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Lecture 01: Species and Enumeration August 23,2016

Administrative

There is a website with an indefinite schedule and some information.

For the first few weeks I will focus on combinatorics, but an algebraic
approach to it. This is the topic of species. There won't be any prerequisites to
this portion for a few weeks. Later, we will discuss hyperplane arrangements,
which involves discrete geometry.

1 Species and Enumeration

Definition 1.1. A species is a functor set™ to Set, where set* is the category
of finite sets and bijections and Set is the category of all sets and all maps. A
morphism of species is a natural transformation of functors.

Let P be a species. For each finite set I, we have a set P[I]. For each bijection
0: 1 — J, we have amap o*: P[I] — P[J]. Give I < )i 5 K, we have

*

P(I] z P[J]
(TU)X« %
P[K]

Also, id] = idp(1]. Note that each ¢* is invertible, and (0*)~ 1 = (o= 1)*.

It also follows that each set P[m] (see Remark 1.2) is acted upon by the
symmetric group Sm. The action is 0-x = 0*(x), for 0 € S;n, x € Plm]. In
particular, 0*(x) € P[m].

Remark 1.2 (Convention). [m] :={1,2,3,..., m}. We write P[m] = P[{1,2,...,m}].

This action of the symmetric group allows us to reinterpret a species as a
collection {P[m]};n >0 of Sm-sets. This uniquely determines P.

A morphism of species f: P — Q consists of maps f1: P[I] — QII], one for
each finite set I, such that for any bijection o: I — J,

0" f1(x) = fy(0* (x))

for all x € P[I]. That is, the diagram below commutes.

So in the end, a species is not actually that much. It’s just a collection of
Sm-sets. We want to use it to do some enumeration, and some algebra as well,
just as we use finite groups to encode combinatorial information.


http://www.math.cornell.edu/~maguiar/7410/
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Definition 1.3. The species L of linear orders is defined on a set [ as the set of
all linear orders on I.
L[I] = {linear orders on I}.

Example 1.4. For example,

Lla,b,c] ={abc, bac, acb,bcacab, cba}.

If we have the bijection o = (a b C) , then
y z x

o — abc bac acb bca cab cba
yzx zyx yxz ’

Definition 1.5. A partition X of a set I is a collection of disjoint nonempty
subsets of I whose union is I. The notation X - I means X is a partition of I.

Definition 1.6. The species IT of set partitions is the species determined by
TT(I] = {partitions X of I}
Definition 1.7. A composition F of a set [ is a totally ordered partition of I.
Definition 1.8. The sepcies X of set compositions is the species determined by
Z[1] = {compositions F of I}.

Example 1.9. If I = {a, b, c, d}, with a partition X = {{a, c}, {b},{d}}, the following
two composition aren’t the same but have the same underlying partition X.

({a, ¢}, {b},{d}) # ({b}{a,c},{d})

There are morphisms
LoX =TI,

where the first morphism is viewing a linear order as a composition into single-
tons and the second just forgets the order.
In fact, we have
L z

E——TI

—

where E is the exponential species, defined by E[I] = {*;}. That is, E[I] always
has a single element, denoted ;.

Remark 1.10. In combinatorics, one is interested in the cardinality of a set.
When we talk about species, we get a generating function instead.
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Definition 1.11. Given a species P, it’s generating function is

P = 3 #Pm € QI

m!
n>0

This says that species are a categorification of power series where we replace
numbers by sets.

Example 1.12.
XTI n n ‘I
L(X):Z#LMH: n'F:Zx =7
n>0 n>0 n>0
x™ x™ X
EW):E:#HM;T—Z:;T:e
n>0 n>0

IT(x) is the generating function for the number of set partitions and X(x) is the
generating function for the number of ordered set partitions.

Definition 1.13. Given species P and Q, their Cauchy Product P - Q is the
species defined by

(P-Qm= J] PISIxQIT]

I=SuT
where the disjoint union is taken over all ordered decompositions of I (order of
S and T matters) such that S and T partition I.
On bijections (which are arrows in set™), the Cauchy product acts as follows.
Giveno: 1 — ],

(P-Q)I ) P[S] x Q[T]
o J(cg)x(cﬂ*
(P-Q)JI 2 Plo(S)] x Plo(T)]

Example 1.14. E - E is the species of subsets.

(E-B)= JJ ESIxEM={s:SC1}
I[=SUT

Example 1.15. E'* is the k-fold Cauchy product. This is the species of functions
to [k].
(E®)[1] ={f: I — [k] | ffunction}

E9m= J] ESix...xESy
I=S U...USk

To see that these two are the same, notice that S; = f~' (i) for each i € [k].
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Proposition 1.16. The generating series for the Cauchy product is the product
of power series in Q[[x]].

(P-Q)(x) =P(x)Q(x)

Proof. First, notice that

#(P-Q)n] :#( I1 P xQ[j]) = ) #PL#Q]

i+j=n i+j=n

Therefore,

P-Q6) = Y #P- QS

n>0

=> ) #P[i]#QU]%

n>0i+j=n

(Z #P[n]’jﬁ) (Z #Q[n]f:) —PMQK) O
n>0 ’ n>0 '

Example 1.17.

(E-E)(x) =E(E(X) =e** = ) 2“’%.
n>0 ’

This is a proof of the fact that a set with n elements has 2™ subsets, since E - E is
the species of subsets, so now we know that #(E - E)[n] =2™.

Example 1.18.
(E9)(x) = e

This proves that the number of functions [m] — [k] is k™.

Definition 1.19. Let B be the species of bijections from a set I to itself, and D
the species of derrangements of I. (A derrangement is a bijection without fixed
points).

Claim1.20. B=E-D

Proof. We have

where the map is 0 — (S = Fix(0), ol1), where T =T\ S. O
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Now using the fact that the Cauchy product corresponds to the product of
generating functions, we get that B(x) = E(x)D(x), and therefore

1 D) = D) = 2

1—x T—x

So we have derived the generating function for derrangements.

(=1)
T

#D[m] =m! )
i=0

Remark 1.21. We can see that
#L[m] = m! = #B[m].

This begs the question: is L isomorphic to B? The answer is no; they are not
isomorphic because there is no canonical way to identify bijections on I with
orders on I unless the set I comes with a order already. Here is a proof of this
fact.

Proof. Let Sy, act on L[I] by relabelling. This action has only one orbit.
Let S act on B[I] by relabelling. The number of orbits is the same as the
number of cycle types of the bijections, which is the number of partitions of #I.
So L and B are not the same species. O

1.1 Substitution

Definition 1.22. Given species P and Q, with Q[@] = @, their substitution
P o Q is defined by

PoQm=]] (P[X] <[] Q[S])

XFI SeX

This looks strange, but it has a nice consequence for generating functions.

Proposition 1.23. When Q(0) =0,
(PoQ)(x) =P(Q(x)).
Proof. Exercise. O

The point of the next definition is to make species we have amenable to
substitutions.
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Definition 1.24. Given a species P, let P, be the species defined by

PIl I#0O
Pl = 7
0o 1=0
Example 1.25.
Eo F_+ =11

This gives us the generating function for TT.
M(x) = e !

Example 1.26.
L e] E+ = Z

This gives us the generating function for .

1

H =0T

Definition 1.27. Let A be the species of rooted trees,
All] = {rooted trees with vertex set I}.

Recall that a rooted tree is a connected acyclic graph with a chosen vertex.
Let A be the species of planar rooted trees (that is, rooted trees with a linear
order on the set of children of each node).

Exercise 1.28. Prove that

(@ A=X-(EoA)and A =X (Lo A)

(b) A(x) =xe*™) and /K(x) = 1_§(X)

(©) A(x) = 1=~ and A[m] = m!Cyn_1

where X is the species defined by

X[l — {{*} # =1

@  otherwise

(Note that X(x) = x) and Cy, is the n-th Catalan number

1 2n
Cn_n—H(n)'

10
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2 Monoids in Species

Remark 2.1 (Idea). A species M is a monoid if it carries an operation which is
associative and unital. If M were a set, this would be the definition of a usual
monoid.

Definition 2.2. A monoid in the category of species is a species M with an
associative, unital operation.

By an operation, we mean a morphism of species p: M- M — M. This
is a collection of maps (M - M)[I] — M[]] for each finite set I. So we have a
collection of maps

w [ MISI x MIT] — M.
I=SUT
The map p has components pst: M[S] x M[T] — MII]. For x € M[S] and
y € M[T], we write ust(x,y) =x-y.

Now, associativity simply means that whenever we have a set I with a
partition into three pieces | = RUSU T and x € M[R],y € M[S], z € M[T], then
x-(y-z)=(x-y) z

We can also describe what it means to be unital. There is 1 € M[®)] such that
1-x=x=x-1forevery x € M[I] for every I.

We need one more condition. For any bijection 0: I — J, with I =SUT,
x € M[S] and y € M[T], we must have o*(x - y) = o5 (x)ol}(y).

Definition 2.3. A monoid is commutative if x-y = y - x for all x € MJ[S],
yeMT], I=SUT.

Definition 2.4. A morphism of monoids f: M — N is a morphism of species if
(@) frlxcoty) = fs(x) - fr(y)
(b) fp(1) =1.

Example 2.5. Recall that we had the species

—

1)

m4—
d4—mM™

—

These are all monoids, and all of these morphisms are morphisms of monoids.
L, Z are noncommutative and E, IT are commutative.
How is L a monoid? Well, we define

ust: LISIxL[T] — L[]
(6y,62) = 4Ll
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by concatenating the two orders. For example, if I ={a, b, c,d, e}, and {; = adc
and ¢, = be, then {1{, = adcbe.
We make E into a monoid in the only possibly way
wsr: EISIXE[T — EII
(xs,*1) =  *sT
We make ¥ into a monoid by

usT: ZISIxZ[T — E[I]
(F,G) — F-G

where F is a composition of S and G is a composition of T, and F - G is the
concatenation of compositions. If F = (Sy,...,S¢) and G = (Ty,...,T,), then
F-G=(51,...,ST1,..., Th).

We make IT into a monoid by

HsT: TSI x TI[T]  —  TI[I]
X,Y) — XUY

If X is a partition of S and Y a partition of T, then we get a partition of I by
taking the union of the two partitions.
The arrows in the diagram (1) are now morphisms of monoids.

2.1 Free Monoids
Definition 2.6. A species is positive if Q[?] = @.

Definition 2.7. Given a positive species Q, let 7(Q) := Lo Q. (This is the
substitution operation we defined last time.) This will be the free monoid on

Q.
What does this look like? We have

T@mzﬂomxnwﬂ

XHI SeX

=%M

We make 7 (Q) into a monoid by

TQ)SIxT(Q)IT — T(Q)I
((FrX)I(G/y)) = (F Gr (X/U))

where we concatenate the two compositions and the two tuples x and y. By
(x,y) wemean (x1,...,Xk,Y1,---,Yn)-

Fe X[I,F=(S1,...,S¢),x=(x1,...,%XKk),Xi € Q[Sl]}

12
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The unit is ((), ()), where the first () is the empty composition of @ and the
second () is the empty sequence of Q-structures.
There is a morphism of species Q — 7 (Q) given by

QU — T(Q)I

x = ((1),x)
where (I) is the composition of I with one block.

Proposition 2.8. Given a monoid M and a morphism of species f: Q — M, there
is a unique morphism of monoids f: 7 (Q) — M such that

Q"M

Note that each fs, (x;) € M[Si], and associativity allows us to omit the paren-
theses. O

Exercise 2.9. Let Q be as before, let S(Q) :==E o Q.

S(Q)I = {(x,x)

X e H[I],X = (XS)SEXIXS S Q[S]}

Show that S(Q) is the free commutative monoid on Q.

Exercise 2.10. What is the generating function for the free monoid 7 (Q) on Q?
What about S(Q).

Example 2.11. e =T (E;)=LoE,
o IT=S(Ey).

e L =T (X), where X is the species concentrated on singletons,

X[ = {x} ifIis a singleton
@  otherwise
[ ] E:S(X) :EOX'
Exercise 2.12. If X is the species concentrated on singletons, then Po X = P =
X o P for any species P.

This means that L is the free monoid on X, and E is the free commutative
monoid on X. Compare with the free monoid on one element, which is IN. This
is also the free commutative monoid on one generator, but this is not the case in
the category of species.

13
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2.2 Comonoids in Species

Next time, we will investigate monoids and comonoids in monoidal categories
and see what the underlying thread is. We are trying right now to do things by
hand, but this may be confusing at the moment. That’s okay. It will all make
sense soon.

Definition 2.13. A comonoid is a species C together with maps

Ast: ClI] — CIS] x CI[T]
z = (zs,z/s)

for each I and foreach I =S UT.

Terminology: z|s is the restriction of z to S and z/ s is the contraction of S
from z.

The maps Agt must be coassociative: whenever [ =RUSUT, and z € C[I],

(zlrus)ir = zlr € CIR]
(zlrus)/r = (z/R]ls € CIS]
(z/r)/s =z/rus € CIT]
The structure should also be counital: for any z € C[I],
Zi =z=12/¢.

Finally, the naturality of the map Ast is captures in the following. For any
o: I — J a bijection, and any z € C[I], then

0" (2)lg(s) = o5(2ls)

0%(2)/ 5(s) = 0lT(2/5)

Definition 2.14. A comonoid is cocommutative (in the category of species) if
zls = z/1 wheneverz € C[IJand I =S UT.

Definition 2.15. A morphism of comonoids is a morphism of species f: C — D
such that

(@) fi(z)ls = fs(zls)
(b) f1(z)/s = fr(z/s).

Remark 2.16 (Motivation). Associativity of monoid operations can be expressed
in terms of the commutativity of the following diagram.

MIR] x M[S] x M[T] — ST MIR] x M[S U T]
luR,s xid lHR,SuT
MIRLIS] x MIT] Hrus, T MII]

14
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Coassociativity can be expressed by turning all of the arrows in the above
diagram around.

C[I] Ar,suT C[R] x CI[SUT]
lARuS T lidXAS,T
CIRUS] x C[T] —2%" 99 [R] % CIS] x C[T]

Similarly, we an write commutativity as

MIS]

,S

x M[T]
M[I]

and cocommuativity as

C[S] x C[T] switch C[T] x CIS]
o ) e
ClI

Example 2.17. L, %, E, IT are all cocommutative comonoids, with operations

Lm 2575 1[S] x L[T]
e - (Us, )

with {|s, £]t induced by £ on S.

B[ 25T, E[S] x E[T]

¥1 = (*s,%7)
smAST 5(s) x 2T
F —  (Fls,Flt)

IfF = (S1,...,5«), then Fls = (§1NS,..., S NS) with empty intersections
removed.

Remark 2.18. We have the dual notions of monoids and comonoids in species.
Monoids in the category of species are an elaboration on the idea of monoids in
sets. But what are comonoids in the category of sets?

This is a set C with a map A: C — C x C. This must be coassociative and
counital. Counital means that 711 A(x) = x and myA(x) = x, where 717 and 75
are the projections C x C — C. This means that in Set, each object has a unique
comonoid structure that is given by the diagonal, so they’re not that interesting
to study.

15
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Let B be a species that is both a monoid and a comonoid. This means that it
has multiplication and comultiplication maps (where I =S U T).

usy: BISIx BT — BII
(xy) = xey

Ast: B — BIS] x B[]
z = (zs,z/s)

Definition 2.19. We say that B is a bimonoid if the following holds for any
[=SUT=S"UT’ Let A, B, C, D denote the resulting intersections A = SN S’,
B=SNT,C=TNS, D=TNT".

Then we should have that for any x € B[S], y € B[T],

(x-yllsr =xla - ylc (x-y)/sr =x/A-Y/c

Example 2.20. Recall that we have

|

m4—
d4—m™

—

These are all bimonoids, and moreover they are cocommutative. Given {; € L[S],
¢, € L[T], we can check that

(61 - €2)ls) = b1la - L2lc

3 Monoidal Categories

We're going to set aside species for now and talk about monoidal categories.
This framework will make it easier to talk about species and give a general
definition of monoids, comonoids, and bimonoids.

Remark 3.1 (Idea). A monoidal category is a category with an operation that is
associative and unital up to coherent isomorphism.

Definition 3.2. A monoical category consists of the following data:

16
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A category C,
A functor e: C x C — C, called the tensor product or monoidal product,
an object I of C called the unit object.
natural isomorphisms «, A, p
xaB,c:(AeB)eC— Ae(BeC(C)

AMiA-—DTeA

PA:A— Ael
that satisfy the axioms

(AeB)e(CeD)

XAeB,C,D XA,B,CeD
(AeB)eC)eD Ae(Be(CeD))
XAeBec®idp idA'“B,c,D[
(Ae(BeC))eD TABCD Ae((BeC)eD)
(Ael)eB xALs Ae(leB)
pA:idB\ /01;\"7\13
AeB

What if we have 5 objects? There are then 24 ways to parenthesize them,
so we’d then need to draw a diagram that is an associahedron and check that
it commutes. But it turns out that the two axioms above suffice. This is the
statement of the Coherence Theorem.

Theorem 3.3 (Coherence Theorem). All diagrams built from only «, A, p and id
in a “free” monoidal category commute.

In practice, this means for us that we can pretend that the monoidal product
is associative and has a unit I. We will mostly ignore appearances of «, A, and p.

Example 3.4.

(1) C = Set. The monoidal structure is the Cartesian product of sets, X x Y.

We pick a particular one-element set {} to be the monoidal unit.
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(2) C = Vecy, the category of vector spaces over a field k. Then the monoidal
structure is the tensor product over k, V ®x W. The unit object is k itself.
Here, a: (U® V)@ W — U® (V ® W) is the canonical isomorphism.

(3) Let G be a group and k a field. Fix a normalized 3-cocycle ¢: G3 — kX,
This means that ¢ satisfies the equations

&(92,93,94)b(91,9293,94)P(g1,92,93) = $(9192,93,94)P(91, 92, 9394)

d)(]/g/h) = d)(g/]/h) = d)(g/h/]) =1

forall g1,92,93,94,9, h € G.

Let C be the category of G-graded vector spaces. The objects of C are col-
lections V = (Vg)4eg where each Vg is a k-vector space. The morphisms
f: V. — W are collections f = (fg)geg where each fg: Vg — W, is a linear
transformation.

