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Abstract—Data collected from smart meters is to be potentially
used as a basis for many different purposes e.g. demand response
management and pricing. A popular problem to tackle using such
smart meter data is Non-Intrusive Load Monitoring (NILM),
which is a deconvolution process to separate appliances and their
consumption based on aggregated measurements only. State-of-
the-art NILM approaches are supervised algorithms based on e.g.
Factorial Hidden Markov Models (FHMM) or Artificial Neural
Networks (ANN). They require large training datasets and may
have limited generalization ability when used for new data and
situations not seen during the training process. In contrast here,
we propose an unsupervised NILM approach that combines (i)
sparse signal approximation into a sum of boxcar functions by
Orthogonal Matching Pursuit (OMP), (ii) a Gaussian Mixture
Model (GMM) reducing redundancies in the boxcar functions,
(iii) community detection to obtain appliance signatures from as-
sociation of boxcar functions. The algorithm shows performance
in the same range as the FHMM and NN at high resolution
(6 seconds) but can also perform well at lower resolution (1
minute). As the approach is generic and unsupervised, it fits
the requirements for a real-world implementation with standard
metering data.

Index Terms—Clustering, Community Detection, Non-
Intrusive Load Monitoring (NILM), Orthogonal Matching
Pursuit (OMP), Unsupervised Learning.

I. INTRODUCTION

LARGE scale deployment of smart meters and, more
generally, information and communication technologies

(ICT) open up towards intelligent networks that will comprise
the informational backbone of future smart grids. A prospect
is to benefit from Demand Side Management (DSM) concepts
to integrate Renewable Energy Sources (RES) efficiently and
economically by harnessing consumer flexibility. With that
objective in mind, smart meters connecting consumers and
utilities (plus possibly some other agents in the system e.g.
flexibility aggregators) with a two-way communication proto-
col allow utilities to get near real-time feedback on electricity
consumption, while consumers can receive incentives e.g.
dynamic tariffs, and modify their energy consumption behavior
accordingly.

The exponentially growing amount of metering data brings
new perspectives in terms of solving challenging R&D prob-
lems while allowing for new business models. These gener-
ally relate to developing new insights about electric demand
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characteristics relevant to DSOs and aggregators (e.g. con-
sumer behavior, detection of electric vehicles and heat pumps,
estimation of PV capacity), to the consumers (more control
on electricity consumption) and to electricity providers (en-
ergy efficiency programs) [1]. Non-Intrusive Load Monitoring
(NILM), which consists in separating single appliances and
their electricity consumption signal from the overall consump-
tion signal of a household thanks to their specific signatures, is
probably the most known approach to extract information on
what happens behind the meter. NILM was first described by
Hart in the 90’s [2] but applications became only possible with
the booming of high frequency metering and the increase of
computing resources as the process potentially requires heavy
computational resources.

Hidden Markov Models (HMM) [3] and Artificial Neural
Networks (ANN) [4] are the two dominant approaches used
in the NILM literature and thus form the state-of-the-art [5].
However they are both supervised approaches which present
certain drawbacks: (i) they are computationally expensive to
train, (ii) a representative training (labeled) dataset should
be available, and (iii) they cannot cope with new appliances
(unseen during the training). Hence they perform well on
overall electricity consumption signals that consist of the sum
of appliance consumption signals observed during the training
phase and that have a data granularity high enough to detect
transient signatures. These are fairly strong restrictions for
real-world implementation [5].

A few examples of unsupervised NILM approaches using
event detection can be found in the literature [6], [7]. However
they can only disaggregate relatively simple appliances with
on/off states or multi-states with strong dependency on the
labeling process. Another unsupervised approach consists in
generating an over-complete dictionary of boxcar functions
using a sparse decomposition algorithm to approximate the
overall consumption [8]. Thereafter the boxcar functions are
then labeled using a classifier which is trained on single
appliances consumption patterns.

In contrast with the existing methods, we propose here
an unsupervised NILM approach that takes advantage of
(i) a sparse decomposition algorithm based on Orthogonal
Matching Pursuit (OMP) principles, as presented in [8], (ii)
a Gaussian Mixture Model (GMM) to reduce statistical re-
dundancy of boxcar functions in the dictionary, and (iii) a
community detection approach to obtain appliance signatures
from association of boxcar functions. The performance is first
benchmarked against existing methods (FHMM, ANN) on the
UK-DALE dataset [9]. The aim of the benchmarking is to
compare the performance of our algorithm against state-of-
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the-art methodologies. However, as it is not fair to compare
supervised and unsupervised approaches, on such grounds
only, we do not expect to outperform then, but at least to
reach similar performance in an unsupervised environment. We
subsequently evaluate how the performance of our approach is
affecting by the granularity i the data collected. This is done
by changing the resolution from six seconds to one minute.
Having access to data at the minute resolution, or coarser,
is more in line with real-world implementation that can be
envisaged today.

