analytic continuations in ITF do not lead directly to the time-ordered func-
tion, and it is the simplest one (3.27) that always allows one to calculate the retarded and
advanced functions, the functions calculated with other analytic continuations in I'TF are
not as interesting (although we note the work of Kobes [15]). It seems best therefore to
stick to the simplest analytic continuation (3.27) when using ITF.

7 Conclusions

There are two major results in this paper. First we have shown the precise connection
between the different type of real-time Green functions and the usual results obtained
in ITF and RTF, the former being a non-trivial problem. Secondly, the relationship
between the different real-time Green functions themselves and thus the relationship
between the usual results of ITF and RTF calculations was found. These results are
important because the situation turns out to be rather more complicated for general
N-point functions compared with the special cases of the two- and three-point functions
discussed elsewhere, [1, 5, 6] and [7, 8, 9, 11, 12, 13, 14, 15] respectively.

The most important practical application of these results is the fact that there are
large differences in the real and imaginary parts of the different Green functions in mo-
mentum space [7, 9] whereas at zero temperature there are only sign differences. Recent
calculations of QCD three-point functions in ITF [23] and in RTF [24] are a good il-
lustration of this. This means one must first know precisely which type of real-time
Green function is required for a given problem. Only then can one decide how to use the
calculational schemes of ITF and RTF in order to obtain the relevant function.

All that was used in the derivation of the results given here was the definition of the
various types of full Green functions that appear in equilibrium finite temperature field
theory. In particular, we only use their basic properties, such as the cyclicity of the trace
and the form of the density matrix, that almost define what we mean by being in thermal
equilibrium. Provided that we work in an approximation that gives results that have
these same basic properties as the full Green functions, e.g. the general KMS condition
(3.17), then these approximations to the full functions will also satisfy the same relations.
Thus each individual diagram in a Feynman diagram expansion satisfies these relations.
In a similar way, Green functions in non-path integral approaches such as TFD [3] also
obey the same relations, even though the derivation of the results such as (3.17) is rather
different. For instance, for the two-point case see [25].

We also note that all the calculations performed here make no assumptions about the
particle nature of the system. This is just as well since it is clear that the usual role of
particles in QFT that is the very basis of QFT is not applicable at finite temperature
[26, 27], except perhaps as an approximation. The results derived here are valid even if
we consider approaches that are more honest about the particle picture used as a basis
for finite temperature field theory, such as that of Landsman [27].

The information that we are dealing with is purely thermal and this almost completely
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decouples from the details of the theory we are dealing with. The so called ‘spectral’
representations of RTF are a good example of where the interesting matrix structure is
entirely due to the thermal nature of the situations being considered. All the details of
the theory, the particle nature, spin indices etc. are in the spectral functions p about
which we have not made any assumptions. This is also why all the results derived are
valid for all types of fields though we only had to account for a few minus signs associated
with the different statistics of fermionic and bosonic fields.

Many of the relationships derived here have been checked in actual calculations. For
instance in the rather tricky zero energy limit, general N-point one-loop RTF diagrams
in scalar field theories, as discussed in [28], can be seen to satisfy (5.56). The method of
Kobes and Semenoff [19] provides a useful calculational scheme and the recent application
of these methods by Kobes [11, 12, 13, 15], where some of the relationships discussed here
were also noted, has given many concrete examples of the relationships discussed in action.
Recent one-loop calculations of Baier et al. [29] have also made use of these relations.

The approach used here is complementary to that used by Kobes [11, 12, 13, 15] in
several ways. As noted above, the results obtained here are valid independent of the
approximation being used while Kobes obtained many of his results in a perturbative
approximation. Further, the approach used here is able to identify the precise function
that certain sums of RTF Green functions give e.g. (5.56),(5.58) whereas Kobes’ approach
only identifies for what times such combinations are zero. However, in practice many
calculations are perturbative so Kobes’ approach is much closer to actual calculations.
It also provides a practical way to test the results and shows how one could exploit the
relationship between retarded functions and RTF in practice. The study of the properties
and relations of the Green functions at finite temperature benefits greatly from having
both methods available.

This work was started at the University of Alberta, Edmonton, Canada, and I would
like to thank H. Umezawa for his support and comments. I would also like to thank I.
Hardman, R. Kobes and Y. Yamanaka for useful discussions.

After this work was completed, I recieved the preprint by Aurenche and Becherrawy
[30] which is relevant to some of the points discussed here.
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Table 1: Some choices for {e} illustrating all possible results for a three-point ITF real-
time function when using the simple analytic continuation.
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Table 2: Some distinct results for a four-point I'TF real-time function with a set of example

€ values.

N|R R|TW | Iy | ITF
2 2 4 2 2

3] 6 8 6 6

4] 8 [16 | 24 32

5 10 [ 32 ] 120 370

6 ] 12 | 64 | 720 | 11292
7 14 [ 128 | 5040 | 1066044
8 | 16 | 256 | 40320 ?

N| 2N [ 2V | NI ?

Table 3: Numbers of N-point functions.
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Figure 1: The paths used for RTF and ITF.
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Figure 2: Regions of analyticity for the three-point ITF function ®.
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