
Complete Metric Spaces

Definition 1. Let (X, d) be a metric space. A sequence (xn) in X is called a

Cauchy sequence if for any ε > 0, there is an nε ∈ N such that d(xm, xn) < ε

for any m ≥ nε, n ≥ nε.

Theorem 2. Any convergent sequence in a metric space is a Cauchy sequence.

Proof. Assume that (xn) is a sequence which converges to x. Let ε > 0 be

given. Then there is an N ∈ N such that d(xn, x) < ε
2

for all n ≥ N . Let m,

n ∈ N be such that m ≥ N , n ≥ N . Then

d(xm, xn) ≤ d(xm, x) + d(xn, x) <
ε

2
+

ε

2
= ε.

Hence (xn) is a Cauchy sequence.

Then converse of this theorem is not true. For example, let X = (0, 1].

Then ( 1
n
) is a Cauchy sequence which is not convergent in X.

Definition 3. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges (to a point in X).

Theorem 4. A closed subset of a complete metric space is a complete sub-

space.

Proof. Let S be a closed subspace of a complete metric space X. Let (xn) be a

Cauchy sequence in S. Then (xn) is a Cauchy sequence in X and hence it must

converge to a point x in X. But then x ∈ S = S. Thus S is complete.

Theorem 5. A complete subspace of a metric space is a closed subset.

Proof. Let S be a complete subspace of a metric space X. Let x ∈ S. Then

there is a sequence (xn) in S which converges to x (in X). Hence (xn) is a

Cauchy sequence in S. Since S is complete, (xn) must converge to some point,

say, y in S. By the uniqueness of limit, we must have x = y ∈ S. Hence

S = S, i.e. S is closed.

Definition 6. Let A be a nonempty subset of a metric space (X, d). The

diameter of A is defined to be

diam(A) = sup{d(x, y) | x, y ∈ A}.

We say that A is bounded if diam(A) is finite.

Theorem 7. Let (X, d) be a complete metric space. If (Fn) is a sequence

of nonempty closed subsets of X such that Fn+1 ⊆ Fn for all n ∈ N and

(diam(Fn)) converges to 0, then
⋂∞

n=1 Fn is a singleton.
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Proof. Assume that (X, d) is a complete metric space. Let (Fn) be a sequence

of nonempty closed subsets of X such that Fn+1 ⊆ Fn for every n ∈ N and

(diam(Fn)) converges to 0. First, we show that
⋂∞

n=1 Fn is nonempty. For each

n ∈ N, choose xn ∈ Fn. To show that (xn) is a Cauchy sequence, let ε > 0.

Since (diam(Fn)) converges to 0, there is an N ∈ N such that diam(FN) < ε.

Let m, n ∈ N with n ≥ N , m ≥ N . Then xm ∈ Fm ⊆ FN , xn ∈ Fn ⊆ FN .

Hence

d(xm, xn) ≤ diam(FN) < ε.

Thus (xn) is a Cauchy sequence in X. Since X is complete, it follows that

(xn) is a convergent sequence in X. Let

x = lim
n→∞

xn.

We now show that x ∈
⋂∞

n=1 Fn. Let n ∈ N. Note that xm ∈ Fm ⊆ Fn for

any m ≥ n. Thus the sequence (xn, xn+1, . . . ) is a sequence in Fn and is a

subsequence of (xn), so it converges to x. This implies that x ∈ F̄n = Fn.

Thus x ∈
⋂∞

n=1 Fn. Next, we show that
⋂∞

n=1 Fn is a singleton. To see this, let

x, y ∈
⋂∞

n=1 Fn and ε > 0. Then there is an N ∈ N such that diam(FN) < ε.

Since x, y ∈ FN , it follows that d(x, y) ≤ diam(FN) < ε. This is true for any

ε > 0. Hence d(x, y) = 0, which means x = y.

Definition 8. Let f be a function from a metric space (X, d) into a metric

space (Y, ρ). We say that f is uniformly continuous if given any ε > 0, there

exists a δ > 0 such that for any x, y ∈ X, d(x, y) < δ implies ρ(f(x), f(y)) < ε.

Theorem 9. A uniformly continuous function maps Cauchy sequences into

Cauchy sequences.

Proof. Let f : (X, d) → (Y, ρ) be a uniformly continuous function. Let (xn) be

a Cauchy sequence in X. To see that (f(xn)) is a Cauchy sequence, let ε > 0.

Then there is a δ > 0 such that

∀x, y ∈ X, d(x, y) < δ ⇒ ρ(f(x), f(y)) < ε.