The monoidal product of two objects V, W of C is given in components by

(V'W)g = @ (Vx ®kWy)~
9=xy

The monoidal unit I is
I— k ifg=1
0 otherwise
The associativity constraint oy, v w: (UeV)eW — Ue (Ve W) has com-

ponents

(ecu,v,w)g

(UeV)eW), (Ue (VeW)),

@g:xgz (ux®vy ®Wz) @g:xyz (UX®Vy ®WZ)

J J

Uy @ Vy oW, ———————— U, @ Vy W,

w w

URVRW d(x,y,z2uRvew

Definition 3.5. Let C be a monoidal category with monoidal unit I and monoidal
structure o. A triple (M, p, 1) is a called a monoid in C if

(a) Mis an objectin C,

18
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(b) p: M @ M — M is a morphism in C
(c) 1: I =» M is a morphism in C.

such that the following diagrams commute.

MoMoMmMOM M ldM.Ll\/loI
e " \ /
o]

MeM —— M

Definition 3.6. A morphism of monoids f: M — N is a morphism in C such
that
MeM T NeN M—" N

Jne f | '\ /

M —— N
Example 3.7.
(1) In Set, with monoidal structure X, the monoids are ordinary monoids.
(2) In Vecy, monoids are k-algebras.

(3) When C is the category of G-graded vector spaces, as above, and the
cocycle ¢ is trivial (meaning ¢(g, h,k) = 1), then the monoids are G-
graded k-algebras. If G = Z;, then these are called superalgebras.

Definition 3.8. A triple (C, A, ¢) is a comonoid in C if
(a) Cisan object of C
(b) A: C — C e Cisamorphism of C
(c) e: C — lis a morphism of C

these must satisfy the dual axioms to Definition 3.5.

C—2 .CeC TeC &4 cqc et g1
R
idceC A e

CeC ¢S CoCecC C

Likewise, a morphism of comonoids is defined dually to Definition 3.6.

Example 3.9.
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(1) In (Set, x), every object has a unique comonoid structure. What is this
structure? Well, we have A: C — C x Cand ¢: C — {x}. Write A(x) =
(A1(x),Az(x)) for functions A1,A;: C — C. The counit axiom says that

x = (e xid)(A(x)) = (%, Az2(x)),

so it must be that A, (x) = x, and likewise A7 (x) = x. So A must be the

diagonal map.

(2) In (Vecy, ®), comonoids are by definition k-coalgebras.

(3) In G-graded vector spaces, comonoids are G-graded coalgebras when ¢ is

a trivial cocycle.

3.1 Convolution Monoids

Definition 3.10. Let C be a monoidal category and M a monoid in C, C a
comonoid in C. Then given f, g € Homc¢(C, M), define the convolution product

f* g € Homc(C, M) by

fxG:CCeC % MoeM M.
Further, define u € Hom¢(C, M) by

wCSHI1H M.

Proposition 3.11. Hom¢(C, M) is an ordinary monoid under convolution.

Proof. First, we want to check that the convolution product * is associative. Take
f,g,h € Homc(C, M); we want to know if f = (g * h) is equal to (f * g) * h. This

follows from the commutativity of the following diagram.

C—2 ,CeC

lA leid

CeC 144, CeCecC

\f.g.}h
fe(gxh)

lidop

20
Similarly, we can check that u is a unit for this monoid.

(fxg)*xh

MeMeM % MeM

I

MeM — % + M
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Definition 3.12. Given monoids M, N and comonoids C, D, and a morphism of
monoids ¢: M — N, let

¢#: Homc(C,M) — Homc¢(C,N)
f — ¢of

Similarly, given a morphism of comonoids {: C — D, let

P*: Homc(D,M) — Homc¢(C,M)
f — fo1

Proposition 3.13. ¢y and P# are morphisms of monoids.

Proof. Observe that the following diagram commutes. This shows that ¢4(f *

g) = du(f) * dx(g)

4 Braided Monoidal Categories

To talk about bimonoids in general, we need to work in the slightly more specific
setting of Braided monoidal categories. This is also the setting in which we can
talk about commutative monoids and cocommutative comonoids. The braiding
is an extra structure on monoidal categories that lets us switch the two tensor
factors. Essentially, a braided monoidal category is a monoidal category that is
commutative up to the coherence axiom.

Definition 4.1. A braided monoidal category consists of
(a) A monoidal category (C, e, 1)
(b) A natural isomorphism (3, called the braiding

BAIBZAOBHBOA.
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These data must satisfy the following axioms.

BABeC

AeBeC(C . BeCeA

BA,B& KB"BA,C
BeAeC

B AeB,C

AeBeC

CeAeB
idA'm /ﬁACﬂdB

AeCeB

Definition 4.2. A symmetric monoidal category is a braided monoidal cate-
gory such that Bg A o A, B =idaes.

Proposition 4.3. In a braided monoidal category, the following diagrams com-
mute.

AOI———————%IOA OAA———————>AO
AeBeC
Ba, B"ld/ wﬁs/c
BeAeC AeCeB
lideA,c lﬁA,C'idB
BeCeA CeAeB
B&ch ABAB
CeBeA

Proof. The first two aren’t hard; we will only show the hexagon to illustrate how
to apply naturality of 3.

AeBeC

BAB'ld/ wﬁ&c

BeAeC AeCeB

S I3AB-C .
idB'ﬁA,Cl /’ I lBA,C’idB

,
K BA,ceB //

BeCeA .~ CeAeB

BB,Cm ABAB

CoBoA

22
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Adding in the two arrows 3 A Bec and 3 o, ceB, We see that the two triangles are
the axioms that are satisfied by the braiding and the larger square is naturality
of 3. O

We may interpret 3 5 p as a decorated braid, that looks like

A B B A

s S e 0

B A A B

Theorem 4.4 (Coherence). A diagram constructed out of ,id, «, A, p and the
monoidal product e commutes if and only if each side of the diagram defines
the same element of the braid group.

Example 4.5. Let’s draw the hexagon from Proposition 4.3. We have that

A B C A B C
> X
B A A C B
X 0 X
B C A C A B
X X
C B A B A

because these have the same braids in the braid group Bs.

/ /
J
otk
g g

Moreover, these have the same underlying permutation in S3, namely (13).
Hence, this guarantees commutativity of the given diagram in a symmetric
monoidal category as well.

Example 4.6.

(1) (Set, x) is a symmetric monoidal category under fxy: X x Y — Y x X
givenby (x,y) = (y,x).
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(2) (Vecy, ®) is symmetric under By w: VAW 2 WRV,vwW—w®v.

(3) Let G be an abelian group. Fix y: G x G — k* that is bimultiplicative,
that is

(Note that these laws imply y(x, 1) = 1 = y(1,x)). Let C be the category
of G-graded vector spaces. View it as a monoidal category under e with
trivial associativity constraint «.

Define By w: VeW — W eV as follows. It's components are

(VeW)g --m-mmmmmmee » (We Vg
H |
Dxy=g Vx @ Wy Drryr=g Wxr @ Vyr
J ]
Vi ®Wy ************** > Wy ® Vy
w w

VW ——— (X, yw®v
Given x,y € G such that xy = g, G abelian means that yx = g as well. So
we may choose x' =y,y’ =x.

A specific instance of this is G = Zy,, with q € k* such that k™ = 1. Then
define y: Zn X Zn — k* by (i,j) — qY.

4.1 Monoids and Comonoids in Braided Categories
Let (C, o, 1, 3) be a braided monoidal category.

Proposition 4.7. Let A and B be monoids in C. Then A e B is again a monoid
under

ide eid .
1r5Ll)AvoBoBi/ﬂ>AoB

HAep: (AeBje(AeA)
taep: =101 25, A eB
Example 4.8. In (Set, x), if A and B are monoids, then so is A x B via (a, b) -
(a’,b') = (aa’,bb’).
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Proposition 4.9. If C, D are comonoids, then so is C e D, with

AceAp

Acep: CoD 220, C o CoD oD 4P,

(CeD)e(CeD)

Ecoep: CoD S22 Tel=1.
Definition 4.10. A monoid (A, y, ) is commutative if

AeA —> AeA
commutes. Dually, a comonoid (C, A, €) is cocommutative if

Ce C—>Co

R

Proposition 4.11. Let B be both a monoid and a comonoid in C, a braided
monoidal category. Then the following are equivalent.

commutes.

(i) A: B — BeB andeeB — I are morphisms of monoids.
(i) n: BeB — B and 1: I — B are morphisms of comonoids.

(iii) The following diagrams commute:

° B BeB

BeB
J{AoA H‘HT
idep peid
BeBeBeB ————— > BeBeBeB

BeB —£255 Tel lel —- > BeB I 5B
[ ] Rt
B—&5 1 I— 3B I

Definition 4.12. If any of the equivalent conditions in Proposition 4.11 is satis-
fied, then we call B a bimonoid.

Definition 4.13. We say that f: B — B’ is a morphism of bimonoids if it is both
a morphism of monoids and comonoids. We say that f: H — H' is a morphism
of Hopf monoids if it is a morphism of bimonoids such that

H—S 4 H

O

H — H
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4.2 Hopf Monoids

Let (B, 1, 1, A, €) be a bimonoid in the braided monoidal category (C, e, I, 3).
Consider the set Hom¢(B, B); as noted before, this is a monoid in Set under the
convolution product, with unit u: B = I = B. Note that the unit is not the
identity map idg: B — B, since Lo ¢ # idg. But we can ask for it to be invertible.

Definition 4.14. We say that H is a Hopf monoid if id is convolution-invertible
in Homc(H, H). When it is, the convolution inverse is denoted by S and called
the antipode of H.

HeH % He H

1 Jn
|2 dl
HeH — 95, HeH

Remark 4.15. Let’s organize everything we’ve defined so far. Given a braided
monoidal category (C, o,1, 3), we have

objects

T

monoids comonoids

\ /

bimonoids

Hopf monoids

Going down in the diagram adds more structure.

Example 4.16. What does this diagram look like in (Set, x)?

objects = sets

T

monoids = ordinary monoids comonoids = sets

\ /

bimonoids = ordinary monoids

Hopf monoids = groups
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So in the category of sets, comonoids are just sets because each set has a unique
comonoid structure given by the diagonal. We also see that every monoid is a
bimonoid, and it turns out that Hopf monoids are groups.

Why is a Hopf monoid in Set a group? Suppose that H is a Hopf monoid in
Set, with antipode S. We have that S *id = u = id * S. What does this mean?
Well, we have

S xid: B-2,BxB >4, gyp_—* 4B
W W W W
X (x,x) ¢ (S(x),x) —— S(x)-x
But we also have
I B—<-1—5B
w W w

X —— % — 1

SoS*xid =u &= S(x)-x = 1for all x € B, and similarly, we see that
x-S(x) =1 forall x € B. Hence, H is a group.

Recall that if G and G’ are groups and f: G — G’ preserves products and
units, then f(x 1) = f(x)~ .

Proposition 4.17. If H and H’ are Hopf monoids and ¢: H — H' is a morphism
of bimonoids, then ¢ preserves antipodes (that is, ¢ is a morphism of Hopf
monoids).

Proof. ¢ is a morphism of monoids, so ¢*: Hom(H’,H’) — Hom(H, H’) is a
morphism of monoids.

¢ is a morphism of comonoids, so ¢4: Hom(H,H) — Hom(H,H’) is a
morphism of monoids.

We want to show that ¢ o Syy = Sy o ¢, or equivalently, dx(Syy) = &*(Spr).
Since ¢4 and ¢* are morphisms of monoids then they preserve inverses. So
$#(idy ) is the convolution inverse of ¢4(Sy), and ¢*(id}y) is the convolution
inverse of ¢#(Sy;/). But these are both just &.

$ oSy = ¢#(SH) = inverse of dy(idy)
Sy o d = ¢*(Syy/) = inverse of ¢¥(idy/)

But then ¢*(idyy/) = & = du(idp). O

Proposition 4.18. The antipode of a Hopf monoid reverses products and co-
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products. That is, the following diagrams commute.

SeS S

HeH —>*5, HeH H—3> 4 H
[e [
B HeH HeH A 2)
[ e
H—S S H HeH 35, HeH

Example 4.19. In (Set, x), H is a group, and this proposition easily verified.

(xy) — (x

(x~y)*] =y X

Proposition 4.20. Antipode preserves units and counits. That is, the following
diagrams commute.

H— S5 L H H— 5% L H
I I
Proposition 4.21. If H is commutative or cocommutative, then S2 =id.

Proof. The statements are formally dual, so if one holds, then the other one
does as well if we apply it in the opposite category. We will prove that if H
is commutative. This tells us that S is a morphism of monoids (we know that
pwo p =, see (2)), so there is a map

S#: Hom¢(H,H) — Homc¢(H,H)
f — Sof

Hence, S(S) is the convolution-inverse of Sg(id) = S, but S is the convolution
inverse of id and convolution inversion is involutive. Hence, S o S = id. O

5 Hopf Monoids in Species

5.1 Linearization

Definition 5.1. Given a set X and a field k, let kX denote the vector space
consisting of formal linear combinations of elements of X with coefficients in k.
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We call this the linearization of X. So X is a basis for kX.

Notice that every vector space V is the linearization of a set — pick a basis X
of V, and then V = kX.

Proposition 5.2.
(@) k(XUY)=kXa@kY
(b) k(X XY) = kX®KY.

We can elaborate on Proposition 5.2(b) to say that linearization is a monoidal
functor Set — Vecy.

Example 5.3. If a group G acts on a set X, then G acts linearly on kX. So Xis a
G-set implies that kX is a kG-module.

Note that not every kG-module is the linearization of a G-set, because there
need not be any basis stable under G. In particular, if G = Sy, G acts linearly on
k by 0 - A = sgn(o)A, and nothing is stable under the action of G.

Remark 5.4. The dual (kX)* has basis {x* | x € X}, where
‘() 1 ify=x
X e
Y 0 ifnot

A map f: A — B of sets induces a linear map f: kA — kB and then another map

7 (KB)* — (KA)*

[ S — Z a*

acA
f(a)=b

because

0 ifnot

{1 if b =f(a)

5.2 Vector Species

We’ve so far been working with set species: functors set* — Set. Let’s linearize
that.

Definition 5.5. A vector species is a functor P: set* — Vec:
o one vector space P[] for each finite set I

e one linear map o*: P[I] — P[J] for each bijection o: I — J.
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Definition 5.6. If A is a set species, then the linearization kA is a vector species,
defined by
(kA = k(A[])

Definition 5.7. We define the dual species by H*[I] = H[[]* andono: I — Ja
bijection, H[o]* = H[(o*)~ .

Remark 5.8. Not every vector species is the linearization of a set species. Given
a set species A, this is the same as a sequence of sets A[n], each with an action
of Sy

A vector species P is now a sequence of vector species P[n], each with the
structure of a Sy, -representation.

A (linearized) vector species P = kA is a sequence, as with set species, of
sets P[n] = kA[n], where each is the linearization of an S,,-set.

Definition 5.9. Given vector species P and Q, we can define their Cauchy
product (P e Q) by
(PeQ)Ml= & PISI®QIT]

I=suT
Definition 5.10. The unit species 1 is defined by

k fI=09
11 =
0 ifnot.

Definition 5.11. Let Sp, denote the category of vector species over k.
Proposition 5.12. (Sp, , ¢, 1) is a monoidal category.

Proof sketch. We will show that (A e B) @ C and A e (B e C) are canonically iso-
morphic. Both have components A[R] ® B[S] ® C[T], where I = RUSUT.
Verifying the other axioms of a monoidal category are left to the reader, should
she/he be sufficiently bored. O

Now that we know that Sp, is monoidal, we can speak of monoids and
comonoids in Sp, . What do these look like?
A monoid A consists of k-linear maps

us 1: AlS]® A[T] — All
A comonoid C consists of k-linear maps
As,t: ClI] — C[S] @ C[T].

Unlike in the category of set species, we no longer have the notions of restriction
and corestriction; a general element of C[S] ® C[T] is a linear combination of
simple tensors, and looks like ) ; z; ® z{. So there is more to work with in
vector species.
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Remark 5.13. However, if A is a monoid in the category of set-species, then kA
is a monoid in Sp, with multiplication.

usT: KA[S] ® kA[T] — kA[I]
X®yY =Xy

forx € A[S]andy € AIT].
Similarly, if A is a comonoid in the category of set-species, then kA is a
comonoid in Sp, with comultiplication

Ast: KAl — KA[T]
z  — zls®2z/s

forz € A[Il.

5.3 Braidings on Sp,

Fix q € k*. Given vector species P, Q in Sp,, define a morphism $4: Pe Q —
Q o P. It’s components are

Bq

(Pe Q)] (QeP)[I]
H

@D1—sut PISI @ Q[T] ----- > Pr_s 1 QIS'T®P[T’]

J J

P[S] ® Q[T] ————  — Q[T] ® P[S]

w W

X®y q'SITy @ x

Remark 5.14. This braiding 3 is a symmetry precisely when q = %1. In the
case g = 1, we write 3 = 31.

Let’s check some of the axioms of a braiding. Let’s verify that

BABeC

AeBe(C

m
B

Look at the components:

® C[T]
B[S]®

BeCeA

C

eAe

A[R] @ B[S] @ C[T] ® A[R]

B[S]
® CIT]

Al[R]

31



Lecture 05: Braidings on Sp; September 6, 2016

Letx € A[R],y € B[S], and z € C[T]. Then we can chase the diagram:

x®(yYy®z) — qRYTly @ z@x

! H

RISy @ x @z —— qIRISIGIRITY @ 2@ x

Now that we’ve defined a braiding on Sp,, it makes sense to talk about
bimonoids and Hopf monoids in Sp;,.

Proposition 5.15. If H is a finite-dimensionally valued bimonoid in Sp,. (each
space HI[I] is finite dimensional), then it’s dual H* is a bimonoid in Sp,..

Proof. Define H*[S] ® H*[T] — H*[I] as the dual of Ag 1: H[I] — H[S] ® H[T].
Define H*[I] — H*[I] ® H*[T] as the dual of us 1: H[S] ® H[T] — H[I]. O

Example 5.16. Recall that L is the set-theoretic species of linear orders on a set I.
We saw that L is a bimonoid in Sp,.. This implies that H = kL is a bimonoid in
Spy., and by the previous proposition, so is H* = (kL)*.

What does this look like?

H*[S]@ H*[T] — H*[I]

Gl — > oo
¢eL[1]
Ls=¢1,llT=¢C
This is called the shuffle product.
More concretely, let I ={a,b,c}. Let S ={a,b}and T = {c}. Then if {; = ab,
{» = ¢, we have that

(ab)* - ¢* = (abe)* + (acb)* + (acb)* + (cab)*
What is the coproduct?

H*[I] — H*[S]® H*[T]

r — > U@
21€L[S],L,€L[T]
0q-0,=¢

where ¢ € L[I]. This is dual to us 1: H[S] ® H[T] — H[I], where pus t({; ® £3) =
€1, is the concatenation of orders. Notice that we can simplify our description
of this coproduct, because

. lls ® €]t if S is initial segment under ¢
Z ‘e] ® EZ ==

0 eL IS el (T] otherwise.