The remainder of this paper is organized as following.
After this introduction, Section II gives the overall sketch of
the methodology as well as its individual components. Then,
Section III concentrates on its application on the UK-DALE
dataset, with both a benchmarking exercise (against state-of-
the-art supervised approaches) at 6 seconds, and an analysis
of the performance obtained when degrading the temporal
resolution in the data at hand. Eventually, we gather a set
of conclusions and perspectives for future work in Section V.

II. METHODOLOGY

The energy disaggregation problem can be mathematically
formulated as

xt =

N∑
n=1

ytn + εt, ∀t (1)

where ytn is the individual consumption of appliance n consid-
ered in the model and εt are the residuals which correspond
to the error and the consumption of appliances not considered
in the model [10]. Our approach to unsupervised NILM is
illustrated in Figure 1, where the various blocks involve coarse
decomposition approximation, dimension reduction, commu-
nity detection and labelling. These are all covered individually
and successively in the following.

A. Power Signal Sparse Approximation

Power signal sparse approximation uses a large set functions
ϕ stored into a dictionary Φ = {ϕ1, . . . , ϕk, . . . , ϕK} to
approximate the aggregated power consumption (top rectangle
in Figure 1). The observation of load behavior and the over-
representation of type I (i.e. ON/OFF) and type II (i.e. mul-
tistate) appliances dictate the choice of translation-invariant
boxcar functions to fill the dictionary [8]. For each index k,
the boxcar function is characterized by two parameters l and
w, such that

ϕtk =
1√
w

Πt
l−w/2,l+w/2, (2)

where l is the translation of the boxcar function, w the width
and Πt

a,b = H(t − a) − H(t − b), where H is a Heaviside
step function. The general shape of a boxcar function and the
different parameters involved in the design are presented in
Figure 2.

In a power signal sparse approximation framework, (1) is
reformulated as

xt =

K∑
k=1

αkϕ
t
k + εt, ∀t (3)
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Fig. 1. Algorithm overview.

where αk denotes the activation coefficient of the boxcar
function ϕk. A compact vectorial form of the equation is,
x = α Φ + ε where x is the load vector of all time indices,
α is the vector of coefficients αk and ε a vector of residuals.

The overcomplete dictionary Φ, with all the possible boxcar
functions, is generated ahead of the approximation [11]–[13].
Hence only a subset of J boxcar functions with J � K is
used during the approximation. Subsequently, α is a sparse
matrix as most of the coefficients are equal to zero. A support
vector Λ regroups the non-zero entries in α and restricts the
dictionary Φ to the subset ΦΛ. The aim of our implementation
is to adjust sparsity by setting a fixed or an adaptive threshold
corresponding to the minimum variation of power to consider
as a change of state, in order to eliminate transient states or
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Fig. 2. Representation of the general shape of a boxcar function

internal states fluctuation of appliances.
Direct approaches to sparse approximation, like combinato-

rial optimization, are complex and require important comput-
ing resources to perform the approximation. A greedy algo-
rithm using an iterative process is implemented instead [14].
Matching pursuit, the most used greedy algorithm, finds
locally the optimal solution that is also close enough to a
global optimal solution at each iteration. Orthogonal Matching
Pursuit (OMP) outperforms matching pursuit by updating
all activated coefficients simultaneously in generating the
orthogonal projection of the selected boxcar functions at every
iteration [15]. However OMP requires more computational
resources due to extra calculations.

At iteration j = 0, the residuals are set to r0 = x, the
coefficients are set to α0 = 0 and the support vector Λ0 is
empty. At each iteration j, a single element kj that maximizes

kj = argmax
k

||rj−1ϕk||2, (4)

and corresponds to the element of the dictionary with the
largest width w that fits under rj−1. The last selected function
kj is then added to the support vector

Λj = Λj−1 ∪ kj . (5)

The coefficients αj are computed as least square estimates,
i.e,

αj = argmin
α
||x−αΛj

ΦΛj
||2 = Φ†Λj

x, (6)

where Φ†Λj
is the Moore-Penrose pseudo-inverse of ΦΛj

[16].
The approximated signal x̂j is then updated, x̂j = x̂j−1 +
αkjϕkj where αkj is the activation coefficient of ϕkj . Finally,
the residuals are updated as rj = x − x̂j . The output is the
support vector ΛJ restricting the overcomplete dictionary to
ΦΛJ

.