Thus there exists an N ∈ N such that d(xm, xn) < δ for any m, n ≥ N . It

follows that ρ(f(xm), f(xn)) < ε for any m, n ≥ N . Hence (f(xn)) is a Cauchy

sequence in Y .

Remark. If f is not uniformly continuous, then the theorem may not be true.

For example, f(x) = 1
x

is continuous on (0,∞) and (xn) = ( 1
n
) is a Cauchy

sequence in (0,∞) but (f(xn)) = (n) is not a Cauchy sequence.
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Definition 10. Let f be a function from a metric space (X, d) into a metric

space (Y, ρ). We say that f is an isometry if d(a, b) = ρ(f(a), f(b)) for any a,

b ∈ X.

Theorem 11. Let f : (X, d) → (Y, ρ) be an isometry. Then it is injective and

uniformly continuous. Moreover, its inverse f−1 : (f [X], ρ) → (X, d) is also an

isometry.

Proof. Let f : (X, d) → (Y, ρ) be an isometry. Let ε > 0. Choose δ = ε > 0.

Let a, b ∈ X be such that d(a, b) < δ. Then

ρ(f(a), f(b)) = d(a, b) < δ = ε.

Hence f is uniformly continuous. Next, let a, b ∈ X be such that f(a) = f(b).

Thus d(a, b) = ρ(f(a), f(b)) = 0. This shows that a = b. Hence f is injective.

To see that f−1 is an isometry, let y, z ∈ f [X] and let a, b ∈ X be such that

f(a) = y and f(b) = z. Thus

ρ(y, z) = ρ(f(a), f(b)) = d(a, b) = d(f−1(y), f−1(z)).

Hence f−1 is an isometry.

Theorem 12. Let A be a dense subset of a metric space (X, d). Let f be a

uniformly continuous function (isometry) from A into a complete metric space

(Y, ρ). Then there is a unique uniformly continuous function (isometry) g from

X into Y which extends f .

Proof. We will give a proof only for a uniformly continuous function. The

proof for an isometry is similar and somewhat easier.

Let (X, d) be a metric space and (Y, ρ) a complete metric space. Let A be

a dense subset of X and let f be a uniformly continuous from A into Y .

Step 1 : define a function g : X → Y .

For each x ∈ X = A, there is a sequence (xn) in A which converges to x.

Then (xn) is a Cauchy sequence in X. Thus (f(xn)) is a Cauchy sequence in

Y . Since Y is complete, (f(xn)) is a convergent sequence. Define

g(x) = lim
n→∞

f(xn)

for any x ∈ X, where (xn) is a sequence in A which converges to x.

Step 2 : g is well-defined, i.e., independent of the choice of (xn).

Let (xn) and (yn) be any sequence in A which converges to x ∈ A =

X. Then the sequence (x1, y1, x2, y2, . . . , xn, yn, . . . ) must converge to x.

Hence, the sequence (f(x1), f(y1), f(x2), f(y2), . . . , f(xn), f(yn), . . . ) converges
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to some point z ∈ Y . Since (f(x1), f(x2), . . . ) and (f(y1), f(y2), . . . ) are its

subsequences, they must also converge to z. Hence z = g(x) does not depend

on the choice of the sequences.

Step 3 : g is an extension of f .

Let a ∈ A and let an = a for each n ∈ N. Then (an) is a sequence in A

which converges to a. Hence g(a) = limn→∞ f(an) = f(a). This shows that g

is an extension of f .

Step 4 : g is uniformly continuous on X.

Let ε > 0. Then there is a δ > 0 such that

∀ a, b ∈ A, d(a, b) < δ ⇒ ρ(f(a), f(b)) <
ε

3
.

Let x, y ∈ X be such that d(x, y) < δ. Then there are sequence (xn) and (yn)

in A such that xn → x and yn → y. Hence f(xn) → g(x) and f(yn) → g(y).

Choose N ∈ N such that

d(xN , x) <
δ − d(x, y)

2
and d(yN , y) <

δ − d(x, y)

2
(0.1)

and ρ(f(xN), g(x)) <
ε

3
and ρ(f(yN), g(y)) <

ε

3
. (0.2)

Then

d(xN , yN) ≤ d(xN , x) + d(x, y) + d(y, yN) < δ,

which implies that ρ(f(xN), f(yN)) < ε, by the uniform continuity of f on A.

Hence,

ρ(g(x), g(y)) ≤ ρ(g(x), f(xN)) + ρ(f(xN), f(yN)) + ρ(f(yN), g(y))

<
ε

3
+

ε

3
+

ε

3
= ε.

