Complete Metric Spaces

Definition 1. Let (X, d) be a metric space. A sequence (z,) in X is called a
Cauchy sequence if for any & > 0, there is an n. € N such that d(z,,x,) < ¢

for any m > n., n > n..
Theorem 2. Any convergent sequence in a metric space is a Cauchy sequence.

Proof. Assume that (x,) is a sequence which converges to z. Let ¢ > 0 be
given. Then there is an N € N such that d(x,,z) < 5 for all n > N. Let m,
n € N be such that m > N, n > N. Then

d(ZL‘m, xn) < d(xm,x) + d(xn,x) < g + g = €.

Hence (x,,) is a Cauchy sequence. O

Then converse of this theorem is not true. For example, let X = (0, 1].
Then () is a Cauchy sequence which is not convergent in X.
Definition 3. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges (to a point in X).

Theorem 4. A closed subset of a complete metric space is a complete sub-

space.

Proof. Let S be a closed subspace of a complete metric space X. Let (z,) be a
Cauchy sequence in S. Then (z,,) is a Cauchy sequence in X and hence it must

converge to a point = in X. But then € S = S. Thus S is complete. ]
Theorem 5. A complete subspace of a metric space is a closed subset.

Proof. Let S be a complete subspace of a metric space X. Let 2 € S. Then
there is a sequence (z,) in S which converges to = (in X). Hence (z,) is a
Cauchy sequence in S. Since S is complete, (z,,) must converge to some point,
say, y in S. By the uniqueness of limit, we must have x+ = y € S. Hence
S =25, 1ie. Sis closed. n

Definition 6. Let A be a nonempty subset of a metric space (X,d). The
diameter of A is defined to be

diam(A) = sup{d(z,y) | z,y € A}.
We say that A is bounded if diam(A) is finite.

Theorem 7. Let (X,d) be a complete metric space. If (F,) is a sequence
of nonempty closed subsets of X such that F,,; C F, for all n € N and

(diam(F,)) converges to 0, then ()2, F, is a singleton.
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Proof. Assume that (X, d) is a complete metric space. Let (F,,) be a sequence
of nonempty closed subsets of X such that F,, ., C F), for every n € N and
(diam(F},)) converges to 0. First, we show that ()~ F, is nonempty. For each
n € N, choose x,, € F,,. To show that (z,) is a Cauchy sequence, let £ > 0.
Since (diam(F,,)) converges to 0, there is an N € N such that diam(Fy) < e.
Let m, n € N withn > N, m > N. Then z,, € F,, C Fy, x, € F,, C Fy.
Hence
d(zpm, z,) < diam(Fy) < e.

Thus (z,) is a Cauchy sequence in X. Since X is complete, it follows that
(x,) is a convergent sequence in X. Let

r = lim x,.

n—oo

We now show that « € (\_, F,,. Let n € N. Note that z,, € F,, C F), for
any m > n. Thus the sequence (x,,Z,41,...) iS a sequence in F, and is a
subsequence of (x,), so it converges to x. This implies that z € F, = F,.
Thus z € (), —, F,,. Next, we show that ()~ F,, is a singleton. To see this, let
z,y €\~ F, and £ > 0. Then there is an N € N such that diam(Fy) < e.
Since z, y € Fy, it follows that d(z,y) < diam(Fx) < . This is true for any
e > 0. Hence d(z,y) = 0, which means =z = y. O

Definition 8. Let f be a function from a metric space (X, d) into a metric
space (Y, p). We say that f is uniformly continuous if given any ¢ > 0, there
exists a ¢ > 0 such that for any z, y € X, d(x,y) < § implies p(f(x), f(y)) < €.

Theorem 9. A uniformly continuous function maps Cauchy sequences into

Cauchy sequences.

Proof. Let f: (X,d) — (Y, p) be a uniformly continuous function. Let (x,) be
a Cauchy sequence in X. To see that (f(z,)) is a Cauchy sequence, let € > 0.
Then there is a 6 > 0 such that

Va,y € X, d(z,y) <6 = p(f(z), f(y)) <e.