B. Dimension Reduction

After sparse signal approximation, the load signature of an
appliance is formed by a combination of boxcar functions
which are alike. Hence these boxcar functions appear close
to each others at every activation event. They have a strong
cross-time dependence. But the OMP selects almost all boxcar
functions only once and the community detection relies on
the assumption of cross-time dependency of boxcar functions
to form the multi-state signatures. To create redundancy and
cross-time dependencies between boxcar functions generated

by the same appliance, a clustering is implemented on the
J selected boxcar functions. The input of the clustering is
the parameters (α,w) that describe the shape (power am-
plitude, operation time) of boxcar functions. The shape of
clusters in the 2D space (α,w) is not known a priori. A
Gaussian mixture model fits 2D Gaussian distributions to
form the clusters which means that they can have round or
ellipsoidal shape in the 2D space depending on whether their
covariance matrix structure [17]. Selected boxcar functions in
ΛJ have coordinates ζj = (αj , wj) and all the points form
ζ = {ζ1, . . . , ζJ}. A mixture of G clusters is then defined as

p(ζ) =

G∑
g=1

φg N (ζ | µg,Σg), (7)

where µg is the mean, Σg is the covariance matrix and φg
is the mixture coefficient of the gth cluster. The probability
density function p(ζ) integrates to one with φg ≥ 0 and
N (ζ|µg,Σg) ≥ 0. The mixture coefficients φg are constrained
by

G∑
g=1

φg = 1 and 0 ≤ φg ≤ 1. (8)

Boxcar functions in the same cluster are considered as the
same boxcar function in the community detection. G, the
number of clusters, is determined empirically with backwards
and forward fine-tuning as the performance of the community
detection depends on G.

C. Community Detection

The GMM generates cross-temporal dependencies between
boxcar functions that are parts of the same signature. Graph
theory is a field of mathematics that analyzes relationships
(connections) between objects in a network (graph). A graph
Γ(V,E) is a mathematical representation of the pairwise rela-
tions between objects, where interactions are expressed with
a set of vertices (i.e. boxcar functions) V and a set of edges
(cross-temporal dependency) E = {e(u, v) : u, v ∈ V } [18].
The relations e(u, v) and e(v, u) can be considered different
(edges are oriented in a direction) or equivalent (edges are
undirected or bidirectional). In this work we consider that
e(u, v) = e(v, u).

Community detection consists in forming strongly intercon-
nected subsets from the graph [19]. In the context of this work,
a community is a set of boxcar functions with strong cross-
temporal dependencies as they appear repeatedly adjacent.

A weight ωu,v sampled from a Gaussian distribution is
assigned to each edge e(u, v)

ωu,v = exp

(−(tu − tv)2

2σ2

)
, (9)

σ denotes the scaling parameter and tu and tv are respectively
the position of the center of boxcar functions u and v.
It measures the strength of the cross-temporal dependency
between u and v.

Concretely, the community detection algorithm forms dis-
joints groups {c1, . . . , ci, . . . , cI} that regroup boxcar func-
tions with strong cross-temporal dependencies. The core of
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the community detection process relies on the definition of the
objective function that evaluates the aggregation into commu-
nities. The objective function defines the notion of community
as groups of vertices with better internal connections than
external [20]. The most used objective function for community
detection is the modularity Q of the partition

Q =

I∑
i=1

[
Σciin
2m
− Σcitot

2

4m2

]
, (10)

where m is the sum of all the weights in the network, Σciin is
the sum of the weights from the internal edges of community
ci and Σcitot the sum of the weights from the edges incident to a
vertex in community ci [21]. Q takes values in [−1, 1] where a
high value reveals strong interconnections between the vertices
in the same community and less dense connections between
the vertices of the neighboring communities.