00 =0
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Proposition 5.17. H = kL is a Hopf monoid. It’s antipode 5: H — H has
components
Si: H[I — H]
L — (=1,

where { is the reversal of the order { € L[I].

Proof. If I = @, then there’s nothing really to check.
Now we need to show that the proposed antipode is a convolution inverse
for idy.

HeH L HeH

a] I
H——1——H
To that end, pass to components. Around the top of the diagram, we get

Z As T Z Us,T

i Ss®id
H[HL) @ H[S}®H[T]M

I=SuT I=SUT

3)
Along the bottom of the diagram, we have just the zero map for all components
[#£0Q.
Hence, we want to show that (3) is zero for all I # @. We are asking if, for
all £ € L[I], do we have

Z us,1 o (S5s ®@idt) 0o Ag 7(£) =07
1=SUT

Or equivalently, does

> (1Sls -ty =02

1=SUT
We can pair up (S, T) with (S, T’) such that if #S is even, then #S' is odd,
and (S - €|t = {[s - {|1/ (a sign-reversing involution). O

Example 5.18. A small example to illustrate the last line of the previous proof.
If I ={a,b,c}, and { = abc, then

S T | (=1)"%s -ty
@ a,b,c +abc
a b,c —abc
b a,c —bac
c a,b —cab
a,b [¢ +bac
a,c b +bac
b,c a +cba
a,b,c @ —cba
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The sum down the right-most column is zero. We pair up sets with their
compliments and the matching terms cancel.

Example 5.19. A deformation of H = kL. The species is the same as before in
Example 5.16. The product is the same as in Example 5.16 as well, but now there
is a new coproduct:

HI —  HIS] @ HT]
¢ qosTOs @t

where
as,T(0) =#{(i,j) € Sx T |i>jint}.

We can check coassociativity for this.

HI — 2% HIR] @ HSUT]
J{ARuS,T J{id@AS,T
HIRU S @ HT] 25 R @ HIS] @ HIT)

0 qaR,SuT(e)f‘R Qs

J ]

qorus T (O qarsUrus) g @ f|s @ €7 ? qorsut (O gas st @ g @ €

To resolve whether or not the two resulting values are equal, we need to verify
that
ag,sut(8) + as T(llsur) = arus,1(0) + ag,s(Crus) (4)

The left hand side of (4) counts the pairs (i,j) such thati > j in { and
i€eRjeSorieRjeToriesS,jeT.

The right hand side of (4) counts pairs (i,j) such thati > jin{and i € R,
jeTorieS,jeT,orieR,jeSs.

These are the same! So coassociativity holds.

Remark 5.20. This number ag 1({) is also known as the Schubert statistic. It's
the dimension of the Schubert cell indexed by S in Gry (R™) where n = |T| and
k =1S|.

5.4 Exercises

Exercise 5.21.
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(a) Check the compatibility condition for the bimonoid H defined in Exam-
ple 5.19. That is, verify that the coproduct is a morphism of monoids and
the product is a morphism of bimonoids.

(b) His in fact a Hopf monoid in (Spy, e, B 4). Show that

11|

Si(0) = q(2) (1)

Exercise 5.22. Let P be the set species of partial orders. Claim that P is a
bimonoid in the category of set species. The product is

PIS] x P[T] — P[]
(p1,P2) — P1-P2

where p1 - p is the ordinal sum. That is, we consider everything in p, to be
larger than anything in py. The coproduct is

P[] — PIS] x P[T]
p — (pls,plr)-
(a) Check the axioms to verify that P is a bimonoid.

(b) Let H = kP be the linearization of P. What is the antipode S? What is an
explicit description?

Exercise 5.23. Note that kP[I] has for a basis the set P[I]. Let’s write xp for the
basis element corresponding to p € P[I]. Introduce a second basis {yp }pcp(1] by

Xp = Z Yq
qcp

for all p € P[I], where we say that q C p if we view a partial order on I as
a subset of I X I. The q’s are uniquely determined by the p’s via a recursive
system of equations.

Now consider the dual H*, where H*[I] = (kP[I])*.

(a) Show that for py € P[S], p2 € P[T],
y:’l 'U;z :y;ﬂlpz’

where p; U p, means the partial order on S U T determined by py and p»
with no relations between the two.

(b) Forp € PI],

Alyh) = Ypis @Ypy if S is a lower set of p,
P 0 otherwise.
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We say that S is a lower set of p if i € S and j < i under the order p, thenj € S.
We might also say that S is downward closed.

Exercise 5.24. Show that the inclusion L — P is a morphism of bimonoids. Then
show that this gives
(kP)* — (kL)*
Yp " eecim

where L(p) is the set of linear extensions of p,
Lp):={Lelll|lp<t

Example 5.25. Let P be the poset on the set {a, b, c} with relations a < b and
a < c. Then
L (P) ={abc, acb}

5.5 Connected Species

Definition 5.26. A set species P is connected if P[] = {x}. A vector species P is
connected if P[?] = k.

Let M be a monoid in (Spy, ®). Then associativity guarantees that there is a

well-defined map

MI[R] ® M[S] ® M[T] =255 Mm(1]

whenever I = RUS UT. More generally, if I = S; U S, U...U Sy, then thereis a
well-defined map.

MIS1] @ ... ® M[Sy] =212k, M)

Similarly, for a comonoid C, we have a well-defined map

As .5,
ClIl —/——=C[$1]®...® C[Sk].

Now assume that M and C are connected. The unit axiom says that

H1,0

M[I] ® M[?]

I ®
H[ =
MII

]

MI]

So we have that uy o = id = pg 1. More generally,

USy,....S = HTy,...Tw
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where (Ty, ..., T ) is the sequence obtained from (Sq, ..., Sx) by removing all
empty sets. Similarly,

As,,...5. =A1,, T

Recall that if f: C — M is a morphism of species, then f consists of a
collection of maps f1: C[I] — M[I], one for each I.

Definition 5.27. Let f € Homspk(C, M). Then f is locally nilpotent if (f%) =
0 for all k > |I|, where f** denotes the k-fold iterated convolution product with
itself.

Lemma 5.28. Let M be a monoid, C a comonoid. Assume that both are con-
nected. Let f € Homgp, (C, M) such that fg = 0. Then

(i) f is locally nilpotent, and
(i) uw—f is invertible in Homsp, (C, M), where u = te.

Proof. (i) The k-fold convolution product of f is

sk Ak feo...of pkt
" C——CeCeo---0C—— Me---eM—— M
-~ —_—
k k
with components
(f*); = Z us,,...s (fs; ®---®@fs, JAg,, . s, .

I=S U...USy

If k > |I|, then at least one S; is empty, which implies that f s; = 0, so
(FF)p =0.

(ii)) Consider
) € Homgy, (C,M).
k>0

This is well-defined because

1]

Zf*k _ Z(f*k)l'

k>0 I k=0

We can check that this is the inverse of u — f.
O

Proposition 5.29. Let H be a bimonoid in (Sp, e, ). If H is connected, then H
is a Hopf monoid.
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Proof. We have thatid =u— (u—id). Let f = u—id. Then fp = up —idg =0
because H is connected. Therefore, the following diagram commutes.

5.6 Antipode Formulas

Let H be a connected Hopf monoid in Sp, with antipode S: H — H. Then we
have the following facts:

(1) Sp =1idy, and H[?] = k, because H is connected. In general, we see that
H(Z] is a Hopf algebra and S is it’s antipode.

(2) Z us,7(ids ® S1)As =0
1=SUT

3) Z s, 1(Ss ®idt)As T =0
1=SUT

whenever [ # @.

Remark 5.30 (Preliminaries). Let V be a k-vector space. Then V = k® V
naturally in V, via the mapv— 1®vforv e V.
Naturality means that given a linear map f: V — W, the following com-
mutes.
V— k®V

lf lid@f

W —k®V

In the case of our connected Hopf monoid H, this natural isomorphism takes

the form
Ag 1
H[I] —/—— H[?] ® H[]

Ho,1

and naturality looks like

Ap1

H[I] —— H[Z] @ H[I]

Js [@or

H[I] +— H[?] @ H[I]

Ho,1
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for f: H[I] — H[I] is any linear map. In particular, if f = S;: H[I] — HI[I], then
this diagram above commutes. We can apply this to the antipode axioms:

Z us,1(ids ®S1)As T =0
1=SUT

Rewrite this as the partition of I into S = I, T = @ and a bunch of other terms:

Hp1lide ®SDAg 1+ D usT(ids ©S7)AsT =0

I=SuT
S T;éul
Now rearranging terms, we get
Si=— ) us7lids ©S7)As T
I=SUT
T#I

We have proved the following proposition

Proposition 5.31 (Milnor-Moore Formula). Let H be a connected Hopf monoid
in Sp,. with antipode S. Then the following recursive formulas hold

Si=— ) us7lids ©S7)As T

1=SUT
TAL

Si=— )  us7(Ss®idr)As
1=SUT
A
Remark 5.32. Milnor-Moore are famous for many things in the study of Hopf
algebras, and their names are more commonly attached to a theorem on the
structure of Hopf algebras than the above formula.

The Milnor-Moore formula is often useful, but we would like to have a more
explicit one that isn’t recursive. Recall that in Lemma 5.28 we determined that
for our connected Hopf monoid H in Sp,,

S=id ' =(u—(u—id) " =) (u—id)*. (5)
k>0

Note that this is well-defined because by Lemma 5.28, u —id is locally nilpotent
with respect to convolution powers.
Now let f = u—id. We know two things about components of f.

(1) fp =up—idy = \pep —idg. Since H is connected, we see that 1y = idp.
Hence, f = 0.
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(2) f1 = ur —id; = 11e1 —idg for all I # @. But since the composition
HII =5 1(1) <% H[T] is zero unless I = @, we get that f; = —idj.

We will use these facts to compute the I-component of the convolution
powers of f.

(f%); = Z usy,...5. (fs; ®...®fs, )JAs, s, . (6)
I=S1U...USk

and the species 1 is concentrated at @; that is, 1[I] = 0 for I # @. Therefore, we
can simplify (6) by

(fF)y = Z (—1)*us,,..5.A8,,...5, -
I=S,U...US
SiADY

This in turn can be used to simplify (5), as

St=D> (D% > usi.s B8

k>0 I=S U...USy
Si£DVi
= > (NP upAg
Fex[I]

Here, F € Z[I] is a composition of I. We have proved

Proposition 5.33 (Takeuchi’s Formula). If H is a connected Hopf monoid in Sp,,

then
S1= Z (=) ) Ar.
Fex[I]

Let’s apply Proposition 5.33 and Proposition 5.31 to some examples.

Example 5.34. Let G be the set species of simple graphs. This means that
G[I] = {g | g is a simple graph with vertex set I}
For example, the simple graphs on the vertex set I ={a, b, c} are

b b b b
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Notice that
#1
4G = 2(2),

This is a set sepecies, and a bimonoid in the category of set species. The
product is the union of graphs, and the coproduct is

Gl — GIS] x G[T]
g — (dgls,glt)

where g|s is the induces subgraph on vertex set S C I. Hence, G is a bimonoid
in the category of set species, which implies kG is a bimonoid in Sp, .
It is connected, so it is a Hopf monoid. So what is 5? Let’s compute. Consider

VAN

Then, using Takeuchi’s Formula, we see that

Fol (=D | upAr (g)
abc —1 /b\
albe +1 N
bcla +1 /b\
blac +1 ’

a - c
aclb +1
clab +1 "\
ablc +1 b\
alblc —1 ’
cbla| -1 BN

Therefore, we get

s( )= ()= ) )

We can use this example to figure out what the antipode looks like for G[I]
in general, although it would take a lot of work to prove this right now.
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Proposition 5.35. For any g € G[I],

Sig) =) (=1)M™a(g/h)h,

h flat of g
where
e c(g) is the number of connected components of g;
e a(g) is the number of acyclic orientations of g;

e g/h is the graph obtained by contracting each edge inh C g (and remov-
ing multiple edges);

e his a flat of g according to Definition 5.36.

For example,

b b=c

AN NN O

a ¢ a

Definition 5.36. A graph his a flat of a graph g if both g, h € G[I] and for each
connected component C of h, hlc = glc.

Equivalently, if two vertices are connected by a path in h and an edge in g,
then that edge belongs to h.

Example 5.37. Let’s calculate the antipode of kX, where X is the species of
compositions. THis is easier than the computation for G, because Z = Lo E_
whereas G = E o Geonn, Where Geonn is the species of simple connected graphs.

Suppose that F = (S5,...,Sx) € Z[I]. This implies that F =1g, ----- Ls,,
where | 1= (I) is the unique composition of I as a single block.

So we see that
S1(F) =Ss, (Ls, ) +Ss,(Ls,). ()

Hence, we only need to compute S1(_L). We can do this using Takeuchi. First,
recall that
As,1(F) =Fls ® FlT,

where Fls = (S1NS,...,Sx NS), removing any empty intersections.
Now we apply Takeuchi for L.

Si(Lr)= > (=N"PupAp(Ly)
Fex(I]
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Then feeding this back into (7), we get

S (F) = Z (_])Z(Fﬂ . (_])B(Fk)Fk ..... Fi.

FiEZ[Si]

i=1,...k
We can simplify thisif weset G =Fy - - - - - F1, then
S1(F) = (-6

G: F<G

where F is the reversal of F (that is, the sum is over all refinements G of the
reversal F of F).

Example 5.38. Recall that TT = S(E*), that is, IT is the free monoid on E .. The
generators are the one-block partitions L= {I} € TT[I].
Let’s compute the antipode of kIT, where IT is the species of partitions. Let

X € TI]. Then
100 =Y (=1 (V) 1y
Y: XY

where (Y/ x) ! is the integer

(Y/X) L= ] ms!

BeX
where myp is the number of blocks of Y refining the block B of X.

Alternatively, we can find the antipode using the surjective morphism X 3,
TT given by taking a composition F to the underlying partition of F.

Exercise 5.39. Let f: TT — G be the unique morphism of monoids such that
f(Ly) =kp,
where k7 is the complete graph on 1.
(a) Show that f is a morphism of Hopf monoids.

(b) Deduce the antipode formula for IT from that for G.

5.7 Convolution Monoids

In (Set, x), let X be a monoid. Consider p: X x X — X, given by (x,y) — xy. Is
@ a morphism of monoids?

nixy)nx’,y") =xyx'y’
m((xy)(x,y") = nixx’,yy’) =xx'yy’

This is a morphism of monoids if and only if X is commutative.
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Lemma 5.40. Let (M, t, 1) be a monoid in the braided monoidal category (C, e, 3).
Then u is a morphism of monoids if and only if M is commutative.

Proof. (=). Exercise.
(). Let’s write down what it means for p to be a morphism of monoids.
It must preserve respect the multiplication structure on M e M,

(MeM)e (MeM) 5 MeM

lid.fg.id
MeMeMeM 2 (8)
lu-u
MeM —% M

and it must also respect the identity.

MeM — 1+ M

L.LT LT ©)

Tel I

To show that the first diagram (8) commutes, we can fill it in

(MeM)e(MeM) Hee MeM
L . ideeid
ide 3 eid
M.M.M.MM)MOMOM "
MeM H M

where n(2) = pu(peid) = u(id e ). The triangle commutes by commutativity
of M, and the two squares commute by associativity. Hence Eq. (8) commutes.
To show that Eq. (9) commutes, we fill it in.

MeM E M
Lot ITeM L
Tel I

The left triangle commutes by functoriality of e, and the top triangle commutes
by a unit law, and the square commutes by naturality. Hence Eq. (9) commutes.
O
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Remark 5.41 (Recall). If C is a comonoid in C and M is a monoid in C, then
Homc(C, M) is a monoid in (Set, x ) under convolution.

Now let B be a bimonoid. Look at
Hompon(c) (B, M) € Homc(B, M),

where Mon(C) is the category of monoids in C and monoid morphisms. We
can ask when this is a submonoid of the convolution monoid Hom¢(B, M).
The answer is not always.

Exercise 5.42. If f,g: B — M are morphisms of monoids, then f @ g is a mor-
phism of monoids as well.

Proposition 5.43. If M is commutative, then Homyon () (B, M) is a submonoid
of Hom¢ (B, M)

Proof. Take f,g: B — M a morphism of monoids. Then fxg = po (feg)oA.
We know that

— A: B — B e B is a morphism of monoids by a bimonoid axiom

— f, g are morphisms of monoids, so f @ g is a morphism of monoids as well
by Exercise 5.42

— M commutative, so i: M @ M — M is a morphism of monoids by Lemma 5.40.

Therefore, f * g is a morphism of monoids.
We also need to know that the unit u = t o ¢ of Hom¢(B, M) is a morphism
of monoids. But we know that

— ¢&: B = I'is a morphism of bimonoids by a bimonoid axiom
— is always a morphism of monoids.
Therefore, 1 is a morphism of monoids. O

Definition 5.44. If M is a monoid in Set, let M* denote the group of invertible
elements in M.

Proposition 5.45. If H is a Hopf monoid with antipode S, M a monoid, then
Hompon(c)(H, M) € Home(H, M)*

In fact, the inverse of a morphism of monoids ¢: H — M is¢ o S.
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Proof.
¢#: Homc(H,H) — Homc¢(H,M)
f +— ¢of
This is a morphism of ordinary monoids, so we see that ¢4(S) is the con-

volution inverse of ¢4(id). Hence, ¢ o S is the convolution inverse of ¢ in
Homponc(H, M). O

Corollary 5.46. If H is a Hopf monoid and M is a commutative monoid, then
Homygon () (H, M) is a subgroup of Homc¢(H, M)*.

Proof. We need to show that ¢ o S is again a morphism of monoids when ¢ is.
We know that ¢ is a morphism of monoids, and so preserves products. But S is
an antimorphism of monoids, and therefore reverses products. So ¢ o S is an
antimorphism as well. But M is commutative, so ¢ o S preserves products and
is therefore a morphism of monoids. O

6 Characters

Definition 6.1. Let H be a Hopf monoid in Sp, . A character on H is a morphism
of monoids ¢: H — kE.

This amounts to a collection of k-linear maps ¢1: H[I] — kE[I] = k, such
that

dp(1) =1,
d1(x-y) = dps(x)dT(y)

for all x € H[S] and y € HI[T] such that I = S UT. The multiplication above is
multiplication in k. Also

dy(0*(x)) = b1(x)
forall o: I — J and all x € HI[I].

Definition 6.2. Let X(H) be the set of characters on H.