Thus there exists an N € N such that d(z,,x,) < 0 for any m, n > N. It
follows that p(f(zm), f(x,)) < e for any m, n > N. Hence (f(x,)) is a Cauchy

sequence in Y. ]

Remark. If f is not uniformly continuous, then the theorem may not be true.

For example, f(z) = 1 is continuous on (0,00) and (z,) = (£) is a Cauchy

sequence in (0, 00) but (f(x,)) = (n) is not a Cauchy sequence.



Definition 10. Let f be a function from a metric space (X, d) into a metric
space (Y, p). We say that f is an isometry if d(a,b) = p(f(a), f(b)) for any a,
be X.

Theorem 11. Let f: (X,d) — (Y, p) be an isometry. Then it is injective and
uniformly continuous. Moreover, its inverse f~1: (f[X], p) — (X, d) is also an

isometry.

Proof. Let f: (X,d) — (Y, p) be an isometry. Let € > 0. Choose § = ¢ > 0.
Let a, b € X be such that d(a,b) < . Then

p(f(a), f(b)) = d(a,b) <6 =e.

Hence f is uniformly continuous. Next, let a, b € X be such that f(a) = f(b).
Thus d(a,b) = p(f(a), f(b)) = 0. This shows that a = b. Hence f is injective.
To see that f~! is an isometry, let y, z € f[X] and let a, b € X be such that
f(a) =y and f(b) = z. Thus

p(y,2) = p(f(a), f(b)) = d(a,b) = d(f(y), f(2)).

Hence f~! is an isometry. O

Theorem 12. Let A be a dense subset of a metric space (X, d). Let f be a
uniformly continuous function (isometry) from A into a complete metric space

(Y, p). Then there is a unique uniformly continuous function (isometry) g from
X into Y which extends f.

Proof. We will give a proof only for a uniformly continuous function. The
proof for an isometry is similar and somewhat easier.
Let (X, d) be a metric space and (Y, p) a complete metric space. Let A be

a dense subset of X and let f be a uniformly continuous from A into Y.

Step 1: define a function g: X — Y.

For each * € X = A, there is a sequence (r,) in A which converges to z.
Then (z,) is a Cauchy sequence in X. Thus (f(x,)) is a Cauchy sequence in
Y. Since Y is complete, (f(z,)) is a convergent sequence. Define

g(x) = lim f(x,)

n—oo
for any z € X, where (z,,) is a sequence in A which converges to z.

Step 2: g is well-defined, i.e., independent of the choice of (z,).
Let (z,) and (y,) be any sequence in A which converges to z € A =

X. Then the sequence (z1,y1,%2,Y2,---,Tn,Yn,...) Must converge to .
HGHCG, the sequence (f($1)7 f(y1>7 f(x2>a f(y2)7 R f($n)7 f(yn)7 e ) converges
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to some point z € Y. Since (f(z1), f(z2),...) and (f(v1), f(y2),...) are its
subsequences, they must also converge to z. Hence z = g(z) does not depend

on the choice of the sequences.

Step 3: ¢ is an extension of f.
Let a € A and let a, = a for each n € N. Then (a,) is a sequence in A
which converges to a. Hence g(a) = lim,, ., f(a,) = f(a). This shows that ¢

is an extension of f.

Step 4: g is uniformly continuous on X.
Let € > 0. Then there is a 6 > 0 such that

Va,be A, da,b) < 8= p(fla), f(b) < %

Let x, y € X be such that d(x,y) < §. Then there are sequence (z,,) and (y,)
in A such that z,, — z and y,, — y. Hence f(z,) — g(x) and f(y,) — g(v).
Choose N € N such that

§—d(z,y) 6 —d(x,y)

d(zy,z) < and d(yn,y) <

and  p(f(rn),9(x)) <5 and p(f(yn), 9(y)) <

Wl M
Wl M

Then

which implies that p(f(xn), f(yn)) < €, by the uniform continuity of f on A.