This shows that g is uniformly continuous on X.

Step 5 : g is unique.

Let g and h be (uniformly) continuous functions on X which extends f on

a dense subset A. To see that g = h, let x ∈ X. Then there is a sequence (xn)

in A which converges to x. By continuity of g and h,

g(x) = lim
n→∞

g(xn) = lim
n→∞

h(xn) = h(x).

Hence g = h.

Definition 13. A completion of a metric space (X, d) is a pair consisting of

a complete metric space (X∗, d∗) and an isometry ϕ of X into X∗ such that

ϕ[X] is dense in X∗.
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Theorem 14. Every metric space has a completion.

Proof. Let (X, d) be a metric space. Denote by C[X] the collection of all

Cauchy sequences in X. Define a relation ∼ on C[X] by

(xn) ∼ (yn) ⇐⇒ lim
n→∞

d(xn, yn) = 0.

It is easy to see that this is an equivalence relation on C[X]. Let X∗ be the

set of all equivalence classes for ∼:

X∗ = { [(xn)] : (xn) ∈ C[X] }.

Define d∗ : X∗ ×X∗ → [0,∞) by

d∗ ([(xn)], [(yn)]) = lim
n→∞

d(xn, yn),

where [(xn)], [(yn)] ∈ X∗. To show that d∗ is well-defined, let (x′n) and (y′n) be

two Cauchy sequences in X such that (xn) ∼ (x′n) and (yn) ∼ (y′n). Then

lim
n→∞

d(xn, x
′
n) = lim

n→∞
d(yn, y

′
n) = 0.

By the triangle inequality,

d(xn, yn) ≤ d(xn, x
′
n) + d(x′n, y

′
n) + d(y′n, yn) and

d(x′n, y
′
n) ≤ d(x′n, xn) + d(xn, yn) + d(yn, y

′
n).

Hence,

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n) −→ 0.

Since both (d(xn, yn)) and (d(x′n, y
′
n)) are convergent, this shows that

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, y
′
n).

Thus d∗ is well-defined.

Next, we show that d∗ is a metric on X∗. Let [(xn)], [(yn)], [(zn)] ∈ X∗.

Then

d∗([(xn)], [(yn)]) = 0 ⇔ lim
n→∞

d(xn, yn) = 0 ⇔ (xn) ∼ (yn) ⇔ [(xn)] = [(yn)].

Also,

d∗([(xn)], [(yn)]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d∗([(yn)], [(xn)]).

Since d(xn, zn) ≤ d(xn, yn) + d(yn, zn),

lim
n→∞

d(xn, zn) ≤ lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn).
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Thus

d∗([(xn)], [(zn)]) ≤ d∗([(xn)], [(yn)]) + d∗([(yn)], [(zn)]).

Hence d∗ is a metric on X∗.

For each x ∈ X, let x̂ = [(x, x, . . . )] ∈ X∗, the equivalence classes of the

constant sequence (x, x, . . . ). Define ϕ : X → X∗ by ϕ(x) = x̂. Then for any

x, y ∈ X,

d∗(ϕ(x), ϕ(y)) = d∗(x̂, ŷ) = lim
n→∞

d(x, y) = d(x, y).

Hence ϕ is an isometry from X into X∗. To show that ϕ[X] is dense in X∗,

let x∗ = [(xn)] ∈ X∗ and let ε > 0. Since (xn) is a Cauchy sequence, there

exists an N ∈ N such that for any m, n ≥ N , d(xm, xn) <
ε

2
. Let z = xN .

Then ẑ ∈ ϕ[X] and

d∗(x∗, ẑ) = lim
n→∞

d(xn, z) = lim
n→∞

d(xn, xN) ≤ ε

2
< ε.

Thus ẑ ∈ Bd∗(x
∗, ε) ∩ ϕ[X]. Hence, ϕ[X] is dense in X∗.

Finally we show that (X∗, d∗) is complete. To establish this, we apply the

following lemma of which proof is left as an exercise:

Lemma 15. Let (X, d) be a metric space and A a dense subset such that

every Cauchy sequence in A converges in X. Prove that X is complete.

Hence, it suffices to show that every Cauchy sequence in the dense subspace

ϕ[X] converges in X∗. Let (ẑk) be a Cauchy sequence in ϕ[X], where each ẑk

is represented by the Cauchy sequence (zk, zk, . . . ). Since ϕ is an isometry,

d(zn, zm) = d∗(ẑn, ẑm) for each m, n.