By Corollary 5.46, X(H) is a group under convolution. Explicitly, the convo-
lution of two characters is given by

(GxP)r= ) (ds@Pr)oAsT

I=SuT

We omit the p: kKE[S] ® kKE[T] — KE[I] because kE[]] = k for all ] and k ® k is
canonically isomorphic to k. So the codomain is k ® k = k.

46



Lecture 08: Characters September 15, 2016

The unit u is then
tp: HQl -k ifI=0
up =
0 ifl1#£0Q

The convolution inverse of ¢pis ! = ¢ oS, as in Proposition 5.45. So
(6 1 =d10S

Example 6.3. Whatis X(kE)? Let’s take ¢ € X(kE). Because ¢ is multiplicative,
it suffices to consider only singleton sets. Let X = {*x} We have that kKE[{*x}] =
k{*x}, so write dx(*x) = A € k, independent of X.

Then for any set I,

1) = 1 (H *{i}> =ML

iel
Define X(kE) — (k,+) by & — A. If ¢ corresponds to A € k and
corresponds to i € k, then

(b * Wi(xx) = dx(xx)Va(xg) + dop(xa)bx(xx) =A- 141 1

Proposition 6.4. X (kIT) {Z an—ek x]] a0:1}.

m>0

The right-hand side of the above is a group under multiplication.

Proof. Define the map

X(KT) = { m>0anm, € kl[xI] ] ap = 1}
¢ X ms00niaT m;
where Am = (])[m] (J—[m])'
As we discussed long ago in our discussion of free commutative monoids,
TTis free on the generators 1. This tells us that the map above is a bijection.

Now we have to check that the convolution product on X(kIT) corresponds to
multiplication of power series.

(@ * V) Lim) = D (bs @ d7)As T( L)

[m]=SuUT

= > ds(Ls)r(Ly)

[m]=SuT

=) (T)mum)wju[ i)

m=i+j

5 (e

m=i+j
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Therefore, if

x™M x™m

m>0 : m>0
Then

W)= > | Y (T)aibj)’;:

m>0 \ m=i+j

i1j>0

m n
(Zamx )(anx) )
m! n!
m>0 n>0

Example 6.5 (An Application). Let

with ap = 1. Let
( ) 1 x™m
b(x) = (x) = g bm B

m>0

We want an explicit expression for by, in terms of the a,,. We could do it by
hand, but that’s gross. If we did it anyway, we’d see that

bo =1

= —a1

TN o
3

e S

:—a?—a1a2—a3

W)

Fortunately, there’s a better way.
Let ¢ € X(KIT) correspond to a(x). Then ¢ '=¢doS corresponds to b(x).

Hence,
bm = (0 ) (Limy) = S my (St (Lmg))

Recall that for X € TI[I],
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Sry(Lm)= > (1) Mevy (10)
YeTl[n]
by = agdpm(Y) = H ¢p(Llp) = H asB (11)
BeY BeY

Therefore, combining (10) and (11), we see that

bn= ) D] ass

Yell[n] BeYy
For example,

n=1: YZJ.[]]I} b =—ag
Y =1pp=12

n=2 vy :”[22} } = bz:—az+2a%
Y =123
Y =123

n=3 Y =213 } = b3 =-a3+3 2laja; —3la}
Y =313
Y =123

Remark 6.6. X (kL) = X(kE)
X(kX) = X(KIT)
The reason is that characters factor, so the following diagrams commute

KL —2 5 kE LN ¥

b o
kE KIT

6.1 Lagrange Inversion
Recall the inverse function theorem from analysis.

Theorem 6.7 (Inverse Function Theorem). Suppose that f: R — R is differen-
tiable around a, f(a) = b, f'(a) # 0. Then f~! exists in a neighborhood of b
and

—1 _ —1y7 _
f1(b) =aq, (1) (b) = T

There is an analogous statement for formal power series, which we will
recover using Hopf monoids in the category of species.
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6.2 Formal Diffeomorphisms

Definition 6.8. The set of formal diffeomorphisms of the line is

Diff' = Z anx™ €k[lxll | ag =0,a7 =1
n>0
Definition 6.9 (Notation). If we are interested in the coefficient of x™ in the
power series f(x) = 3, - anx™, then we use the notation

x"f(x) = an.

Definition 6.10. Let f(x) = x + ayxZ + azx> +... € Diff'. Then denote the
coefficients of the i-th power of f(x) by

)t =xt+ aili+]Xi+1 + ai,Hszz +...
Definition 6.11. Given f(x) = } | ~7anx™, g = 3 57 bmx™, define their
composition (f o g)(x) € Diff' by

(fog)lx Zalg

i>1

The right hand side of (f o g)(x) in the definition above is an infinite sum of
power series, we need to check that it’s well-defined. But since g (x)! starts with
x1, the coefficient of x™ in (f o g)(x) is

n
[ ](fog Zalg :Zai Z b]lb]1
i=1 j1+...4+ji=m

Hence the coefficient of x™ is a finite sum, for all n. Hence, the composite is
well-defined.

Proposition 6.12 (Formal inverse function theorem). Diff' is a group with unit
x under composition.

Proof. The proof that x is a unit is easy. It’s slightly harder to see associativity,
and a bit messy, but not hard.

The meat of this theorem is producing the inverse for any given power
series f(x) = Y ;=0 anx™. It's enough to show that every g(x) € Diff' has a
left-inverse f(x). (This is because, once every element has a left inverse, then
the left inverse f of an element g has a left inverse h, hf = 1, then we can show
thath = g.)

To see that f(x) has a left-inverse, we can solve the system of equations

= 1 ifn=1
_Zai anbh"'bn—{o.

ifn>1

50



Lecture 09: Formal Diffeomorphisms September 20, 2016

for an in terms of the sequence by,. We know that we can always solve this
system because there is only one term with a,, in it in the n-th equation, and
knowing b; for all i and a; for i < n lets us solve for an.

For example, whenn =1,

1
aib =1 = a1:E:]

When n = 2,
a1b2+azb% =0 = ay=-by

When n = 3,
arby +az(byby +byby) +a3b? = a3 = —b3 +2b3.
O

Definition 6.13 (Notation). If g(x) has composition-inverse f(x), then we write

g(x){= 1 = f(x).

Theorem 6.14 (Combinatorial Lagrange Inversion). Let g(x) € Diff' with composition-
inverse g(x){~1). Then the coefficient of x™ in g(x){~") is given by the formula

Mg = Y (=)' JT bew.

tePRT(n) vel(t)
where
e PRT(n) is the set of planar rooted trees with n leaves

e [(t) is the set of internal nodes (non-leaves)

e c(v) is the number of children of a node v (internal or root).

Example 6.15. PRT(4) consists of all planar rooted trees with four leaves. The
trees below are some examples of planar rooted trees with four leaves. (Note to
reader: I refuse to draw all of them).

AN AN AN

We can use this to compute

Mg(x)™1") = —by +5b3b; —5b3
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6.3 Sewing and Ripping

Let W be the species of simple graphs (we called it G previously), but with a
new Hopf monoid structure.

us,1: WIS x WIT] —  WII]
(91,92) +— g1Ugz
Ast: W[ — WIS] x WI[T]
g +— (9gls,9/s)

where
e g/s is g but only with the edges incident to T (rip off S).

e g|s is g where we keep edges incident to S and sew in edges between u
and v when there is a T-thread between u and v.

A T-thread is a path connecting 2-vertices u, v in S through vertices in T.

\

g gls g/s

\

|
|
[
|
|
|
|
|
|
|
|
|
!
|
|
|
1

Proposition 6.16. kW is a connected Hopf monoid.

Proof. Tt is enough to check that, if [=SUT=S"UT,A=SNS',B=SNT/,
C=TNS,D=TNT'. then

(g1-92)ls' = g1la - 92lB-

S A B
S / T /
T C D
But this is relatively easy to check. O
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Definition 6.17. Now let W,, be the submonoid of W generated by paths.
This next example will be useful in the next definition.

Example 6.18. Let

a b ¢ d e f
- @O O @O0

and S ={a,c,d}, T={b, e, f}

a c d
P|s=. ® ®
b e f
p/s =0 Oo—0O

Example 6.19. More generally, write S ={s1,...,sn} with s; < ... < sy, along
the path. Count elements in T between each pair of consecutive elements of S,
including to the left of s1 and to the right of sy,. Then let

Ko = 1T N (—o0,s1)l
Ky =[TN(s1,s2)l

Kp = TN (s, 00|

Then pls is a path on h vertices, while p/s is a product of paths in Ko, Ky, ...
Kp elements.

S1 S2 Sh e f
° O—O— +o0

Ka=0 K3=2

:
O«

Ko=0 Ki

Il
-

Note that
Ko+Ki+...+Kp=T|[=n—-1-h

and moreover, the values K, ..., K}, determine S and T uniquely.
Proposition 6.20.
(i) W, is free commutative on paths.
(ii)) Wy is a Hopf submonoid.
(iii) X(W,) = Diff".
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Proof.

(i)
(ii)

(iii)

Clear.

Let p be a pathon I = SUT. Then pls is again a path, while p/s is a
product of paths. In any case, both terms are in W,,. Since A is a morphism
of monids, then this implies A(W;,) € W), @ W,,.

Define X(W,,) — Diff' by
b — Z anx™
n>1

by saying that an, = ¢(p) where p is any path on n — 1 vertices. This is
well-defined by naturality because any 2 paths on the same number of
vertices are isomorphic.

In particular, a; = ¢(1) = 1.

Since W, is free commutative on paths, then this is a bijection. We need
to verify that this is a group homomorphism.

Suppose that
b — f(x Z anx™
n>1
P +— g(x Z bnx™
n>1
Suppose also that
b xh— Z cnx™
n>1
Then
cn=(0xP)(p)= ) d(pls)b(p/s)
I=suT

Make the change of variables h = [S| and m — 1 —h = [T|, (see Exam-
ple 6.19) to get

n—1

Cn = Z Z Ah+1bKo+1bK 41 by 41
h=0 Ko+Kj+...+ Kn=n—T1—h

And then again making a change of variables withi = h+1 and j, =
Ky—1+ 1, we have

ch=) ) aibj---bj =K"(fog)(x),

as we wanted. O
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Theorem 6.21. Let p be a path onn — 1 vertices. Then the antipode S of W), is

sp) =) ' IT »

tEPRT(n) vel(t)

where p, is the path on the labels visible from v, when we label the n — 1 regions
between leaves of t with the elements of I, according to p.

Example 6.22.
Tree Pv
A a b c
alblec o o o
m a b c
alble oo o
a b c
o
a’bc
a b c a b c a b c
s(@—e—e)-(o-09):(e—0 o

(e L&)fi)ﬁ ¢ o

Corollary 6.23 (Lagrange Inversion). Let g(x) = > ,,~1 bnx™, and suppose
that \ € X(W,) is such that { — g(x) under the igomorphism of groups
Wy = X(Wy). Then

M) = (b o 5)(p)

[x

and P (py) = be(y)-

6.4 Invariants from Characters

Remark 6.24 (Convention). Throughout this section, assume that k is a field of
characteristic zero.
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Definition 6.25. Let H be a connected Hopf monoid in Sp,, and ¢ € X(H) a
character. Define x: H x N — k by

xi: HI xN — k
(x,n) — ¢ (x)

We call x the invariant associated to the character ¢.
For each n € IN, consider the function
X( ',Tl) = (b*n: H— Er

that is, x takes the n-th convolution power of ¢. The symbol - represents an
empty spot where we will later plug in inputs. Note that x(-,1) = ¢ and
Xx(-,0) = u. Moreover, for each finite set I, we have

x1(-n): H[I — k
a linear functional. Fix x € H[I], and let n vary; then we obtain a function
xi(x, - ): IN = k.

Explicitly, we have a function x1: H[I] x IN — k for each finite set I.

xixn) = Y (b5, ® - @bs,, ) As, s, (%),
I=SU...USn

There are n*1

f=1(1).

summands, in bijection with functions f: I — [n] such that S; =

Definition 6.26. We say that x € H[I] and y € H[]] are isomorphic if there
exists 0: I — ] such that 0*(x) = y.

This next proposition explains the term invariant.
Proposition 6.27. If x,y € H[I] are isomorphic, then x1(x,n) = x1(y,n).
Proof. Indeed,

xj(y,n) = (")y(y) = (&™)j(0"(x)) = (¢"™)1(x) =x1(y,n) O

Proposition 6.28. x;(x, - ) is a polynomial function of n: there is p(t) € k[t] such
thatp(n) =x1(x,n) and degp(t) < I

Proof. We can use the binomial theorem in Homg, (H, E), which is an algebra
under convolution.

n

X(om) =™ =(d—utuw™=> (?) (b —w)* st

(=0
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But recall that u is the convolution identity, so we can omit the term u*(™—%),

Recall also that ¢ —u is locally nilpotent by Lemma 5.28, so

#1

alm) =3 ()0 -t = 3 (-

=0 =0

But we have here that (¢ — u)’fz (x) € k, and (T]l) is a polynomial function of n.

So we take
11|

() =Y (6-witta( ),

=0
where

t 1
<e>:at(t—l)-(t—€+1)€k[t]. O

Example 6.29. Let H = kG. Let ¢: H — E be the morphism of species defined
by
1 if g is discrete
drlg) =4 "I
0 otherwise
Then ¢ € X(H) because, for any two graphs, g1 U g, is discrete if and only if
g7 and g, are discrete. We have that

xilg,n) = Z (bs, ®...®@ bs,)As,,...5,.(9)
I=SU...1USn

Z dbs, (gls,) - ds,. (gls,)

I=S;U...USy

#<(Sqy,...,5n

[ =87 U...USn, gls, is discrete for all i}

{f I—| ‘ gl¢-1 (1) discrete for all 1}

= #{proper n-colorings of g}

Then x1(g, -) is the chromatic polynomial of g.
Exercise 6.30. Fix q € k. If instead we let ¢: kG — E be

d1(g) = q#edgesofg'

Calculate x1(g, - ) and check that it is (a reparameterization of) the Tuttle poly-
nomial of g.
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Example 6.31. Let H = (kP)*, where P is the species of partial orders as in
Exercise 5.22. Recall the operations on the basis yj,, which we will instead
denote by p for this example. We write p; - p; for the union of partial orders.
Recall
pls @ plt if Sis a lower set of p
Ast(p) = {

0 otherwise.
Note that
AR,S, T(p) = {pR ®pls @plr ifRU S., R are lower sets of p
otherwise.

Let ¢: (kP)* — E be

1 if p is discrete
¢1(p) = .
0 otherwise.

Then

xi(p,n) = Z bs, (pls;) -+ ds,. (pls,,)

I=SU...1USn
SyU...US; is a lower set of p

= #{f: I— Nl ‘ £ 1([i]) lower set ofp foralli, f~ T({) dlscrete}
= #{#f: I—[n] ’ f strictly order preserving}

This means that x < y in p implies f(x) < f(y) in [n].

(We can see the last two lines are equivalent as follows. Take y € f=1(GD
and x <yinp. Then f(x) < f(y) € il = f(x) € il = x¢€ £ (i)

So x1(p - ) is the strict order polynomial of p.

Exercise 6.32. Given g € G[I], and an acyclic orientation o of g, let go € P[I] be
the partial order on I given by x <y if thereis a pathx — ... — y in g, with
edges directed according to «. Define p: kG — (kP)* by

b1lg) = D g«

x€AO(G)

where AO(G) is the set of acyclic orders on G.
Show that p is a morphism of Hopf monoids and, for ¢ a character of kG
and ¢ a character of (kP)* as before, the following commutes.

KG — 2

\/
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Proposition 6.33 (Functoriality of x). Let p: H — H’ be a morphism of Hopf
monoids and ¢, ¢’ characters such that

H—®%

Pt

Then x1(x,t) = x{(p1(x),t) for all x € H[I] for all I.
Proof.

¢ ™) 1(x) = x1(x,n)

Note that p* preserves convolution because p is a morphism of comonoids. []

Example 6.34. A consequence of this is that the chromatic polynomial of G is
the sum over all acyclic orderings o of G of the strict order polynomial of the

orderings «
(kP)*
kG(grt) = Z XI 90(/ )
xeAO(G)

Proposition 6.35. (i) Letx € H[S],y € H[T]. Thenx1(x-y,t) =xs(x, t)xT(y,t)
as polynomials in k([t].

(ii) Letz € HII]. Then, as polynomials in k[s, t],

Xilzt+s)= > xslzls,s)xr(z/s,b).
I=SuUT

Proof.
(@) x1(x-y,m) = (¢")1(x-y) = (¢™)s () (™) 1(y) = xs(x,n)xr(y,n)

(ii)
X1z, m+n) = (M) (z)
= (¢ x ™) 1(2)
= Z (" ™)s(zls)(d™ ™)1 (z/7T)

I=SuT

> xslas, m)xr(z/s,m). O
I=SUT
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Fix x € H[I], and consider the polynomial x1(x,t) € k[t]. By construction,
the values of n € IN have a combinatorial interpretation when plugged into
x1(x, - ), because

xi(x,n) = Z (bs, ® - ®@bs,)As,,... 5, (x).
I=SU...USn

But since x1(x, t) a polynomial, we can evaluate it at any scalar, in particular for
any t € Z including t < 0.
What is the combinatorial interpretation for x(x, —n)?

Lemma 6.36. In a ring, if a is nilpotent, then a + 1 is invertible and

(a+1)7T=) (-1ka"

k>0

More generally,

Proposition 6.37 (Reciprocity).
() x1(x,—1) = d1(S1(x))

(i) x1(x,—m) = Z (bs, @+ @ bs,)(Ss, ®...®S5s, )As, ... 5, (%)
I=SU...USn

Proof. Note that (i) is a special case of (ii), so we will only prove (ii).

Recall that x1(x,t) = p(t) where

(0 = 3 (@i

k>0

This implies that
it = ¥ (@ wike (1))

Then apply Lemma 6.36. So

k>0 k
= (¢ —ut+w; V)
= (¢
= (& " = oS)™) O
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Remark 6.38 (Recall).
kG —>

o1(p) = 1 if p discrete
Hpr= 0 otherwise.

Cilp) = 1 if g is discrete
Hpr= 0 otherwise.

Proposition 6.39.
() o7 (p) = (=) forallp € P[I.
(i) &' (g) = (=1)a(g), where a(g) = #AO(g).
Proof.
(i) Define ¥: (kP)* — E by ¥1(p) = (=1

(G+V)ilp)= D> pls)viplr)

I=SuUT
S lower set of p

= ) =0

I=SuT
S lower set of p
pls discrete

I if min(p) =@
_(—ul 1Sl — (=1) i P
- Z = {0 otherwise.