Hence,

p(9(x),9(y)) < plg(x), f(zn)) + p(f(zNn), flyn)) + p(f(yn), 9(y))

<£+i+£—5
3 3 3 7

This shows that ¢ is uniformly continuous on X.
Step 5: ¢ is unique.

Let g and h be (uniformly) continuous functions on X which extends f on
a dense subset A. To see that g = h, let x € X. Then there is a sequence (z,,)
in A which converges to x. By continuity of g and h,

g(z) = lim g(z,) = lim h(x,) = h(z).

n—oo n—oo

Hence g = h. O

Definition 13. A completion of a metric space (X, d) is a pair consisting of
a complete metric space (X*,d*) and an isometry ¢ of X into X* such that
©[X] is dense in X*.



Theorem 14. Every metric space has a completion.

Proof. Let (X,d) be a metric space. Denote by C[X] the collection of all
Cauchy sequences in X. Define a relation ~ on C[X] by

(xn) ~ (yn) <= lim d(z,,y,) =0.

n—oo

It is easy to see that this is an equivalence relation on C[X]. Let X* be the

set of all equivalence classes for ~:

X7 = {l(n)] = (2n) € CIX] ).

Define d*: X* x X* — [0,00) by

d* ([(zn)], [(yn)]) = Tim d(n, yn),

n—oo

where [(z,,)], [(yn)] € X*. To show that d* is well-defined, let (z/,) and (y/,) be
two Cauchy sequences in X such that (x,) ~ (2/,) and (y,) ~ (y,,). Then

n

lim d(z,,x),) = lim d(y,,vy,) = 0.

n—oo n—oo

By the triangle inequality,

d(xp, yn) < d(xy,x;,) + d(x), yy,) + d(y,, y,) and
d(xl,yp,) < d(x, x,) + d(@n, Yn) + d(Yn, Yl,).

IN

Hence,
(20, yn) — A2, y,)| < d(@n, 27,) + d(Yns yy,) — 0.

Since both (d(z,,y,)) and (d(z},,y.,)) are convergent, this shows that

im d(2n, yn) = nh_{rc}o (5, Yn)-

n—oo

Thus d* is well-defined.
Next, we show that d* is a metric on X*. Let [(x,)], [(yn)], [(zn)] € X*.
Then

d*([(zn)]; [(yn)]) = 0 = lim d(zn, yn) = 0 (2n) ~ (yn) < [(20)] = [(yn)]-

n—oo

Also,

d*([(zn)); [(yn)]) = lim d(@n, yn) = lim d(yn, 2n) = d"([(yn)]; [(zn)]).

n—oo

Since d(x,,, z,) < d(Tp, Yn) + d(Yn, 2n),

lim d(zy,, z,) < lm d(z,,y,) + Im d(yn, 2,).

n—oo n—oo



Thus
d*([(za)], [(z0)]) < d*([(z0)], [(yn)]) + " ([(90)], [(20)])-

Hence d* is a metric on X*.

For each z € X, let & = [(z,z,...)] € X*, the equivalence classes of the
constant sequence (z,x,...). Define ¢: X — X* by ¢(x) = &. Then for any
z,y € X,

& (p(@).¢(y) = d"(2.9) = lim d(z,y) = d(z.y).

Hence ¢ is an isometry from X into X*. To show that ¢[X] is dense in X*,
let x* = [(z,)] € X* and let € > 0. Since (x,) is a Cauchy sequence, there
exists an N € N such that for any m, n > N, d(x,, x,) < % Let z = .
Then 2 € ¢[X] and

d*(z*,2) = lim d(zp,2) = lim d(z,,zy) <

n—oo n—oo

Thus 2 € Bg(2*,¢) N p[X]. Hence, ¢[X] is dense in X*.
Finally we show that (X*, d*) is complete. To establish this, we apply the

< €.

DO ™

following lemma of which proof is left as an exercise:

Lemma 15. Let (X, d) be a metric space and A a dense subset such that

every Cauchy sequence in A converges in X. Prove that X is complete.