Hence, (z1, z2, z3, . . . ) is a Cauchy sequence in X. Let z∗ = [(z1, z2, z3, . . . )] ∈
X∗. To show that (ẑk) converges to z∗, let ε > 0. Then there is an N ∈ N
such that d(zk, zn) <

ε

2
for any k, n ≥ N . Hence, for each k ≥ N ,

d∗(ẑk, z
∗) = lim

n→∞
d(zk, zn) ≤ ε

2
< ε.

This shows that (ẑk) converges to a point z∗ in X∗ and that X∗ is complete.

Before proving that a completion of a metric space is unique up to isometry,

we will give an alternative definition of a completion in terms of a universal

mapping property. We state this fact in the following definition:

Theorem 16 (Universal Mapping Property). Let (X, d) be a metric

space, (X∗, d∗) a complete metric space and ϕ : (X, d) → (X∗, d∗) an isom-

etry. Then ϕ[X] is dense in X∗ if and only if it satisfies the following universal

mapping property:
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Given any complete metric space (Y, ρ) and an isomtry f : X → Y , there exists

a unique isometry F : X∗ → Y such that F ◦ ϕ = f .

X
ϕ //

f
��?

??
??

??
??

X∗

F
����

��
��

��
�

Y

Proof. Assume that ϕ[X] is dense in X∗. We will show that it satisfies

the universal mapping property. Let (Y, ρ) be a complete metric space and

f : X → Y an isometry from X into Y . Since ϕ is an isometry, ϕ is 1-1. Thus

ϕ−1 : ϕ[X] → X is an isometry from ϕ[X] onto X. Since f is an isometry from

X onto Y , it follows that h := f ◦ϕ−1 is an isometry from a dense subset ϕ[X]

of X∗ into a complete metric space Y . Hence it can be extended uniquely into

an isometry F from X∗ into Y . Then for any x ∈ X

F ◦ ϕ(x) = h(ϕ(x)) = f ◦ ϕ−1(ϕ(x)) = f(x).

Thus F ◦ ϕ = f .

If G : X∗ → Y is another isometry such that G ◦ ϕ = f , then F = G on

the dense subset ϕ[X] of X∗; hence they must be equal on X∗, i.e. F = G.

Conversely, assume that it satisfies universal mapping property and show

that ϕ[X] is dense in X∗. Since ϕ[X] is closed in a complete metric space X∗,

ϕ[X] is also complete. Let Y = ϕ[X] and f = ϕ. By the universal mapping

property, there is a unique isometry F : X∗ → Y such that F ◦ ϕ = f = ϕ.

This shows that F is the identity on the subspace ϕ[X]. It implies that F is

the identity on ϕ[X]. From this, we must have X∗ = ϕ[X].

Theorem 17. A completion of a metric space is unique up to isometry. More

precisely, if {ϕ1, (X
∗
1 , d

∗
1)} and {ϕ2, (X

∗
2 , d

∗
2)} are two completions of (X, d),

then there is a unique isometry f from X∗
1 onto X∗

2 such that f ◦ ϕ1 = ϕ2.

Proof. First, letting Y = X∗
2 and f = ϕ2, by the universal mapping property

of (X∗
1 , d

∗
1) there is a unique isometry F : X∗

1 → X∗
2 such that F ◦ ϕ1 = ϕ2.

Similarly, letting Y = X∗
1 and f = ϕ1, by the universal mapping property of

(X∗
2 , d

∗
2) there is a unique isometry G : X∗

2 → X∗
1 such that G ◦ ϕ2 = ϕ1.

Hence, G ◦ F is an isometry on X∗
1 such that G ◦ F ◦ ϕ1 = ϕ1. But then

the identity map IX∗
1

is an isometry on X∗
1 such that IX∗

1
◦ ϕ1 = ϕ1. By the

uniqueness property, we have G ◦ F = IX∗
1
. By the same argument, we can

show that F ◦G = IX∗
2
. This shows that F and G are inverses of each other.

Thus F is an isometry from (X∗
1 , d

∗
1) onto (X∗

2 , d
∗
2).

Definition 18. A function f : (X, d) → (X, d) is said to be a contraction map

if there is a real number k < 1 such that d(f(x), f(y)) ≤ k d(x, y) for all x,

y ∈ X.
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Theorem 19. Let f be a contraction map of a complete metric space (X, d)

into itself. Then f has a unique fixed point.