Computing the modularity of the communities is an NP-
complete optimization problem and thus computationally ex-
pensive. The Louvain method is a heuristic approach: in
practice it is iterative and a greedy-type algorithm (inspired by
hierarchical ascending clustering) which can solve the problem
in O(n log n) [19], [20]. As in the hierarchical ascending
clustering, the first phase starts with each vertex u as its own
community and then for each vertex the algorithm calculates
the gain of modularity of moving u from its community to the
community ci of a neighbor vertex v

∆Qu,ci =

∑
v∈ci ωu,v

2m
− Σcitot ωu

2m2
, (11)

where, ωu is the sum of the weights of the edges incident to
the vertex u,

∑
v∈ci ωu,v is the sum of the weights of the edges

from the vertex u to vertices in community ci (only one v at
this stage). u gets assigned to the community that maximized
∆Qu,ci only if it is positive. This stage is operated until the
communities get stable, when no individual move can improve
the modularity [19]. The second step builds a network of the
communities obtained after convergence, using the sum of the
weights of the edges between vertices of the communities.
Then the first step is reapplied on the network and so on until
no improvement on the modularity is observed.

D. Labelling Using Clustering

The disaggregation is unsupervised which means that the
appliance consumptions have been individualized but not
identified. Hence a post-processing labelling of the signatures
in each community is necessary to identify them. Appliances
have generally several programs (i.e. cycles of a fridge or pro-
grams of a washing machine) which means that an appliance
exhibits many signatures. To identify the different signatures
after disaggregation, we propose to generate sets of signatures
from the single appliance consumption signals that summa-
rize the different load behaviors corresponding to different
programs. To do so, a clustering process is implemented on
the activation events extracted from a training set of single
appliance consumption signals completely disjoints in time
from the test set. Activation event are aligned to all start at
t = 2 and approximated using OMP. As the activation events

are time series of different length, the standard Euclidean
distance cannot be used to cluster them. it is used to measure
distance between time series that may be shifted in time
but it is also convenient to measure distance between time
series of different length [22]. Clustering using a Dynamic
time Warping (DTW) based distance was used successfully to
cluster load profiles to align patterns that may be shifted in
time [23]. DTW is a one-to-many points distance metric where
each point of one time series is compared to many of the
second time series [24]. It then form a matrix and the shortest
path from the bottom left corner to the top right corner of the
matrix is called warping path [25]. The sum of the Euclidean
distances on the path is the DTW distance. The main benefits
of DTW compared to Euclidean is to compensate for temporal
translations in the patterns and it can also calculate distance
between activation events of different durations (length of the
time series). The pairwise DTW distance matrix of all the
activation events is computed for each appliance a hierarchical
ascending clustering using the Ward criterion is computed on
the DTW distance matrix. The dendrogram of the hierarchical
ascending clustering is used to generate the best partition into
3 ≤ K ≤ 6 clusters which centroids form the representative
signatures.

The identification of activation events from the communities
is then done by calculating the DTW distances with the set
of representative signatures of each appliances. The label of
the closest representative signature is then assigned to the
activation event. The labelling is a mapping process between
labels and the shape of the signature thus it needs prior
information about how the signature of the appliances of
interest looks like. In other words, it cannot be done in a
totally unsupervised manner.

III. CASE STUDY

The algorithm performance is evaluated on the UK-Dale
dataset [9] and benchmarked against the results obtained
by [26] and [4] using respectively Factorial Hidden Markov
Model (FHMM) and a Recurrent Neural Network (RNN) with
a Long Short Term Memory (LSTM).

A first implementation with the same dataset at 6 seconds
resolution is done to compare our results to the ones in [4],
[26]. The consumption from one household over three months
with five single consumption appliances: dishwasher, washing
machine, kettle, microwave and fridge. This implementation
is detailed in Section III-A.

A second implementation is performed on the same data at
one minute resolution to evaluate how the performances of the
algorithm evolves with the change of resolution.

A. Implementation

The overcomplete dictionary stores all the possible boxcar
functions based on the combination of translation l and width
w. Hence the size of the dictionary increases exponentially
with the length of the signal to approximate. In practice, it is
then not realistic to implement the OMP algorithm on large
portions of data (i.e. days), thus our consumption signal has to
be split into smaller batches of data. We fixed the maximum
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length of a batch to 1000 time steps, our dictionary consists of
all the boxcar functions with length between one to 1000 and
represents 7.4 GB. The way batches are formed influences the
output of OMP as it approximates the signals independently
over each batch. In our implementation, batches have variable
durations as the cut of the consumption time series is made
in periods of lower consumption (less than 70 Watts) which
are materialized with vertical gray lines in Figure 5. For the
entire evaluation periods, the operation time of batches ranges
from 30 seconds to 1 hour 20 minutes, with an average of
40 minutes which is in accordance with the duration of the
activation events of the selected appliances. Before performing
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Fig. 3. Histogram of the clusters generated by the GMM.