Hence, it suffices to show that every Cauchy sequence in the dense subspace
[ X] converges in X*. Let (Z) be a Cauchy sequence in ¢[X], where each Zj

is represented by the Cauchy sequence (zy, 2, ... ). Since @ is an isometry,
d(zp, 2m) = d*(Zn, Zm) for each m, n.

Hence, (21, 29, 23, ...) is a Cauchy sequence in X. Let z* = [(21, 22, 23,...)] €

X*. To show that (Zj) converges to z*, let £ > 0. Then there is an N € N
g

such that d(zg, z,) < 5 for any k£, n > N. Hence, for each k > N,

d*(Zk, 2") = lim d(zg,2,) < = < e.

n—oo

DO ™

This shows that (Zj) converges to a point z* in X* and that X* is complete. [J

Before proving that a completion of a metric space is unique up to isometry,
we will give an alternative definition of a completion in terms of a universal

mapping property. We state this fact in the following definition:

Theorem 16 (Universal Mapping Property). Let (X,d) be a metric
space, (X*,d*) a complete metric space and ¢: (X,d) — (X* d*) an isom-
etry. Then ¢[X] is dense in X* if and only if it satisfies the following universal
mapping property:



Given any complete metric space (Y, p) and an isomtry f: X — Y, there exists

a unique isometry F': X* — Y such that F oy = f.

¢ P
N

Y
Proof. Assume that ¢[X] is dense in X*. We will show that it satisfies

the universal mapping property. Let (Y, p) be a complete metric space and

X

f: X — Y an isometry from X into Y. Since ¢ is an isometry, ¢ is 1-1. Thus
o' p[X] — X is an isometry from [X] onto X. Since f is an isometry from
X onto Y, it follows that h := fop™! is an isometry from a dense subset p[X]
of X* into a complete metric space Y. Hence it can be extended uniquely into

an isometry F' from X* into Y. Then for any x € X

Foy(x) = h(p(z)) = fop™ (p(z) = f(z).

Thus Fogp=f.
If G: X* — Y is another isometry such that G o p = f, then F = G on
the dense subset p[X] of X*; hence they must be equal on X*, i.e. F =G.
Conversely, assume that it satisfies universal mapping property and show

that ¢[X] is dense in X*. Since ¢[X] is closed in a complete metric space X*,

[ X] is also complete. Let Y = ¢[X] and f = ¢. By the universal mapping
property, there is a unique isometry F': X* — Y such that Foyp = f = ¢.
This shows that F' is the identity on the subspace ¢[X]. It implies that F' is

the identity on ¢[X]. From this, we must have X* = p[X]. O

Theorem 17. A completion of a metric space is unique up to isometry. More
precisely, if {¢1, (X7,d})} and {¢2, (X5, d5)} are two completions of (X, d),

then there is a unique isometry f from X7 onto XJ such that f o yp; = ¢s.

Proof. First, letting Y = X3 and f = 9, by the universal mapping property
of (X7,d}) there is a unique isometry F': X — X such that F' o ¢ = ¢s.
Similarly, letting Y = X{ and f = ¢y, by the universal mapping property of
(X5, d5) there is a unique isometry G: X; — X7 such that G o @9 = ¢;.
Hence, G o F' is an isometry on X7 such that G o F' o ¢; = ¢;. But then
the identity map Ix: is an isometry on X such that Ixy o 1 = 1. By the
uniqueness property, we have GG o F' = Iy:. By the same argument, we can
show that F oG =1 X3 This shows that /' and G are inverses of each other.
Thus F is an isometry from (X7, d}) onto (X3, d3). O

Definition 18. A function f : (X,d) — (X, d) is said to be a contraction map
if there is a real number k£ < 1 such that d(f(z), f(y)) < kd(z,y) for all z,
y e X.



Theorem 19. Let f be a contraction map of a complete metric space (X, d)

into itself. Then f has a unique fixed point.

Proof. Let (X, d) be a complete metric space and f: X — X a d-contractive
map. Then there is a real number k£ < 1 and d(f(z), f(y)) < kd(z,y) for all
z,yin X. Fix g € X and let z,, = f(z,_1) for each n € N. Then

d(z1,m2) = d(f(z0), f(x1)) < kd(zo, 11),
d(Ig,[Eg,) = d(f(l’l),f(l‘g)) S k?d(xl,l’g) S ]{I2d(l‘0,$1).