SCmin(p)

Here min(p) is the set of minimal elements of the poset p. So we have
shown that 1 is the convolution inverse of .

(i) p*: X((kP)*) — X(kG)isa morphism of groups. We have that
p*(p) =dop=2¢
Which then implies that d*p 1) =¢T1,50¢ " =¢ ' op. Thus,

—1(9):(1,1—1( > ga>=(—U“(#AO(g))=(—1)“a(g). O
acAO(g)
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Exercise 6.40.
(a) Derive an antipode formula for (kP)* and deduce from it Proposition 6.39(i).
(b) Deduce Proposition 6.39(ii) from the antipode formula for kG.

Recall from Example 6.31 that the invariant associated to the character
¢: (kP)* — Eis

x1(p)(n) =#{f: I — [n] | f is strictly order preserving}.
We say that f: I — [n] is strictly order preserving if i < j in p implies f(i) < f(j)
in [n].
Proposition 6.41.
x1(p)(—m) = (—1)|I|#{f: I — [n] | f is order preserving }.
Notice that here, f need not be strictly order preserving.

Proof.

= ) (¢ @ ®@ds)As,, s, ()

I=SU...USn

—1 —1
= > bs ! (pls,) - b5 (pls,)
I=S1U...USn
SiU...USy is alower set of p forall i

I=Su...uS
= (=14 (Sy,... ‘ J
(=1) {(Sl' +Sn) S1U...US; is a lower set of p for all i

To make the translation between this and what we want, set ' ([i]) = S; U
...US;, and then we have exactly that

x1(p)(—m) = (—1)|I|#{f: I — [n] | fis order preserving }.
O

Remark 6.42. In Stanley’s book, the notation that he uses is x1(p,n) = Q(p,n)
for the strict order polynomial, and x1(p, —n) = Q(p, —n) for the order polyno-
mial.

Proposition 6.43 (Stanley’s Negative One Color Theorem). Consider the invari-
ant associated to (:

x1(g)(n) =#{f: I — [n] | f proper coloring }.

Then x1(g)(—1) = (—=1)"a(g).

62



Lecture 11: The antipode of E September 27, 2016

Proof. By combining Proposition 6.39 and Proposition 6.41, we see that

x1(9)(=1) = (¢ "1(g) = (=1 a(g). O

7 Combinatorial Topology
7.1 The antipode of E
Recall the formula for the antipode of kE:
Si(x1) = (=) +1.
When I = {a} is just a singleton, then the formula

0= Z us,1(Ss ®id1)As 1
1=SUT

gives that
S{a)(*(a)) *@ +So(*@)*(q) = 0.

X1 = Z *{a}.

acl

Then we can get

Now according to Milnor-Moore recursion,

Si(¥1) =— ) #sSrl(*7)
1=SOT
T4
== (=T
TCI

Or equivalently,

(=D ==> (="

TCI

But there’s another way to think about this. If we let the subsets of I index
the faces of the simplex All), then the dimension of the face indexed by T is
|T| — 1. So we see that

=3 (=nImF=xal)

F face of 9A (D)

is the reduced Euler characteristic of the simplex. Now, A1) = SIII=2_ Hence,

X(S™) = (=1 +1, X(S™) = (1" = (-
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Example 7.1. If I ={a, b, c}, then we get the picture

c

{a,c} {b, c}

{a, b}

@ indexes the empty face.

Let’s see what Takeuchi’s formula gives us.

*1

—
Sixr) = ) (=D upAp(xp)
FeX[I]
(D= 3 (=DM
FeXl[I]
(== (=nt
Fex[I]

Using a little combinatorial topology,

Six1) = Y (=N4mF =x(z1)

Fex (1]
where (1], as a space, is the barycentric subdivision of dAl!l.

Example 7.2. The elements of Z[I] index the faces of the barycentric subdivision
of 0A1).

clab

The empty face is labelled by abc.
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Note that compositions of I are in bijection with strict chains of subsets of I,
via

n
(Sq,...,Sa) e[l — (S <SUS; < ... |_| S; =1).
i=1

The dimension of the face indexed by the composition F is {(F) — 2.

7.2 The antipode of L
S1(¢) = (—1)'1'Z. So using Takeuchi,

s =) =D"Murar(©)
FeX[I]

_ Z Z (_])@(F) ¢
¢’eL[I] FeXl[I]
WEAE(€)=0
Definition 7.3. In general, A((,¢') Let A((,¢') = {F € Z[I] | urAr(0) =0}

Example 7.4. Fix { = alblc.

¢ Al 0)
blcla {bcla, blc|a}
c/bla {c|bla}

alblc | {abc, albc, ab|c, alblc}
These are faces of the previous picture:

clab

able gblc blale

Remark 7.5. In general, A({,{’) is a Boolean poset. The minimal element is
(Sq,...,Sk) where

e Sj is the longest initial segment of {’ {’|s, such that {'|s, = {]s,.

e S; is the next-longest segment of ¢’ such that {g, = {[s,.
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e Sy is the last segment of ¢’ such that {'|s, = {[s, .
The maximal element is ¢'.

Remark 7.6. Note that the maximum and the minimum elements are the same
precisely when ¢’ = . The coefficient of ¢’ in Sy (£) is

(=1
_1)¢(F) —
> o {O

FeA(L,L)

ift/ =10

otherwise.

Remark 7.7 (Goal). We want to prove the following. Let B be a set-theoretic
bimonoid. Assume that it is either commutative or cocommutative. Consider
the antipode 5: kB — kB. Then pick x,y € B[I]. The coefficient of y in S;(x) is
X(X) —x(A), where A C X are simplicial subcomplexes of Z[I], and X is always
a ball or sphere.

7.3 The Coxeter Complex

Consider Z[I], which is the set of compositions F of I. A composition F of I is
F=(Sy,...,S¢) where I =S U...USy and S; # @ for all i.

Remark 7.8. XZ[I] is a poset under refinement. If F, G € Z[I], then F < G if each
S; in F is obtained by merging a number of contiguous blocks of G. Equivalently,
G =Gy - Gy - - G (concatenation) where G; € Z[S;].

The composition L= (I) is the unique minimal element of X[I]. The maximal
elements are the linear orders.

Definition 7.9. Z[I] is a simplicial complex, called the Coxeter complex of type
A. In particular, each interval [F, G] is (isomorphic to) a Boolean poset.

Remark 7.10. Z[I] is the barycentric subdivision of oA where AL is the
simplex of dimension |I| — 2.

7.4 The Tits Product

Definition 7.11. Let F = (S4,...,Sp) € Zlll and G = (Ty,...,Tq) € ZlI.
Consider the pairwise intersections A; = S; N Tj.The Tits product is FG =

(A11,.+.,A1q,+++,Ap1,- -+, Apq), where the hat denotes that we remove any
empty Ayj.
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T; Tq

| |
| |
| |
| |
| |
| |
| |
| |
! !
! !
| |
| |
| |
1 1

Fact 7.12.

(a) The Tits product is associative and unital, with unit L. So Z[I] is a monoid.

(b) It is not commutative. FG and GF consist of the same blocks, but in a
different order.

(c) F<FG

(d F<G < FG=G
(e) F<G = GF=G.
() F2=F

(g) FGF =FG

Definition 7.13. A monoid M satisfying property Fact 7.12(f) is called a band.
If is also satisfies Fact 7.12(g), then it is a left regular band (LRB).

7.5 The Partition Lattice

Remark 7.14. Recall that TT[I] is the set of partitions of I. It is a poset under
refinement. The partition L = {I} is the minimum element, and the partition T
into singletons is the maximum.

TT(I] is a lattice. The join X V'Y of X and Y consists of the nonempty pairwise
intersections between blocks of X and blocks of Y. We can determine the meet
of two elements by knowing the join and the fact that this lattice is finite.

Fact 7.15. T1[I] is then a monoid under the join with unit L. It is a commutative
left regular band (see Definition 7.13).

Definition 7.16. The support map is

supp: (1] — T[]
(S],...,Sk) — {S],...,Sk}

Fact7.17. supp: Z[I] — TI[I] is a morphism of monoids, and supp F = supp F/ <=
F and F/ consists of the same blocks but possibly in different orders.
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7.6 Higher Hopf Monoid Axioms
Let H be a connected Hopf monoid. Let F = (Sq,..., Sx) € Z[I]. Write
H(F) = H[S1] ® - - - ® H[Sy].

w
Recall the maps H(F) A<:>F H[I]. Now let G > F, and write G = Gj -
F

Gy - - - Gy with each G; € X[S;].

Definition 7.18. Define ug : H(G) — H(F) by

H(G) —mmmmmmmmme 2 s H(F)
P
H(G1)® - - @ H(Gy) ———— H[$1]® - - @ H[Sy]

Definition 7.19. Similarly, define AE : H(F) — H(G) by

H p oo
HST ® - @ HISKH 122 141Gy - - @ H(Gy).

With these generalizations, we can state generalized versions of the Hopf
monoid axioms. These are not hard to prove, and mostly follow by induction
from the standard Hopf monoid axioms.

Proposition 7.20 (Higher (co)commutativity). For any F < G in Z[I], the follow-
ing diagrams commute.

Ag

H(G) -2 H(T HI —=S5 H(G)
sl A ]
H(F) H(F)

Proposition 7.21 (Higher (co)commutativity). Let F and F’ € Z[I] be such that
supp F = supp F'. If H is commutative, then the following commutes.

Brrr

H(F)
HII]

H(F)
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If H is cocommutative, then the following commutes.

o

Proposition 7.22 (Higher compatability). For any F,G € L[I], the following
commutes.

Brr

H(F)

BrG,GF

Recall that if F < FG, G < GF, then supp(FG) = supp(GF). So the bottom
arrow in the diagram above makes sense.

Notice that the Tits product allows us to nicely state the higher versions of
the Hopf monoid axioms. So there is a nice interplay between the geometry and
combinatorics.

7.7 The action of
Let H be a connected Hopf monoid as before.

Definition 7.23. Given F € X[I] and x € H[I], let F- x := ugAg(x) € HII]. This
defines an action of Z[I] on H[I] by

Z[I] x H[I] — H[I]

(F,x)— F-x

Proposition 7.24. If H is cocommutative, this is a left action. If H is commutative,
then this is a right action.

Proof. Assume that H is cocommutative.First, observe that
L-x=pu A (x) =id(id(x)) = x.
Then for any F, G € Z[I], x € H[I], we have

G- (F-x) = ngAGHFAF(X)

= Uug ug FRr G,G FAEG Af(x) (by Proposition 7.22)
= UGF BFG,GFAFG (x) (by Proposition 7.20)
= ugrAgr(x) (by Proposition 7.21)
=GF-x
The case when H is commutative is similar. O
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Remark 7.25. Earlier we said that Hopf monoids are somewhat like groups.
But what about the other structure in the category of species? What does it
correspond to? It turns out the analogy extends nicely.

Category of Species Category of Sets
Hopf Monoid H Group G
Cocommutative Hopf Monoid H Abelian Group G
z Z
Fel nez
H[I] is a Z[I]-module G is a Z-module
HEAE(X) x™
L is itself a Hopf monoid Z. itself is an Abelian group

Since Z itself is the initial element in the category of Z-modules, this suggests
that X should have some sort of universal property of an initial object. Indeed,
% is the initial near-ring in the category of species.

Definition 7.26. Let B be a set-theoretic cocommutative connected bimonoid.
Then, as before, the monoid Z[I] acts on the set B[I]. Fix x,y € B[I]. Then define

Tyy={FeZlll|[F-x=y}
Notice that L is a subset of the simplicial complex Z[I].

Lemma 7.27. L, y is a convex subposet of Z[I]. This means if H < F < G and
H,G € L.y, thenF € £, .

Proof. Notice that H < F = FH = F by Fact 7.12, and similarly F < G =
FG = G, again by Fact 7.12. Then

F-x=FH-x
=F-(H-x) (since H € Iy y)
=F-y
=F-(G-x) (since G € Zy,y)
=FG-x
=G-x=y O

Example 7.28. If B=1,1={a,b,c}, and x = alblc, y = blc|a, then
Zx,y = 1{blcla, bclal.
Definition 7.29. The closure of Z , is

Loy ={FeZll|IG>Fst G-x=y}.
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Theorem 7.30. Let X = £, and let
A=2%yy/Ixy ={FELI]|IG>Fst G-x=yandF-x #yh
Then X and A are subcomplexes of L[I] (Iower sets of the poset Z[I]).

Proof. Note that X is always a subcomplex. So we just need to show this for A.
TakeF € Aand H < F. Weneed H € A. Then F € A implies that there is some
G >FsuchthatG € ZyyandF & Ly . Sowehave H < F < Gand G € Zyy,
soH e X

Now suppose for contradiction that H ¢ A. Then H € X\ A = X ,,. But
H < F < G implies that F € Xy, so this is a contradiction, since F € A =
X\ Zxy- O

Recall that the coefficient of y in Sy (x) is

Z (71 )dimF.

FEZxy
Corollary 7.31. The coefficient of y in St(x) is x(X) — x(A).

Proof.

XX =x(A)= ) (=1)amF— 3 (—pdmt

FeX FEA
FAL FZL

— Z (71 )dimF 0
FEZxy

Remark 7.32. There are many questions that we could ask about the relations
between Hopf monoids and topology. For instance, when is the antipode a
discrete Morse function? How do we translate between topological invariants
and properties of the Hopf monoids? Lots of these questions haven’t been
explored.

8 Generalized Permutahedra

8.1 The Coxeter complex as a fan of cones

Consider the vector space R!. Its elements are functions x: I — R. For each
F € X[I], let yf be the set of x € R! with the relations that x; = x; if 1 and j
belong to the same block of F, or x; < x; if the block of i precedes the block of j
inF.
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Definition 8.1. yr is a (polyhedral) cone. The collection {yf: F € X[I]}is a
(complete) fan of cones, meaning that

]RIZ |_| YEF-
Fex[I]

Example 8.2. Let I = {a, b, c}. Then we're working in R® Then the picture looks
like the following when projected onto the first two coordinate axes. The origin
is v, and the rays are y where F has two blocks. The chambers are yf where
Fis a linear vector.

Yblac Yable
Yblalc

8.2 Polytopes
Let V be a real vector space with an inner product (, ).

Definition 8.3. A hyperplane in V is a subset of the form
Hv, k) ={x e V] {x,v) =k}

forsomev € V,k € R.

H(v, k)

H(0, k)

Definition 8.4. The half spaces bound by H(v, k) are
Hiv, k)~ ={x € V| (x,v) <K},

Hv, k)T ={x € V| (x,v) > k}.
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Proposition 8.5 (Fundamental Theorem of Polytopes). Let P be a subset of V.
Then the following are equivalent:

(i) There is a finite subset X of V such that P is the convex hull of X.

(ii) P is bounded and there is a finite set H of half-spaces such that P = ﬂ h.
heH

Definition 8.6. If either of the previous two cases in Proposition 8.5 hold, then
P is a polytope in V.

Definition 8.7. A face Q of P is either P itself or the intersection of P with a
supporting hyperplane (a hyperplane H that intersects P and such that P C H
or P C H™). We write Q < P for a face of P.

Definition 8.8. The dimension of P is the dimension of the affine subspace
spanned by P.

Proposition 8.9. If Q < P then Q is itself a polytope.
Definition 8.10. The vertices of P are the faces of dimension zero.
Proposition 8.11. If Q < P then the vertices of Q are among those of P.

Given x € V, let Py be subset of P where the functional (x,—): P — R
achieves its maximum value.

Proposition 8.12 (Fundamental Theorem of Linear Programming). Py < P for
any x.

Definition 8.13. Given a face Q of P, let Q- = {x € V | Py = Q}. This is the
normal cone of Q with respect to P.

Definition 8.14. The collection N(P) = {Q" | Q < P} is the normal fan of P.
Note that each Q* is relatively open, and dim Q* = dim V — dim Q.

Example 8.15. The polytope P on the left has normal fan N(P) on the right.

C
B BL
CL
PL
a P A at A+
1
C ct b
b
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8.3 Permutahedra and Generalized Permutahedra
Now let V = R and (x,y) = Y ; x1y; be the standard inner product.

Definition 8.16. The standard permutahedron Py is the convex hull of
{x: T — [n] € R |xis bijective}.

Example 8.17. If I = {a,b,c}, then P; is drawn below. The region labelled
(1,2,3) corresponds to x: I — [3] withxq =1, xp =2, X = 3.

(2,1,3)
(3,1,2) (1,2,3)

(3,2,1

—

(1,3,2)
(2,3,1)

Definition 8.18. A polytope P in R! is a generalized permutahedra if N(P)
is coarser than N(P;) = Z[I]. If N(P) is coarser than N(Q), then we write
N(P) < N(Q).

If N(P) < N(Q), then each cone y € N(P) is a union of some cones in N(Py),
or equivalently, each cone yF is contained in a unique cone Q- for asome Q < P.

Example 8.19. If I = {a, b, c}, then the polytope drawn below is a generalized
permuathedra because it’s normal cone is coarser than N(Py).

/5
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Example 8.20. If S C I, let As be the convex hull of {e; | i € S} (a simplex,
for example {e; | i € I} the standard basis of R'). Then Ag corresponds to a
generalized permutahedra. It's enough to look at A1 because Ag is a face of Ay.

Proposition 8.21. Let P be a generalized permutation in RS, and Q a generalized
permutahedra in RT. Note that R! = RS x RT. Then P x Q is a generalized
permutahedra in R!.

Proof sketch. N(P x Q) = N(P) x N(Q). We can use also that X[S] x Z[T] is
coarser than X[I]. O

Proposition 8.22. Let P and Q be generalized permutahedra in R!'. Then P +
Q={v+w]|veP,we Q}is a generalized permutahedra in RL.

Proof sketch. N(P + Q) is the set of cones obtained by intersecting cones in N(P)
with cones in N(Q). O

8.4 The species of generalized permutahedra

Let GP[I] be the (infinite) set of all generalized permutahedra in RIL LetI =SUT.
Note that R! = RS x RT. We will make GP into a species.

Proposition 8.23. If Py € GP[S], P, € GP[T], then Py x P, € GP[I].

This allows us to define the product p on the species GP. Define

us7: GP[S] x GP[T] — GPII] (12)
(P1,P2) — Py x P,

Proposition 8.24. Assume S, T # @. LetF = (S,T) € Z[I]. Let P € GP[I]. Let Q
be the face of P such that Q- D vy, which exists because N(P) < N(Py).
Then there exist P1 € GP[S] and P, € GP[T] such that Q =Py x P.