any operation, a low pass filter sets power consumptions lower
than 5 Watts to zero for all the datasets used for test, training
or performance evaluation. The OMP has been applied using
an error tolerance of 0.055 defined empirically. It eliminates
high frequency variations and keeps only the large variations
materializing the change of states of appliances as shown in
red dashed line in Figure 5. For example the averaged RMSE
generated by the approximation in Figure 5 is of 77 Watts,
which is larger than the averaged RMSE over the entire period
(53 Watts). The output of OMP, presented for the sample in the
bottom of Figure 5, is the support vector Λ which consists of
6660 unique boxcar functions selected from the over-complete
dictionary. The elements in Λ can have approximately the
same amplitude α and width w but a different translation l
(Figure 2). The boxcar functions are alike and we can suppose
that they are produced by the same process. Hence we assume
in this work that two boxcar functions which have similar
shapes are likely to be generated by the same appliance.

A first filtering of the type-I appliances (e.g. fridge, mi-
crowave, kettle) is operated. The single boxcar functions which
distance to a pattern from the labelling library (Figure 4) is
under a defined threshold are labeled with the corresponding
type-I appliances. The reason to execute the filtering at this
stage is that type I appliances in this test have a high frequency
of activation, especially the fridge, which means that they
are often activated at the same time that larger appliances
(e.g. washing machine or dishwasher). They remain unrelated
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events but the community detection would gather them as a
single activation event from the same appliance, forming a
corrupted signature.

The GMM generates clusters of boxcar functions which
have approximately the same shape (α,w) and assumed to
be generated by the same appliance (see Figure 1). The GMM
uses only the number of clusters to be formed as parameter,
which is set to 43 in the present work. Figure 3 shows the
histogram of the cluster sizes.

The community detection requires two parameters, the
modularity threshold set to 1 and the scaling parameter for the
weights set to 0.95. The training set is sampled from the same
household and corresponds to a year of data. The clustering
process is run on all the activation events collected from
the individual appliances consumption signals after sparse
signal approximation. The hierarchical ascending clustering
generates the following number of representative signatures;
dishwasher: 5, washing machine: 6, microwave: 4, kettle: 2,
fridge: 6. Figure 4 gives an overview of the representative
signatures per appliance.

B. Performance Evaluation

The performance of our disaggregation algorithm is evalu-
ated using both classification performance metrics and the es-
timation accuracy commonly used in the NILM literature [4],
[27]. With classification algorithms, the performance of the
prediction is evaluated in comparison to the ground truth. The
recall or True Positive Rate (TPR), the precision, also known
as Positive Predictive Value (PPV), and the accuracy (ACC)
are defined as

TPR =
TP

TP + FN
, PPV =

TP
TP + FP

, ACC =
TP+TN
P + N
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and are calculated from the output of the confusion matrix,
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where True Positive/Negative (TP/TN) represents the num-
ber of times a disaggregated signal from a single appliance
being ON/OFF is correctly assigned, False Positive (FP) repre-
sents the number of times a disaggregated signal from a single
appliance is considered ON (consumption significantly larger
than zero) but was actually OFF and False Negative (FN)
is a disaggregated signal from a single appliance considered
as OFF (consumption close to zero) but was ON. From the
Precision and the Recall, the F1-score

F1 = 2
PPV TPR

PPV + TPR
(12)

can be calculated. In the NILM literature, the estimation
accuracy (EC)

ECn = 1−
∑T
t=1 |ytn − ŷtn|
2
∑T
t=1 y

t
n

, (13)

where t is the time index and n is the appliance index, is
used to estimate how accurately the consumption from each
appliance n has been estimated [4], [6], [27]–[29]. The overall
estimation accuracy (EC) is given by

EC = 1−
∑T
t=1

∑N
n=1 |ytn − ŷtn|

2
∑T
t=1

∑N
n=1 y

t
n

. (14)

and tells how much of the overall signal is kept after summing
up the disaggregated signals. All the introduced performance
evaluation measures are taking values in [0, 1] and are read the
same way: the higher the value, the higher the performance.