Assume that d(x,_1,T,) < k™ 'd(zo,71). Then
d(xmamm+1) = d(f(mm—l);f(xm)) S kd(xm—hxm) S kmd($07$1)-

By induction, we have d(y,, Tmi1) < k™d(zg, 1) for each m € N. Hence, for

any m, n € N with m > n,

d(xn7 xm) S d(-rna anrl) + d(xn+17 xn+2) +-+ d(mmfb xm)
< k"d(xo, 1) + k:”“d(xO, T) -+ km_ld(xo, x1)
< (K" + k" B ) d (o, )

k’l’b
=1 d(xg, 7).

Since 0 < k < 1, the sequence (k™) converges to 0. This implies that (z,)
is a Cauchy sequence. Since X is complete, the sequence (z,) is convergent
to, say,  in X. To show that f(z) = z, let € > 0. Then there is an N € N
such that d(z,,r) < § for any n > N. Hence d(f(zy),7) = d(zn41,7) < 5.
Therefore

d(f(x), z)

IN

d(f(z), f(xn)) + d(f(zn), )
e €

g €
< kd<$7$N)+d($N+1,$) <k§+§ < 54_5:5.

Thus f(x) = z. Now we show that the fixed point is unique. Let x and y be
fixed points of f. Then d(z,y) = d(f(x), f(y)) < kd(z,y). If d(x,y) > 0, then
1 < k, a contradiction. Thus d(z,y) = 0. This shows that x = y. Hence, f

has a unique fixed point. n

Theorem 20 (Baire’s Theorem). If X is a complete metric space, the

intersection of a countable number of dense open subsets is dense in X.

Proof. In the proof of this theorem, we will denote the closed ball centered at

x with radius r by B[z, r]:
Blz,r] = {y € X [d(y,z) <r}.
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Note that any open set in a metric space contains a closed ball. Indeed, if we
shrink the radius of an open ball slightly, we obtain a closed ball contained in
that open ball.

Suppose that Vi, V5, ... are dense and open in X and let W be a nonempty
open set in X. We will show that

(ﬁvn)ﬂwyég.

Since V; is dense in X, W N V; is a nonempty open set. Hence, we can find
r1 € X and 0 < r; < 1 such that

B[l'l,rl] - WﬂVl (03)

If n > 2 and x,_1 and 7,_; are chosen, the denseness of V,, shows that V,, N
B(xp_1,7,—1) is a nonempty open set, and therefore we can find z,, € X and
o0o<r, < % such that

Blxn, 0] € Va N B(xy_1,7n-1)- (0.4)

By induction, this process produces the sequence {z,} in X. If m, n > N,
then x,, and z,, are in B(zy,ry), and thus
2
AT, Tn) < d(@m, on) +d(zn, x,) < 27N < N
Hence, {z,} is a Cauchy sequence. Since X is complete, x,, converges to some
x € X. If k> n, then xy lies in a closed set Blz,,r,|. Thus, z € Blz,,r,| for
all n > 1. By (0.3), x € W NV, and by (0.4), we have x € V,, for all n > 2.

Hence,
ve (V) nw.
n=1
We can conclude that the intersection of all V,, is dense in X. O

Remark. The completeness assumption is necessary in this theorem as the
following example illustrates. Let X = Q. Write Q = {r, | » € N} and let
G, =Q—{r,} for each n € N. Then G, is open and dense in Q for each n,
but 2, G, = 2.

Corollary 21. If a complete metric space is a union of countably many closed

sets, then at least one of the closed sets has nonempty interior.

Proof. Let X be a complete metric space. Assume that X = (J 7, F,,, where
each F), is closed. For each n € N, let G,, = F¢. Then (,_, G, = &. By
Baire’s theorem, there exists an open set (G, which is not dense in X. Thus,
G, # X. But then Int F,, = X — @, and hence F, has nonempty interior. [J