This proposition gives us the ingredients necessary to define a comultiplica-
tion on GP. Define

As1: GP[I] — GPI[S] x GPIT] (13)
Pr— (P] , Pz)

Proposition 8.25. With the structure as in (12) and (13), GP is a connected bi-
monoid in the category of set-species. It is commutative but not cocommutative.
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Example 8.26. LetI ={a,b,c}, S ={a,c}, T ={b}. Then Ag 7(P) = (pt, pt), and
At,5(P) = (segment, pt).

Yblac

Remark 8.27. ps tAs 7(P) = Q, where Q is the face of P such that QL DYsT-
More generally, for any F € Z[I], upAg(P) is the face Q of P such that QD vyr.

Theorem 8.28. Consider the Hopf monoid k(GP). Its antipode satisfies

Si(P)= Y (—nli=dimQq, (14)

Q<P
Proof. Recall the coefficient of Q in 51(P) is x(X) —x(A), where
Ipo={FeXlll|F-P=Q}
Note that Q = F - P = upAr(P) by Definition 7.23. Then we have
X=%pq, A=Zpo\ZpqQ.

If Q isnot a face of P, Zp o = @ and the coefficient is zero.
Assume Q < P. Then

Ipo ={Fe X Qt D veh
This in turn implies that
X={Fezlll| QL Dvs}, A={Fezlll|0Q" Dve).

Hence, X is a simplicial subdivision of Q- N $™~ ', and A is a simplicial subdi-
vision of 9Q+ N S™1.
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If Q < P, then X is a ball of dimension |I| —dimQ — 2, so x(X) = 1. In
this situation, A is a sphere of dimension [I| —dimQ — 3, so x(A) = 1+
(—HI=dim Q=T — 0. Then

x(X) —x(A) = (—1)/H-dimQ

If Q = P then L€ Ip g, soby convexity, we get that fp,Q = 1p,Q. Hence
A = @. Therefore, x(A) = 1 (this is a convention that is necessary since we aren’t
using reduced Euler characteristic). In this case, X is a sphere of dimension
[I] — dim P — 2. So

X(X) =x(A) =14 (—1)/H+dimP _q _ (_q)lll—dimP
So we have shown (14). .

Example 8.29. To illustrate the ideas in the last proof, let I = {a, b, c}. Consider

N(Pr)

An example of a cone Q* is as follows. We have @ Nns' =B

R QL 0Q

Definition 8.30. Given S C I, the standard simplex Ag is the convex hull of
{ei | T€ S} CRL

Fact 8.31.
(a) As € GP[I].
(b) GP[1] is closed under Minkowski sums.

Proof of Fact 8.31(b). N(P1+P3) = N(P7)V N(P2), where V is the least common
refinement of the two. If Py,P, € GPII], then N(P;) < N(P;). This in turn
implies that N(Pq) V N(P2) < N(Py). -

77



Lecture 14: The species of generalized permutahedra October 06, 2016

Definition 8.32. Two polytopes Py and P; in V are normally equivalent if
N(P7) = N(P;). Write P; ~ P,, and let GP[I] = SPll/_.

Definition 8.33. Let g be a simple graph on . Its graphic zonotope is
Zlg = ) Ao
{a,b}edgeof g

Remark 8.34. Faces of Z(g) are indexed by pairs (X, «) where X is a bond of g
(a partition of I into blocks B such that gl is connected), and « is an acyclic
orientation of the contraction of X in g. In particular, the vertices are indexed by
acyclic orientations of g.

Example 8.35. Let

Then Z(g) is

\

Yalbe

Yclab \

Yac|b

Definition 8.36. Given a simple graph g with vertex set I, define a polytope

Algl= ) As

SCI
gls connected

this is the graphic associahedron of g.
The standard associahedron is the graphic associahedron associated to a
pathon L
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Proposition 8.37. The following maps are morphisms of Hopf monoids.

G — GP w — GP

g — Z(g) g +— Alg)

Remark 8.38. The following diagram commutes (P is the species of posets).

ﬂVG\p)
N

where the maps are given by ¢(X) = kx, W (X) = kx, (with kx = Ugexkp) and
p(kx) = o(kx) =[gex Ps- Ais given by

AP) = Z vt

v vertex of P

GP A, pr ¥

The character x: GP — Eis

x(P) =

1 if P is a poset
0 otherwise.

x 1 (P) = (=1)!M#(vertices of P).

9 Hyperplane Arrangements

Definition 9.1. Let V be a finite-dimensional real vector space. A hyperplane
arrangement in V is a finite set A of hyperplanes in V.

Definition 9.2. A hyperplane arrangement is linear if all hyperplanes go through
the origin, and affine if they need not contain the origin.

Remark 9.3. We will consider almost exclusively linear hyperplane arrange-
ments, and if we say hyperplane arrangement without further qualification, we
mean a linear arrangement.

Definition 9.4. The center O of a hyperplane arrangement A is the intersection
of all hyperplanes in A. The rank of A is dim V — dim O.

Note that the center of any (linear) arrangement contains the origin (recall
that we assume linear arrangements unless otherwise stated).
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Definition 9.5. The arrangement is essential if O is just the origin. The essen-
tialization of A is the arrangement

ess(A) = {"/o |He A}

inV/O0.

9.1 Faces

Each H € A decomposes V = H" LUH L H™, where H" and H™ are the open
half spaces bound by H. Superimposing these decompositions, we obtain a finer
decomposition of V into nonempty subsets called faces.

Definition 9.6. Equivalently, a face of A is a nonempty subset obtained by
(a) for each H € A, choose either H' or H™ or H itself.
(b) intersecting all of these choices.

Fact 9.7.
(a) Z[A] is finite, with at most 31| elements.

(b) We haveV = |_| F.
FeXZ[A]

(c) The center O is always a face (when we choose the intersection of all of
the hyperplanes themselves).

Definition 9.8. The chambers are the faces that are intersections of only half-
spaces. Let L[A] be the set of chambers.

Definition 9.9. Given F,G € £[A], wesay F < G when F C G. Then Z[A] is a
poset.

Fact 9.10. O is the minimum element of the poset L[ A] and the chambers are
the maximal elements. Y[ A] is graded with rank(F) = dim(F) — dim(O).

9.2 Flats

This is the companion notion to faces.

Definition 9.11. A flat if 4 is a subspace of V obtained by
(a) for each H € A, choosing either H or V.

(b) intersecting them all.
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Notice that flats are always vector subspaces of V.
Definition 9.12. Let IT[.A] be the set of flats.
Fact 9.13.
(a) TI[A] is finite: it has at most 21A! elements.
(b) TT[A] is also a poset: given X,Y € TI[A], X <Y ifX C Y.

(c) The center O is always a flat, denoted by L, which is the unique minimum
element.

(d) ThespaceV is also a flat, we denote it by T, which is the unique maximum
element.

(e) The intersection of two flats is a flat, so TT[A] is a semilattice with meets:
greatest lower bounds given by intersections.

(f) Hence, TI[A] is a lattice because it is a finite semilattice with meets.
(g) The lattice TI[A] is graded with rank(X) = dim(X) — dim(_L).

Definition 9.14. The support of a face F € Z[A] is the flat

supp(F) = (] H.
HeA
HOF

Fact 9.15. supp(F) is also the subspace of V spanned by F.
Fact 9.16. supp: L[A] — TI[A] is both order and rank preserving.
Fact 9.17. There are canonical poset isomorphisms as follows.
(a) Z[A] — Z[ess(A)]
(b) TT[A] — TT[ess(.A)]

Moreover, the following diagram commutes.

Y[A] —— Z[ess(A)]

lsupp lsupp

Al —— TTless(.A)].
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9.3 Examples

Example 9.18. One hyperplane, A ={H} in V, where rank(A) = 1. The center
of A is O = H. Then the essentialization of A is just a dimension zero subspace
of a one-dimensional vector space V/O = V/H = IR, and there are three faces
in Z[AJ, corresponding to H, H*, and H™. There are two flats: H and V. So,

I[Al ={-,0,+}, TMA] ={L, Th
We have that supp(+) = supp(—) = T and supp(0) = L.

Example 9.19 (Graphic Arrangements). Let g be a simple graph with vertex set
I. Then
Ag ={Hji; [ {i,j} is an edge of g}
in R, where Hyj = {x € R! [ x; = x;}.
For example, if
a b c

g= O0—""C—™=0

Then ess(Ag) is the following arrangement.

Xa = Xp

The center O is the line xq = xp = x here, and in general dim(O) = c(g), the
number of connected components of g. The rank of Ag is [I| — c(g).

T[Ag] is the bond lattice of g, where a bond of g is a partition of I such that
the induced subgraph on each block is connected.

bond flat
a b c
O——0—0 | xq = Xp = x¢ (bottom flat)
a b c
o———=0 ©) Xa = Xp
a b c
O o—o0 Xp = Xc
a b c .
O o o no equations (top flat).
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The faces are a bit harder to describe.

Z[Agl ={(X, «) | Xis a bond and « is an acyclic orientation of the contraction g/X}.

g/bond with orientation face
abc Xa = Xp = X¢ (center)
ab c
O——0 Xa = Xp < Xc (ray)
ab c
O +—O Xe < Xq = Xyp (ray)
a bc
Oo0——0 Xa < Xp = X¢ (ray)
ab c
0+—O0 Xp = X¢ < Xq (ray)
a b c
O——0——0 Xaq < Xp < X¢ (chamber)
a b c
O——0+—0 Xa < Xp,Xc < Xp (chamber)
a b c
O+—0—0 Xp < Xa,Xp < Xc (chamber)
a b c
O+—0«+—=0 Xaq < Xp < X¢ (chamber)

Example 9.20 (Braid Arrangment). This is the graphic arrangement of the
complete graph on a set I. We have

A={Hy [1,je€Li#j}
in Rl. Then dim O = 1, rank(A) = |I| — 1. The picture for ess(.A) is

Xa = Xp

Xa = Xp

Any contraction of a complete graph is again complete, and an acyclic orien-
tation on a complete graph is the same as a linear order on the set of vertices.
Hence,

TLA] = T[], LAl =Z[1, and L[A] = L[I].

Remark 9.21. X[A] = N(P;), and more generally, [A4] = N(Z(g)). For any
arrangement A, Z[A] = N(Z(A)).
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9.4 Signed Sequence of a Face

For each H € A, choose fy € V* such that H = ker(fy). Let HY = {x € V|
fu(x) >0}, and H™ ={x € V| fiy(x) < 0}, and H® = H.
Fix x € V. We have a function ¢5: A — {—,0, +} given by

+ xeHt
5X(H): — x€H™
0 xeHP°.

Lemma 9.22. LetF € Z[A]. Foranyx € F,
F= () Hex(H),
HeA
Corollary 9.23. Let x,y € V. Then x and y belong to the same face if and only if
Ex = £y.
We may then define a map e: Z[A] — {—,0,+}" by &(F) = ex where x is any

point in F. It follows that ¢ is well-defined and injective.

Definition 9.24. Given two faces F, G € Z[A], define the Tits product FG as the
first face entered when walking from a point x € F to a pointy € G along a
straight line.

Proposition 9.25. This is a well-defined operation on the set of faces X[ A], and
moreover it turns L[ A] into a monoid with unit O.

Proof. ForeachHe A,0<t<1,
fr((T—thx+ty) = (1 =) (x) +tful(y)

To see what happens in relation to H, we only care about the sign of the above.
For small t, the sign of the right-hand side is determined by the sign of fi(x),
provided fiy(x) # 0. For small t,

sign(RHS) = fu(x)  if fp(x) #0
° “\fnly) i frlx) = 0.

In other words,

SH(F) if SH(F) 7é 0

SH(G) ifEH(F) =0

This is independent of x and y, and only depends on x and y. Thus FG is
well-defined and in fact we find that

en(F) ifen(F)#0
en(G) ifen(F)=0.

sign(RHS) = {

eH(FG) = {
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for all H € A. It follows that ey (FO) = ey (F) = ey (OF). It also follows that
both e (E(FG)) and &1 ((EF)G) are given by

en(B) ifen(E) #0
en(F) if en(E) =0, en(F) #0
SH(G) if EH(E) :EH(F) =0.

Since ¢ is injective, then FO = F = OF and (EF)G = E(FG), so we have a
monoid. O

Corollary 9.26 (Consequence of the proof of Proposition 9.25). e: £[A] — {—, 0, +}4
is a morphism of monoids, where the right hand side has the structure of the
product of copies of the monoid {—, 0, +} with the multiplication table

right
o + -
ojo + -
left + |+ 4+ +

Remark 9.27. ¢ is also a morphism of graded posets. Moreover, the following
commutes.

A 5 -0+ —+ 0

lsupp |suep l I

MA] S (L, T 1

{1, T} is a Boolean poset (and therefore a lattice).

Proposition 9.28. supp: Z[A] — TT[A] is a surjective monoid morphism.

Proof. By the commutativity of the above diagram, it is enough to check that
supp: {— 0,+} — {L, T}is a monoid morphism, since ¢ is an injective monoid
morphism. This is straightforward.

For surjectivity, if a face F intersects a flat X, then F C X. Faces decompose
V, so faces intersecting X decompose X, and X is covered by faces implies that
some F O X has the same dimension. Then supp(F) = X. O

Proposition 9.29. Let F, G € Z[A]. Then
(i) supp(F) < supp(G) if and only if GF = G.
(ii) supp(F) =supp(G) ifand only if FG = F+ GF = G.

(iii) F < G = supp(F) < supp(G). So supp is order preserving.
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Proof.

(i) Both assertions are equivalent to the statement that for all H € A, if
eg(H) =0, then e (H) = 0. This is easy to see.

(ii) This follows from (i).

(ili) F<G = FG=G = GF=FGF = GF=FG =G = supp(F) <
supp(G). O

Corollary 9.30. TT[A] is the abelianization of Z[.A] via supp.

Proof. We know that TT[A] is commutative and supp is a surjective monoid
morphism. So take ¢: Z[A] — M any monoid morphism such that M is abelian.
We will produce a unique morphism 1 as in the following diagram.

SA =2 M

P
suppl 7 ’:b
TTA]

Given X € TT[A], pick F such that supp(F) = X, since supp is surjective. Define
VP (X) = ¢(F). Then this is well-defined, because

d(F) = ¢(FG) = d(F)d(G) = ¢(G)b(F) = d(GF) = $(G).
It is a tedious exercise to check all of the other necessary conditions on{. [
Definition 9.31. The Janus Monoid is
JIA] = Z[A] X ryp4 ZLAIP.

Elements of this monoid are (F, G) € Z[A]? such that supp(F) = supp(G). The
product on J[A] is
(F/ G) : (F// G/) = (FF// G/G)

and the unitis (O, O).

Fact 9.32. J[A] is a band, although it is neither left nor right regular.

JIA]
/ \

LA Z[Al
\ . /

T

A
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10 Species relative to a hyperplane arrangement
Definition 10.1. Let A be a hyperplane arrangement. Then an .A-species con-
sists of

(a) vector spaces P[F] forall F € Z[A].

(b) linear maps Br g: P[Fl — P[G] whenever supp(F) = supp(G).

Definition 10.2. A morphism of A-species f: P — Q is a collection of linear
maps fr: P[F] = Q[F] such that

PIF] — s QIF

JBGF J{ﬁGF

*>Q

Definition 10.3. An .A-monoid is an A-species M with a linear map ug : M[G] —
M[F] whenever F < G, such that the following axioms hold

(a) Naturality: Whenever F < G and supp(F) = supp(F), the following
diagram commutes.

M}L

MI[F
lBF’GG , lBFF’

M p’F’G ]
Note that F/ < F/G and
supp(F'G) = supp(F’) Usupp(G) = supp(F) Usupp(G) = supp(G)

(b) Associativity:

. MIF]
WE HE
G]/ ad \M

(c) Unitlaw: pf =idy

Definition 10.4. A morphism of A-monoids f: M — N is a morphism of A-
species such that

commutes.
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Remark 10.5. We can similarly define .4-comonoids and .A-comonoid mor-
phisms.

Definition 10.6. An A-species H is an A-bimonoid if it is both an .4-monoid
and and A-comonoid and these two structures are compatible: for F < G, we
have

such that if A < Fand A < G, the following commutes.

F A/G\

HIF] —2 5 HIA] —2 HI[G]

BGFrFG

Note that supp(FG) = supp(GF).

Remark 10.7. Because everything we’re working with here is connected, all
A-bimonoids are Hopf. We don’t distinguish between bimonoids and Hopf
monoids in this category.

Exercise 10.8. Let A be a rank 1 hyperplane arrangement

—C 0 c
o

Show that an .A-bimonoid is the same as a vector space W with two idempotent
operators E, F: W — W such that EFE = E and FEF =F.

Lemma 10.9. Let H be an A-bimonoid. Then
(i) For all A <'F, the following commutes.

id

HIF]

In particular, 1Y is injective and Al is surjective.

(ii) For all A < F and A < G with supp(F) = supp(G), the following com-

mutes.
Bg,r
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Definition 10.10 (Notation). When supp(F) = supp(F’), write F ~ F’.
Remark 10.11 (Recall).

(@) F~F &= F=FF and F/ = F'F.

b) F<G < FG=G

Definition 10.12. If ] is an .A-monoid, then a J-module is a module M over the
algebra kJ.

Definition 10.13. An A-monoid H is commutative if

whenever A < F,F’ and F ~ F/. Similarly for cocommutative.

10.1 From modules to bimonoids

Proposition 10.14. Let M be a left Z[A]-module. For each F € Z[A] set Hm[F] ==
F - M (this is a vector space!). Then

(a) Hn is a species.
(b) Hnz is an A-bimonoid, and it is cocommutative.

(c) M — Hp is a functor from the category of left A-modules to the category
of cocommutative A-bimodules.

Proof.
(a) Define B¢ p/ by
Brgr
Hml[F) -=225 Hw [F']
| l
F-M F'-M
W w

We need to show that B p = id. But this follows because F2=F Similarly,
we get associativity; the crux of the argument is that if F ~ F/ ~ F”, then
F// — F//F/.
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(b) Suppose that F < G. Define

HM[H ***** > HM[F/] HM[H ***** > HM[F/]
[ [ [ [
G-M F-M F-M G-M
\) W w W
X —— F-x y— G-y

u is well-defined since FG=G = G-M =F-G-M C FM. Similarly
for A.

To show that this is an A-bimonoid, we need to show associativity and
unitality for p, coassociativity and counitality for A, cocommutativity and
compatibility between A and .

We will check the last two.

Take A < F,F/ with F ~ F/. Then the following diagram commutes,
becausey — F-y—F -F-y=F -y

This shows cocommutativity.