IV. RESULTS AND DISCUSSIONS

The results of the implementation at six seconds are first
evaluated against the benchmarks. Afterward, the evolution of
the performance with the degradation of the data resolution is
reported.

A. Benchmarking Against State-of-the-art Methodologies at
High Resolution

The results of our methodology based on OMP are bench-
marked against the results of FHMM as implemented in [26]
and the RNN with LSTM, simply noted LSTM afterward, as
implemented in [4] (Table I). In the first column ‘Across Ap-
pliances’, the only performance metric that is calculated across
appliances is the estimation accuracy, the other performance
metrics are simply the average across all appliances.

Looking first at the performance evaluation across appli-
ances, the OMP approach has a slightly better EC that the
FHMM and the LSTM. Regarding the classification perfor-
mance, our approach outperforms the benchmarks for all of
them besides the TPR. For the TPR our algorithm (0.55)
performs slightly better than the FHMM (0.53) but is far from
the LSTM (0.85). LSTM detects most of the activation events
(high TPR) but have also a high false positive rate (lower PPV)
compared to OMP.

The reading of the detailed performances of each appliances
unveils large variability. It appears that the dishwasher is a
difficult appliance to detect accurately, as all methods perform
poorly. The OMP algorithm detects it less often than the
FHMM and LSTM (lower TPR) but makes less false positives,
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TABLE I
DISAGGREGATION PERFORMANCE OF THE OMP-GMM-COMMUNITY DETECTION APPROACH COMPARED TO FHMM [26] AND RNN-LONG SHORT

TERM MEMORY (LSTM) [4].

Metrics Accross Appliances Dishwasher Washing machine Kettle Microwave Fridge

Methods OMP FHMM LSTM OMP FHMM LSTM OMP FHMM LSTM OMP FHMM LSTM OMP FHMM LSTM OMP FHMM LSTM

EC 0.93 0.91 0.92 0.26 0.91 0.86 0.71 0.84 0.88 0.56 0.92 0.99 0.67 0.84 0.98 0.81 0.94 0.97
F1-score 0.54 0.18 0.38 0.26 0.05 0.08 0.61 0.08 0.03 0.47 0.19 0.93 0.54 0.01 0.13 0.83 0.55 0.74
PPV 0.62 0.12 0.36 0.24 0.03 0.04 0.73 0.04 0.01 0.33 0.14 0.96 0.79 0.01 0.07 0.99 0.40 0.72
TPR 0.55 0.53 0.85 0.29 0.49 0.87 0.53 0.64 0.73 0.82 0.29 0.91 0.41 0.34 0.99 0.71 0.86 0.77
ACC 0.96 0.70 0.66 0.96 0.33 0.30 0.96 0.79 0.23 0.99 0.99 1.00 0.99 0.91 0.98 0.88 0.50 0.81

considering it is ON when it is actually OFF (higher PPV),
which leads to a higher F1-score for the OMP. For the washing
machine, the EC of the OMP is higher than for the dishwasher.
Against the benchmarks, its TPR is lower but its PPV is higher
which generates again a better F1-score for the OMP (0.61).
For the kettle, the LSTM is almost perfect as it displays high
performance for all metrics. Nevertheless the OMP performs
better than the FHMM for the activation events detection
(higher F1-score, PPV, TPR). For the microwave, the detection
of activation events (TPR) of the OMP is higher than the
FHMM but lower than the LSTM which detects almost all
activation events (TPR=0.99). However in terms of F1-score
the performance of the FHMM is again better. For the fridge
the performance of all the methodology is high, the FHMM
has the highest TPR (0.86). The OMP and the LSTM are
performing similarly (respectively 0.71 and 0.77). The OMP
has again a lower rate of false positive which generates a
higher F1-score for OMP compare to the benchmarks.

The performances for the individual appliances differ
largely depending on the complexity of the load behavior. As
the OMP performs an approximation of the signal into a square
signal (Figure 5), appliances which show complex transient
load behaviors, will yield poorer results. For the same reason
appliances displaying similar average power consumptions and
operation times are hard to separate. Comparing supervised
against unsupervised learning algorithms is not a fair compar-
ison and it is not expected that our algorithm outperform the
benchmarks but just reaches similar performance.