Proof. Let (X, d) be a complete metric space and f : X → X a d-contractive

map. Then there is a real number k < 1 and d(f(x), f(y)) ≤ kd(x, y) for all

x, y in X. Fix x0 ∈ X and let xn = f(xn−1) for each n ∈ N. Then

d(x1, x2) = d(f(x0), f(x1)) ≤ k d(x0, x1),

d(x2, x3) = d(f(x1), f(x2)) ≤ k d(x1, x2) ≤ k2d(x0, x1).

Assume that d(xm−1, xm) ≤ km−1d(x0, x1). Then

d(xm, xm+1) = d(f(xm−1), f(xm)) ≤ k d(xm−1, xm) ≤ kmd(x0, x1).

By induction, we have d(xm, xm+1) ≤ kmd(x0, x1) for each m ∈ N. Hence, for

any m, n ∈ N with m > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ knd(x0, x1) + kn+1d(x0, x1) + · · ·+ km−1d(x0, x1)

≤ (kn + kn+1 + kn+2 + · · · ) d(x0, x1)

=
kn

1− k
d(x0, x1).

Since 0 ≤ k < 1, the sequence (kn) converges to 0. This implies that (xn)

is a Cauchy sequence. Since X is complete, the sequence (xn) is convergent

to, say, x in X. To show that f(x) = x, let ε > 0. Then there is an N ∈ N
such that d(xn, x) < ε

2
for any n ≥ N . Hence d(f(xN), x) = d(xN+1, x) < ε

2
.

Therefore

d(f(x), x) ≤ d(f(x), f(xN)) + d(f(xN), x)

≤ k d(x, xN) + d(xN+1, x) < k
ε

2
+

ε

2
<

ε

2
+

ε

2
= ε.

Thus f(x) = x. Now we show that the fixed point is unique. Let x and y be

fixed points of f . Then d(x, y) = d(f(x), f(y)) ≤ k d(x, y). If d(x, y) > 0, then

1 ≤ k, a contradiction. Thus d(x, y) = 0. This shows that x = y. Hence, f

has a unique fixed point.

Theorem 20 (Baire’s Theorem). If X is a complete metric space, the

intersection of a countable number of dense open subsets is dense in X.

Proof. In the proof of this theorem, we will denote the closed ball centered at

x with radius r by B[x, r]:

B[x, r] = {y ∈ X | d(y, x) ≤ r}.
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Note that any open set in a metric space contains a closed ball. Indeed, if we

shrink the radius of an open ball slightly, we obtain a closed ball contained in

that open ball.

Suppose that V1, V2, . . . are dense and open in X and let W be a nonempty

open set in X. We will show that

(
∞⋂

n=1

Vn ) ∩W 6= ∅.

Since V1 is dense in X, W ∩ V1 is a nonempty open set. Hence, we can find

x1 ∈ X and 0 < r1 < 1 such that

B[x1, r1] ⊆ W ∩ V1. (0.3)

If n ≥ 2 and xn−1 and rn−1 are chosen, the denseness of Vn shows that Vn ∩
B(xn−1, rn−1) is a nonempty open set, and therefore we can find xn ∈ X and

0 < rn < 1
n

such that

B[xn, rn] ⊆ Vn ∩B(xn−1, rn−1). (0.4)

By induction, this process produces the sequence {xn} in X. If m, n ≥ N ,

then xm and xn are in B(xN , rN), and thus

d(xm, xn) ≤ d(xm, xN) + d(xN , xn) < 2 rN <
2

N
.

Hence, {xn} is a Cauchy sequence. Since X is complete, xn converges to some

x ∈ X. If k ≥ n, then xk lies in a closed set B[xn, rn]. Thus, x ∈ B[xn, rn] for

all n ≥ 1. By (0.3), x ∈ W ∩ V1, and by (0.4), we have x ∈ Vn for all n ≥ 2.

Hence,

x ∈
( ∞⋂

n=1

Vn

)
∩W.

We can conclude that the intersection of all Vn is dense in X.

Remark. The completeness assumption is necessary in this theorem as the

following example illustrates. Let X = Q . Write Q = { rn | n ∈ N } and let

Gn = Q− {rn} for each n ∈ N. Then Gn is open and dense in Q for each n,

but
⋂∞

n=1 Gn = ∅.

Corollary 21. If a complete metric space is a union of countably many closed

sets, then at least one of the closed sets has nonempty interior.

Proof. Let X be a complete metric space. Assume that X =
⋃∞

n=1 Fn, where

each Fn is closed. For each n ∈ N, let Gn = F c
n. Then

⋂∞
n=1 Gn = ∅. By

Baire’s theorem, there exists an open set Gn which is not dense in X. Thus,

Gn 6= X. But then Int Fn = X−Gn, and hence Fn has nonempty interior.
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