For compatibility between A and u, consider A such that A < F and
A < G. Then
Alp(x)) =G -x,

and
1(B(A(x))) = u(GF-FGx) = u(GFG - x) = G - x.

Hence, the two are the same, so we have established compatibility.
(c) This is a straightforward verification.

O

Example 10.15. Let L[A] be the chambers of the hyperplane arrangement A,
and X[A] the faces, TT[A] the flats, E[A] the exponential species E[A] = {*}. Then
the following is a diagram in the category of cocommutative .A-bimonoids; all
are left-modules over X[ A].

LIA] —— Z[A]

| |

E[A] —— TI[A]

Take a face F € X[ A]. The action of X[ A] is
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onX[Al: F-G=FG
onL[A4]: F-C=FC
onTI[A]: F-X=supp(F)VX
on E[A]: F-x=x

Remark 10.16. In each case of the above, taking A to be the braid arrangement
recovers the usual species L, Z, TT, or E from before!

Example 10.17. Both of the following are left X[ A]-modules, and hence give
rise to cocommutative A-bimonoids.

GIAI={B|B < A} =24

This is the A-monoid of subarrangements of A.

The action of Z[A] on G[A]is F-B = {H € B | F < H}. Note that this action
depends only on the support of F, since F C H <= suppF C H. Therefore, the
action of X[A] factors through the action of TT[.A], and is therefore commutative.

Example 10.18. Consider
GP[A] = { polytopes P in the ambient space of A such that N(P) < N(Z(A))},

where Z(.A) is the zonotope of A, and N(P) denotes the normal fan of P. So this
is all polytopes P in the ambient space of .A that are coarser than the zonotope
Z(A).

The action of Z[A] on this is given by

F-P=0Q,

where Q is the face of P such that Q- O F with Q- € N(P) and F € N(Z(A)).

10.2 From bimonoids to modules

Proposition 10.19. Let H be a cocommutative bimonoid. Define My = H[O],
where O is the central face of A. Then

(i) My has the structure of a left L[ A]-module

(i) H — My is a functor from the category of cocommutative A-bimodules
to left L[ A]-modules.

Proof.
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(i) Take F € L[A], x € My = HI[O]. Then define F - x = pA(x). We have that
O-x= u8A8 (x) = x by the unit laws, and

G- F=ungAGHOAD
= uSue BerrcAFCAL (%)
= u8 Barreuo’ (%)
= uSFASF(x) = GF-x
(ii) Exercise.
O

Remark 10.20. If instead H is commutative rather than cocommutative, we get
a right action since, in the last step, we get G- F- x = FG - x.

Lemma 10.21. Let p: V — W and i: W — V be linear maps between vector
spaces such thatp oi = idyy (a splitting). Then definee =1ip: V — V. eis an
idempotent map such that W = e(V), and moreover, the following commute

DR /\

W= eV W= eV

Theorem 10.22. There is an equivalence of categories between the category
2[A]-mod of left Z[ A]-modules and the category (A/A)-bim ™ of cocom-
mutative A-bimodules, given by

Y[Al-mod —— (A/A)-bim ™™

M% HM

Mp i+ H
Proof. On one hand, we have
M = Hm = My, = HmI[O] =0 -M = M.
On the other hand, we have
H— My = Hmy,-

We want to show that Hp,,, is naturally isomorphic to H. Let F € Z[A]. Then
Hm,, [F] = F- My = F- H[O]. We need to show that F - H[O] = HIF] as vector
spaces. To do that, we apply Lemma 10.21 to the splitting

A

H[O] —— HIF],
n
which is a splitting since Ay pfy = id and p§; AL is the action. O
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Remark 10.23. There are several other related equivalences of categories:

left or right J[.A]-modules
left X[ A]-modules

right X[ A]-modules

left or right TT[A]-modules

A-bimonoids

commutative A-bimonoids

cocommutative A-bimonoids

commutative and cocommutative A-bimonoids

R R

R

Remark 10.24. J[A] comes with a canonical involution that reversed products
(F,F) — (F,F).

Example 10.25. Consider J[A]. Given an A-bimonoid H, we define a different
My = H[O] with a different, twisted action. Then

I
(F,F') - x = uoBr,rAp (X).
We can check that this is an action:
I i
(G, G")(F,F')-x =ugBg,cAS HOBFFAD (X)

I ! /

=uSBc,c kS TBarrrar AL BE AL (X)
i i !

=udud Bar,crBra rcARS Ap(X)

= HSFBGF,F’G/ASG/(X)
= (GF,F/G/) - X

10.3 Incidence algebras and Mdébius functions

Definition 10.26. Let P be a finite poset and k a commutative ring. The inci-
dence algebra of P is the set of all functions f: {(x,y) € 2 | x < y} — k, with
pointwise addition and product

(f-o)x2)= )Y  flxylglxz).

ylx<y<z

The unit element ¢ is defined by

1 ifx=y
S(x,y) =
(xy) { 0 otherwise.

Note that

(x,y) = > fxo,x1)f(x1,x2) - - - f(xp—1, %)

x=%x0<x71 <. <xg=Yy
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Suppose that f(x,x) = 0 for all x € P. Then

(x,y) = > flxo, x1)f(x1,%2) -+ - f(x—1, %)

X=X0<X1<...<Xg=Yy

is a sum over only strict chains. Since P is a finite poset, this means that f is
nilpotent as there is a maximum length of chain.
Suppose that f(x,x) = 1 for all x € P. Then

(6—1)(x,x) =0
for all x € P, so 6 — f is nilpotent, which implies that f is invertible.

Definition 10.27. The zeta function of P is ¢, defined by ((x,y) = 1forallx <y
in P.

Definition 10.28. The Mébius function of Pis pu= ',

The fact that p and ( are inverse translates as follows. Forall x € P, u(x,x) =
1,and forallx < z € P,

w-Qz)= )  uboy)=0= Y ulyz) =G w2

ylx<y<z ylx<y<z

Either of these equations can be used to compute p recursively.
Now let M be a k-module and MP the set of all functions m: P — M. Then
MP is a left I(P)-module under

(F-m)= Y flxymy).

y:x<y

Proposition 10.29 (Mébius Inversion). Let u,v: P — M be two functions. Then

v = ) uly) & oulk= ) uxyvy) (M1)

y:x<y y:x<y
forallx € P.

Proof. The left-most equation holds if and only if - p=vifandonlyif p-v=p
if and only if the right-hand side holds. O

Exercise 10.30. Define a right I(P)-module structure on MP and deduce that
foru,v: P — M:

viy)= D ulx) & uly) = ) vulxy) M2)
forally € P.
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Proposition 10.31 (Weigner’s Formula). Let P be a finite lattice. Let 1. and T be
the bottom and top elements of this lattice.

(a) Fixy > 1 andz € P. Then Z u(lL,x) =0.
x: xVy=z

(b) Fixy < T and z € P. Then Z u(x, T) =0.
x: xA\y=z

Proof. Exercise. For (a), if y £ z, then the left hand side is zero. If x < z, then
xIx<z}={x[|xVy=z}U{x|xVy<z}.
Proceed by induction. O

Definition 10.32. A finite lattice P is lower semimodular if it is graded and
rank(x) + rank(y) < rank(x Vy) + rank(x Avy) for all x,y € P.
Uppser semimodular and modular are defined similarly.

Proposition 10.33. Let P be lower semimodular. Then
signu(x,y) = (—1)rank(y)—rank(x) OR yy(x,y) = 0 for all x,y € P.

Proof. Any interval [x,y] in P is itself a lower-semimodular lattice, with bottom
x and top y. So it’s enough to show that

sign(mu(L, T)) = (—1)rank(T) op 0.

If L =T,thenu(Ll, T)=1andrank(T) =0, so we're done.
Otherwise, choose y € P covered by T (y < T and Ay’ such thaty <y’ <
T). Apply Proposition 10.31(b) with z = 1:

Z u(x, T) =0.

x: xAy=1

There are two cases: x = L orx Ay =1, butx # L. If x = L, then

W, T)=— Z w(x, T).
x:xA\y=1
x#1

Now choose x such that x Ay = L, x # L. We have

1 < rank(x)

< rank(x V y) + rank(x Ay) — rank(x)
= rank(x Vy) —rank(y)

< rank(T)—rank(y) =1
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since y < T. Hence, rank(x) = 1, so rank[x, T] = rank(T) —1.
Proceeding by induction on the rank of P, we may assume signp(x, T) =
(—1)rank(T)=1 Hence,
) 7(7] )rank(T)—] — (7] )rank(T)
sign(u(L, T)) =< .
0if AxsuchthatxAy=_1,x#T.
O

Remark 10.34. If in addition P is relatively compliemented (givenx <y < z,
Jy’such thatx <y’ < zandy Ay’ =x,yVy’' = z), then u(x,y) # 0 for all
x <y in P. Such lattices are called geometric. In the above proof, we can find x
such thatx Ay = 1,xVy =T, hencex # | sincey < T. So the set

{x|xANy=1,x# 1}
is nonempty, and induction yields sign(p(L, T)) = (—1 yrank(T)
10.4 The algebra of a lattice
Let P be a finite lattice. We view it as a monoid under
x-y=xVy. (15)

The unit is L. Let kP be the associated algebra of k-linear combinations of
elements of P. The elements of P form a basis of this algebra.

Lemma 10.35. There is a second basis {Qx }xcp such that

x= ) Q (16)
y:x<y
forallx € P.
Proof. Define
Qc= ) uxy)-yekp (17)
y: x<y

for all x € P. Then apply Mobius inversion with M = kP (a k-module) and
u,v: P — M given by

u(x) = Qx, v(x) =x

for all x € P. Then Eq. (17) implies that

ux) = Y ayvly) = v = Y uly)

y:x<y y:x<y
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by (M1). This shows (16).
Then (16) implies that {Qx}xep spans kP, so {Qx}xep is a basis for kP because
it is of the right size. Uniqueness follows from properties of Mobius inversion.
O

Proposition 10.36. The basis {Qx}xcp is also a complete system of orthogonal
idempotents for kP. This means:

D Qy=1 (18)
yeP
) Qx ifx=y

Q- Qy = {O otherwise. 19)

Proof. Notice that (16) with x = L shows (18) since L =1.
Now assume (18) holds. Then

( > Qs> ( > Qt> by (16)
s:x<s t:y<t

=) Qs by (15)

s: x<s
y<s

= ) Q

s: sVy<s
=xVy by (16)

Xy

Hence, we have recovered (15): x -y =x V' y.
Now we claim that this shows (18) does hold. The reason is as follows. Let
A =kP,and let u: A x A — A be defined by (15), u': A x A — A defined by
(18). What we saw is that
W (xy) = kixy)
forall x,y € P,so u = ', since P is a basis of A. Therefore,

1(Qx, Qy) = 1'(Qx, Qy),

and this is (18).
So it remains to show (19). Claim that

y_QX_{Qx ify <x

0 otherwise.

But this holds because

x ify <
Q'QXZ(Z QZ)sz{S iy <x
z:y<z

otherwise.
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In particular,y - Q =0forally > L. Let’s expand this using (17).

O_UQL_U<Z H(J—/Z)'Z> :ZH(J—/Z)U\/Z: Z Z H(J_,Z) w

zeP zeP weP zeP
yVz=w
This implies that
> uLz=o.
zeP
yVz=w
This is just Proposition 10.31(a). O

10.5 Zaslavsky’s Formulas
Definition 10.37. For each X € TT[A], let ¢cX = #{F € Z[A] | supp(F) = X}
In particular, cl =#L[A.

Remark 10.38 (Recall). The faces of A form a decomposition of a sphere of
dimension equal to the rank of A minus one.

Example 10.39. Consider the hyperplane arrangement of rank 2.

Y
Each face corresponds to a cell of dimension rank(F) — 1. In this case, we get a

regular CW-complex structure on the sphere.

Fact 10.40. In general, for each Y € TI[A], the faces F € X[ A] with supp(F) <Y
form a regular CW-decomposition of a sphere of dimension rank(Y) — 1.

Therefore,

Z (_] )rank(F)fl _ X(Srank(Y)fw _ (_] )rank(Y)f1 .

FeX[A]
supp(F)<Y
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This implies that

Z (_1 )rank(X)CX _ (_1 )rank(Y)fl
XeTT[A]
X<y
for each flat Y € TT[A].
Now we can apply the Mébius inversion from last time. Let w, v: TT[A] — k
be given by

u(x) = (_])rank(X)CX, v(x) = (_Urank(X).
We have that
> uX)=v(Y)
XeTT[A]
X<Y

for ally € TT[A]. Then by (M1), we invert the formula

uY)= )  v(¥uXY)
XeTl[A]
X<y
to get
Proposition 10.41 (Zaslavsky’s First Formula). For all Y € TI[A],
CY — Z (71 )rank(Y)—rank(X) H(X, Y) (Zl)
XeT[A]
X<Y

In particular, when we take Y = T, we get

Proposition 10.42 (Zaslavsky’s Second Formula).

#L[.A] _ Z (_1)rank(A)—rank(X]H(XlT) (ZZ)
XETT[A]

Also, since
I[Al= || {FeZ[A4]|supp(F) =Y},
YeTT[A]

we get

Proposition 10.43 (Zaslavsky’s Third Formula).

#Z[.A] _ Z (_1)rank(Y)—rank(X)u(X,Y) (23)

X, YETT[A]
XY
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Example 10.44. Again consider the following hyperplane arrangement A of
rank 2.

Then
-
MAl = o / ° \ .
NS
Therefore,
1
N
RIXT) g —1 —1
\ 2 /
Hence,

#LIA] = (=124 3D (=) + (=1)°T=2+3+1=5,
and all the summands are positive.

Remark 10.45. We know that signp(X,Y) = (—1 yrank(Y)—rank(X) Hence, we can
rewrite the Zaslavsky formulas as follows:

#HLLAI = ) (X, T)l (Z2)
XeTT[A]

#LAl = ) XY (23)
X, YeTT[A]
X<y
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10.6 Contraction and Restriction
Definition 10.46. Let X € TT[A]. The contraction of A to X is
AX={HNX|H 2 X, He Al

It is a hyperplane arrangement with ambient space X. It has the same center as

A.

Definition 10.47. Let X € TT[A]. The restriction of A to X is
Ax={He A|H DX}

It is a hyperplane arrangement with ambient space X. It has center X.

Example 10.48. Again, we will use that hyperplane arrangement A we always
choose:

Then

Ax = ess(Ax) =

AX = °

Remark 10.49. We chose the notation AX because .AX singles out the portion
of Abelow X, and Ax singles out the portion of A above X.
More precisely,

MAX) ={Y e A | Y < X} = [, X]
L[AX] = {F € Z[A] | supp(F) < X}
LIAX] = {F € Z[A] | supp(F) = X}.

MAx] ={Y eTIA] [ X <Y} =X, T].
Fix a face F with supp(F) = X. Then there are canonical bijections

LAx] ={G e Z[A] |G >F}
LlAx] ={CeL[A]|C>F}
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Example 10.50 (Continued from Example 10.48). Pick the following face in A
to see the canonical bijections in the previous remark.

_r,
x

11 Properties of Z-modules

11.1 Characters of the Tits Monoid
Let M be a Z-module over a field k. Let

II)M HDEES Endk(M)
be the associated representation,

bm(F)(x) =F-x,
FelxeM.

Definition 11.1. The character of M is the function

Xm:Z —Kk, Xm (F) = tr(bm (F)).

Remark 11.2. This is not the same as the characters we were considering in
Section 6.

Lemma 11.3. xpm (F) = dim(F - M).

Proof. Notice that F is idempotent, so we get that M = F- M@ (1—F)- M,
and bm (Fllr.m = id, Ym (F)l(1-F).m = 0. Therefore, the matrix of Pp1(F) is
conjugate to

()~ [

Taking traces gives the result. O

Lemma114.F~F = xm(F) =xm(F)
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First proof of Lemma 11.4. Recall that F ~F' & FF' =Fand F'F =F’. So in kZ,
(F—F')2 = 0. Hence, tr(ppm (F—F)) = 0. O

Second proof of Lemma 11.4. We saw that there is an isomorphism (3: F- M —
F’- M, so apply Lemma 11.3. O

Remark 11.5. Lemma 11.4 says that there is a function X, : TT — k, such that

y XMLy

supp
TT

b
-
//7

L7 XM

We may extend both xp1 to kM and X, to kIT by linearity. Fix F € £, and
let X = supp(F). Recall that

X=) Qye€Kl

Y>X

Then applying Xn, to both sides of this expression, we get

xmF) =xmX) =D xm(Qv) (20)
Y=X

Remark 11.6 (Goal). Our goal is to understand the characters Xp(Qy) for
Y € TT[AJ.
Here’s the approach. Since

Qx = )_ u(X, Y)Y,

Y>X

then we see that

Xm(Qx) = ) uX VXM (Y).

Y>X

But u(X,Y) € Z, and Xy (Y) € N, since Xp (Y) = xm (G) for some G. We will
actually show that Xp1(Qx) € IN instead.

Example 11.7. Let M = kL[ A]. The action of F € £[A] is F- C = FC. Recall that
F<D < FD = D. Hence

FM=KF-C|CelLlAl}=KD € L[A]|D > FL
Therefore,
Xm(F) =dim(F-M) =#D € L[A] | D > F} = #L[Ax],

where X = supp(F).
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Now apply (Z2) to Ax.
#IA = ) Y, T)= ) [uY,T)
YeTT[Ax] YeTT[A]
X<Y

Now look at the right-hand-side of (20); which is of the same form as the right
hand side above. By Mébius inversion,

Xm (Qy) = (Y, TI.
Example 11.8. Let M = kX[A] with F- G = FG. As before, F- M = k{G € Z[A] |
F < G}. Therefore, xm (F) = #X[Ax] where X = supp(F).
Xm (X) = #X[Ax]
= Z (Y, Z)|

Y,ZeTT[Ax]
Y<Z

= Y uv,2)

Y,ZeTI[A]
X<y<z

-y ( S Iu(Y,Z)I)
Y: X<Y \Z:Y<Z

Then again by Mobius inversion,

Xm(Qy) = > ulY,Z)

Z:Y<Z

Remark 11.9. We saw thatif F ~ F/, then (F — F/)2 = 0. This comes from the fact
that
ker(supp) = K{F—F' | F~ F'}.

This is an ideal of kX linearly spanned by nilpotent elements, and in fact this
ideal is nilpotent (although this is not always the case!)
Moreover, ker(supp) is the Jacobson radical of kX.

11.2 Primitive Elements
Let M be a left X-module.

Definition 11.10. An element x € M is primitive if F- x = 0 for all F # 0. Let
P(M) be the space of primitive elements of M.