B. Evolution of The Performance With the Degradation of the
Resolution

The state-of-the-art approaches require high resolution to
identify signatures based on transient states which means that
their performance drops really quickly with the degradation
of the resolution. As the OMP does not rely on the transient
states, it is expected to perform correctly at lower resolution.
An implementation of the OMP algorithm was done on the
same dataset at one minute resolution to compare the perfor-
mance and evaluate how it evolves with a degradation of the
resolution. one minute resolution, divide already the number
of points by ten and brings us closer to what is implemented
at large scale.

The performance metrics across appliances displays that the
performance at six seconds is better for all performance criteria
besides the PPV (Table II). Looking closely at the values,
it appears that they are close for the EC and which means
that the performance do not reduce much with the change of

resolution. The PPV at one minute is higher than at 6 seconds
and the TPR is higher at 6 seconds that at 1 minute which
results into similar F1-score performances.

The individual appliances performance metrics, are showing
that the change of in performances between six seconds and
one minute are again depending on the appliance and its load
behavior. For the dishwasher, The performance at one minute
resolution is actually better than at six seconds resolution. The
EC is doubled which means that the recovery of the signal is
better. For the detection the F1-scores are equivalent, but there
are no false positive at one minute (PPV=1), but the TPR is
lower than at six seconds (0.15 against 0.29). For the washing
machine, the implementation at six seconds outperforms the
implementation at one minute for all the metrics. For the
kettle, the implementation at one minute recover better the
signal that the one at six seconds (larger EC). Regarding
the classification metrics, the F1-score is also better at one
minute as it shows a high PPV. However, the TPR is better
at six seconds. For the microwave, the performance of the
implementation at six seconds is better for all metrics but the
TPR where the implementation at one minute is slightly better.
For the fridge, the performances are both high.

Between six seconds and one minute, the number of data
points is divided by ten, yet the performance of the OMP is
not much deteriorated by this change of resolution besides the
performance for the washing machine and the microwave. nev-
ertheless, state-of-the-art methodologies relying on signatures
in transient states would have their performances seriously
altered by this change of resolution.

V. CONCLUSIONS AND FUTURE WORKS

The method presented in this paper is an application ori-
ented and unsupervised approach to NILM. Indeed the state-
of-the-art NILM algorithms suffer from a lack of general-
ization to any household and ability to perform at lower
resolutions. As the OMP approach is unsupervised, no training
using individual appliances consumption signals is required
before running the algorithm. Hence it generates no training
bias. It comes at the cost of a lower performance in terms of
estimated accuracy compare to state-of-the-art approaches. It
is a generic tool which can be used for different purposes at
different resolution: high resolution (appr. 1 minute) to provide
feedback to customers on their consumption (as presented in
this work), medium (5-15 minutes) in a DSM framework to
separate the consumption of appliances that could provide
some services by moving or decreasing its consumption and
provide feedback to aggregators or DSOs. However the benefit
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TABLE II
COMPARISON OF THE PERFORMANCES OF THE OMP APPROACH WITH DATA AT SIX SECONDS AND ONE MINUTE RESOLUTION

Metrics Accross Appliances Dishwasher Washing machine Kettle Microwave Fridge

Resolution 6s 1min 6s 1min 6s 1min 6s 1min 6s 1min 6s 1min

EC 0.93 0.91 0.26 0.57 0.71 0.58 0.56 0.73 0.67 0.35 0.81 0.81
F1-score 0.54 0.53 0.26 0.25 0.61 0.54 0.47 0.60 0.54 0.44 0.83 0.82
PPV 0.62 0.78 0.24 1.00 0.73 0.59 0.33 0.89 0.79 0.47 0.99 0.98
TPR 0.55 0.45 0.29 0.15 0.53 0.51 0.82 0.45 0.41 0.42 0.71 0.71
ACC 0.96 0.96 0.96 0.98 0.96 0.95 0.99 0.99 1.00 0.99 0.88 0.87

of disaggregating down to the smallest appliances has a
limited impact compare to the resources needed to execute
it. Hence it is pragmatic to focus only on the detection and/or
disaggregation of specific appliances with large consumptions
(e.g. PV, EV, heat pump if controllable) that provides flexibility
to the grid.

Such an approach is then better suited for real-world imple-
mentation as it can be used at various resolution. Subsequently
it is also less computationally expensive as it handles less data.
It will also reduce ethical concerns raised by NILM algorithm
that could spy on high resolution energy consumption unveil-
ing human behaviors.

As an extension of this work could be to apply the method-
ology to the use case of heat pumps, EVs or electric heater for
example. These appliances have potential to be provide service
to the grid and represent an increasing part of the load.
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