Definition 11.11. Let Lie = P(kL) and Zie = P(kX).
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Remark 11.12. We call P(kL) Lie by analogy with the Lie elements of a Hopf
Algebra. We offer the name Zie with no justification. It is what it is.

Definition 11.13. We say that z € Zie is special if when we write z = 3 z'F,
with F € £, we have z© = 1.

Proposition 11.14. If z € Zie, then the image of Pz (z): M — M is contained
in the space P(M) of primitive elements of M. If, in addition, z is special, then
Pm (z) projects M onto P(M).

Proof. Take x € M. We have to show that Ypm (z)(x) = z-x € P(M). For this,
take E #£ 0in L.
E-(z-x)=(E-2)-x=0

because z € P(kX). Thenz-x € P(M).
Now suppose that z is special as well. Take x € P(M).

z-x:ZZF(F-x):sz:x
F

because F - x = 0 unless F = O. O
Corollary 11.15. Special Zie elements are idempotent.

Proof. 22 = Py (2)(z) = z since z € Zie = P(kZ). O
Remark 11.16. Let F be the forgetful functor

F: X-Mod — Vect,

. Then kX = End(F) can be recovered as the algebra of natural transformations
F — F, given by
kX — End(F)
z +— Pm(z): M) = F(M)

Similarly, Zie = Hom(F, P), given by

Zie — Hom(F,P)
z +— Umz): M — P(M)

Now take E € £,z =3 z'F € kZ. Then

E~z:;zFE-F:Z< > ZF> G.

G F: EF=G

(If G intervenes here, then E < G) Therefore,

z€Zie & 0= )Y <z forallE,G € ZsuchthatO <E <G.
F: EF=G
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Consider the special case E = G. Recall that GF = G <= supp(F) <

supp(G). Then
z € Zie = Y Zf=o0forall X e T, X # L.
F: supp(F)<X
Lemma 11.17. For z € kZ, the following are equivalent.

(i) z© =1 and Z ZF =0forallX # 1.
F: supp(F)<X

(ii) > ZF=u(LX) forallX L.
F: supp(F)=X

(iii) supp(z) =0, = ) u(L,X)X
X

Proof. To show that (ii) and (iii) are equivalent, observe.

supp(z) = ZZF supp(F) = Z ( Z ZF> X
F )=X

X F: supp(F

Comparing the coefficients shows (ii) <= (iii).

Now let
fxX)= ) 2z
F: supp(F)=X

for X € TI. Then (i) holds if and only if f(L) =1 and
> f(v=0
Y:Y<X

for all X # L, if and only if
f(X) = n(L,X)

(21)

by the definition of the M&bius function. Therefore, we have shown (i) &

(id).

O

Remark 11.18. Notice that if z is a special Zie element, then Lemma 11.17(i)
holds by (21). Therefore, Lemma 11.17(ii) and Lemma 11.17(iii) also hold for

special Zie elements.

?
Remark 11.19 (Recall Remark 11.6). We saw last time that

y XMLy

e
suppl i
XM
T
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where Xp (X) = xm (F) for F such that supp(F) = X.

xm (F) = tr(bm (F)) = dim(im (P (F))).
We want to understand Xp; (Qx), where
X= ) Q.
Y:X<Y
Proposition 11.20. X4 (Q ) = dim P(M).
Proof. We use the fact that special Zie elements do exist, which we have not yet

shown, but will show later.
Let z be a special Zie element. By Lemma 11.17(iii),

Xm(Q1) =Xm(supp(z)) by Lemma 11.17(iii)
=xm(z)
= tr(bm(z))
= dim(im(Pm (2))) by Corollary 11.15, z is idempotent
=dimP(M) by Proposition 11.14
O
Corollary 11.21. Let A be a hyperplane arrangement. Then
dim Lie[A] = [u(L, T)I,
dim Zie[A] = ) |u(L,z)].
z
Proof. By Proposition 11.20,
dim Lie = dim P(kL) =% (Q ) = [u(L, )],
dim Zie = dim P(kZ) =Xyx (Qu) = ) _Iu(L,2)l.
z
O
Remark 11.22. Similarly, one shows that
XM(QX):dim{XGPZ\/l’G-x:OforallG>F} (22)

where F € I is any face such that supp(F) = X. For this, one applies the
preceeding to the hyperplane arrangement Ax.

Noting that [X, Tl 4) = IMlAx], and that F- M is a module over F - L[ A] =
Z[Ax], with P(F- M) exactly the space on the right-hand side of (22). This
accomplishes the goal in Remark 11.6.
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11.3 An analysis of Lie = P(kL)

Definition 11.23. GivenF € £, D € L, let
{(F,D)={CeL|FC =D}

Example 11.24. For the hyperplane arrangement .A below, where F and D are
as labelled, ¢(F, D) consists of D, C and B.

C

Given z € kL, writez = 3_ cel 2E C. As for Zie elements, we have that

z€lie & F-z=OforallF#0 & ) z°=0forallO<F<D
Cel(F,D)

withFe Zand D € L.

Example 11.25. If A is the hyperplane arrangement below, TT[A] = {1, T},
Iu(L, T =1,(C,C) ={C,C}=¢(C,C).

C 9 C

Lie[A] ={aC+bC € kL[A] | a+b =0}

Example 11.26 (Example 11.24, continuted). For the hyperplane arrangement
A below, where F and D are as labelled, ¢(F, D) consists of D, C and B.
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TT[A] is the lattice below.

We have that [u(L, T)| = 2 = dim Lie[A]. The equations say that along each
semicircle, the sum of the coefficients is zero. Then {(F, D) is a semicircle and
{(D, D) is a full circle. We have that

Lie[A] ={(a,b,c) € k> [a+b+c =0}
Below are some facts that we will not prove, but are true anyway.

Fact 11.27. Consider supp: kX — kIT. Then

(a) ker(supp) is the Jacobson radical of kX. This ideal is nilpotent, and in fact

]ac(kz)rank(A)+1 —0.

(b) Jac(kL)rank(A) — Lie[A].

11.4 Dynkin Idempotents

Definition 11.28. Let A be a hyperplane arrangement with center O and ambi-
ent space V. A hyperplane H in V is generic with respect to A if it contains O
but does not contain any other face of A. In particular, H ¢ A

Example 11.29. Consider the hyperplane

Example 11.30. If rank(.A) = 1, then the only possible choice of generic hyper-
planeis H = O.
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Example 11.31. For an example where rank(.A) = 3, consider the hyperplane
arrangement below; it is drawn projected onto the unit sphere in R3.

AR

Let H be a generic hyperplane with respect to A. Let A" = AU{H}. A face F
of A is either completely contained in one of H or H™, or has points in both
H* and H™.

In the first two cases, F remains a face of A’. In the last, F gives rise to 3 faces of
A’: namely FNH", FANH™, and FN H.

Definition 11.32. Let h be a closed half space where the bounding hyperplane
is generic with respect to A. The associated Dynkin element is

o= ) (—1) FF e kz[Al
F: FCh

Remark 11.33. This gives an example of a special Zie element; we proved
Proposition 11.20 assuming the existence of special Zie elements, and this finally
gives an example of such an element.

Note that
Oh=0+ > (—1)rkPF

F: FCh

Proposition 11.34. 0y, is a special Zie element. In particular, it is idempotent.

Proof sketch!. Recall that

z € Zie Z ZF=0
F: EF=G
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for O < E < G, if and only if

forall O < E < G.
So we need to show that

Z (71 )rank(F) =0
F: EF<G
FCh

forallO < E < G.
Recall that each face corresponds to a cell in a CW decomposition of a face.
Consider the following sets.

S1={FeZ[A]: EF < G}

S, ={FeX[A: EF < G,FC h}
S3={FeX[A]: EF < G,FC h}
Here A C AU{H}and H = 9h.

[\ X

D

The idea is that |S;| is complicated, but |S¢| and |S3]| are not.
IS3| is a cone of teh arrangement A’. Hence, it is either a ball or a sphere. It
is not a sphere in this case because H is generic. Therefore, |S3| is a ball and

Z (_])rank(F) = 0.

FeSs

Now the faces in S3 /S, are of the form FNh or FN H, for some F € S;.
So they come in pairs with rank difference 1. Therefore,

Z (_1 )rank(F) =0.

F653\52

111



Lecture 21: Dynkin Idempotents November 3, 2016

It follows that
Z (_])rank(F) = 0.

FeSy
O
Corollary 11.35. For any h as above,
ln(L, T) =#{c € L[A]: C C h}.
Proof. We saw that for a special Zie element z, and any X € TI[A],
Z zF = (L, X).
F: supp(F)=X
Apply toz =0y, X =T. We get
D (S =, T,
CeL[A]
CCh
Then
#{C e LlAl: CChl= (=1 (D (1, T) = (L, T
O

Remark 11.36. Notice that, because each Dynkin element is a special Zie ele-
ment, it is an idempotent.

Recall that 04, is a special Zie element, which means that

Wi (0n): kKL[A] — Lie[A]
c — Op-c

Lemma 11.37. Let h be as before. Let C be a chamber such that C Z h, where h
is the opposite half-space. Then 6y, - C = 0.

The proof of this lemma is hard, and so we will not prove it.
Proposition 11.38. For any such h, and any C € L[A], the set
{6rn-CICCh}
is a basis of the space Lie[A].
Proof. The facts that {(6y,) is onto and Lemma 11.37 imply that
{on-CIC Ch}

spans Lie[.A]. This set has the right-dimension, by Corollary 11.35 applied to
h. O
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11.5 Application: another Zaslavsky’s formula

We can use this to derive another form of Zaslavsky’s formula, which we call
Zaslavsky’s formula for bounded chambers. Let B be an affine hyperplane
arrangement. Then TT[B] is a join-semilattice, meaning it has meets and | may
not exist.

Proposition 11.39 (Zaslavsky). The number of bounded chambers in an affine
hyperplane arrangment B is

D uXxT)

XeTl[B]

Before proving this, we need a lemma. We will not prove the lemma.
Lemma 11.40.
(D) Al =TI[BIU{L}.
(2) Leth be the half space bounded by H that contains Hy. Then
{CeL[A]: CCh}={C e L[B]| C bounded].

(3) Any affine hyperplane arrangement B arises in this manner, where A is
the projectivization of B.

Proof of Proposition 11.39. Let A be a linear hyperplane arrangemetn and H a
generic hyperplane with respect to A. Let H; be an affine hyperplane parallel
to H, and different from H itself. Let B = A™1. This is an affine hyperplane
arrangement with ambient space H.

Then, using Lemma 11.40, we can conclude that

#{C e LBl | Cbounded } =#{C € L[A] | C C h}
= lurrpar (L, T by Corollary 11.35
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But we also have that

mna (LT == > wnaX T == Y wnm (X, T).
XeTT[A]LX#L XeTll[B]
Hence we conclude the result. O

11.6 The radical of kX

Definition 11.41. A nilpotent ideal of an algebra A is an ideal I such that
[™ = 0 for some m.

Note that this is stronger than the statement that each element of the ideal
is nilpotent. In particular, any finite product of elements of the ideal of length
longer than m is zero.

Definition 11.42. The (Jacobson) radical of an algebra A is the largest nilpotent
ideal of A.

Let K = ker (supp: kX — KIT). Our goal is to show that K is the radical of
kZ.

Definition 11.43.

An element x € kX is homogeneous if

X = Z xS G

G: supp(G)=X
for some x € TT. We write supp(x) = X.

Fact 11.44. K is linearly spanned by homgeneous elements. In fact, K is linearly
spanned by all elements of the form F —F' where F ~ F'.

Note that if x € K is homogeneous, then

Z xS =0,

G: supp(G)=X
where X = supp(X).
Lemma 11.45. Let x € K be homogeneous, supp(x) = X.
(a) Ifsupp(F) > X, thenF-x =0.

(b) If y € kX is another homogeneous element, with supp(y) > X, then
yx =0.
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Proof.  (a) Recall that supp(F) > supp(G) <= FG =F. Hence,

F-x= Z xCFG = Z xG | F=0

G: supp(G)=X G: supp(G)=X

(b) This follows from (a), because if y is homogeneous then y is a linear
combination of elements F with supp(F) > X.

O
Proposition 11.46. Let r = rank(.A). Then K" C Lie.
Proof. Takex1,...,xr € Kand F € L,F > O. We need to show
x1x2 -+ xr € KL C kX (23)
Fxixz % =0 (24)

If we show both of these, then x1,...,x, € P(kL) = Lie.
We may assume that the x; are homogeneous. Since

supp(xy) = supp(x) V supp(y),
we have that
1 <supp(x1) <supp(xix2) < ... <supp(x1x2 %) < T.

This is a chain of length v + 1 inside a lattice of rank r, so one of these must be
an equality. Either the inequality comes in the middle or at the top.
Suppose that

supp(x1x2 -+ Xi_1) = supp(x1x2 - - - x{)
forsomei, 1 <1i<r. Then
supp(xi) < supp(x1x2 -+ X{_1).

Now let x = x4, y = x7---xi_1. Then by Lemma 11.45, yx = 0. But yx =
X1X2 ** - Xi, SO we have

X1X2 - Xp = (X1X2 - X)Xi41 - Xe = YX(Xi41 X)) =0

and we’re done.
Otherwise, we have a strict chain, except at the top.

L <supp(x1) <supp(x1x2) <...<supp(xjxz - %) < T.
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Because the rank is 1, again we must have equality at the top otherwise the rank
is larger. This implies

supp(x1x2 - -xr) =T = x1x2 Xy € kL.
This shows (25). To show (24), apply a similar argument for
1 <supp(F) <supp(Fx7) < ... <supp(Fxixz---xp) = T.
This means that
supp(Fx1x2 - - - x4—1) =supp(Fx1x2 - - - x4)
for some 1 < 1 < r. Therefore, Fx1x2 - - - x+ = 0. O
Remark 11.47. Later we’ll see that K™ = Lie.
Proposition 11.48. K™ "1 =0

Proof. Either use a similar argument to the proof of Proposition 11.46, or do the

following.
We have K" C Lie C Zie, so F- K" = O for all F > O. Therefore, (F—F/) -
K" =0forall F~F’. Hence K- K" = 0. O

Corollary 11.49. K = rad (k).

Proof. We know that K is nilpotent and kX /K = kIT is semisimple, meaning it
has no nontrivial nilpotent ideals.

Take x € kI nilpotent. Therefore X € kZ/K is nilpotent. Hence X = 0.
Therefore, x € K.

Therefore, K consists precisely of the nilpotent elements of kX. So K is a
nilpotent ideal (by Proposition 11.48) and contains each nilpotent element, so it
must be the largest nilpotent ideal. Hence, K = rad(kZ). O

Remark 11.50. The algebra My, (k) of n x n matrices over k is simple, meaning
it has no proper nontrivial ideals. So rad(My(k)) = 0. But there are many
nilpotent elements of this algebra.

12 The Joyal-Klyachoko-Stanley isomorphism

12.1 Homology of Posets

Definition 12.1. Let P be a finite poset with minimum | and maximum T.
Suppose L < T. The order complex of P is the simiplicial complex A(P), whose
i-simplicies are the strict chains of length i in P\ {_L, T}, or equivalently, the
chains of length i+ 2 from L to T in P,

L=xp<x1 <...<xy<xi41 <Xip2=1T.
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Definition 12.2. The homology of P is the homology of the chain complex
Ci(P) = kAi(P) = formal linear combinations of i-simplicies.

-2 CP) 2 G (P) —— - —— Co(P) = €y (P),

it
(L <xi<...<xip1<T)=) (F1P(L<xi<...<K<...<x <T)
=1
_(p) _ ker(9;)
Hi(P) = h (0i+1)
Note that Co(P) = kAp(P) = kP, C_1(P) =KL < T}=k.

Remark 12.3. This is the reduced homology of the geometric realization of
A(P). So -
Hi(P) = Hi(A(P)).

Definition 12.4. A finite lattice P is cogeometric if P is lower semimodular and
every element is the meet of elements of rank r — 1, where r = rank(P).

Example 12.5. TT[A] is cogeometric.

Fact 12.6. If P is a cogeometric lattice of rank r, then A(P) is homotopy equivalent
to a wedge of spheres of dimension v — 2.

A(P) ~ ST 2/ ST 2./ ST,
Therefore,

Hi(P) =

kM ifi=r—-2
0 ifi#r—2,

and we can compute the reduced Euler characteristic as

This implies that
p(L, T)=(=1)"m.

So we can figure out m from the Mobius function:
m = [u(L, T
Example 12.7. Now let P = TT[A], where rank(A) = r. So

dim H,_ (TTLA]) = [u(L, T)).
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Recall also that dim Lie[A] = |u(L, T)|, so both Lie[.A] and H,_ (TT[A]) are
vector spaces of the same dimension. Our goal is to find a deeper relation
between these two.

Theorem 12.8 (Aguiar). There is a natural isomorphism (natural in A)
H™2(TTLA]) ® E°[A] = Lie[A],
where EC[A] is the space of orientations of A (to be defined later).
We will prove this theorem in this section.

Example 12.9 (Joyal-Klyachko-Stanley, Barcelo-Wachs, Bjérner). In particular,
when A is the braid arrangement in R™ (having rank r = n — 1), then there is
an isomorphism

H™ 3 (Mn]) ® & = Lie[n]

not only as vector spaces, but also as S -modules. Here,
e TI[n] is the lattice of partitions of [n].
o &, is the sign representation of Sy,.
e Lie[n] is the space of classical Lie elements.
e S, is the symmetric group.

Example 12.10. Let A be the braid arrangement in R3.

-
Al = o / ° \ °
\L/
A(TTLA]): o . o~ S0\/§0
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Example 12.11. Let A be the braid arrangement in R*. Then

T
MA] =
1

Then A(TT[A]) has 13 vertices and 18 edges. u(L, T) = —6, and

A(TTLAD) ~ STV sTvsTvsTvstvsT,

12.2 Orientations

Let V be a real vector space of dimension n. Given two ordered bases of V,
B=(vi,...,vn)and C = (wq,...,wy). Let T: V — V be the linear change of
basis. Write B ~ C if det(T) > 0. This is an equivalence relation.

Definition 12.12. The equivalence class of ordered bases on V is an orientation
of V. There are exactly two orientations if dimV > 1.

Definition 12.13. Let A be a hyperplane arrangement in V. Let E°[A] denote
the k-vector space spanned by the two orientations o7, 0 of V/O modulo the
relation o7 + 03 =0.

Let Amax(Z[A]) be the set of maximal chains of faces
f=0<F <...<F_7 <F).
Let C¢ = F;, and
supp(f) = (L <x1 <...<xp_1 < T).
Note that r = rank(.A), C¢ is a chain, and
supp(f) € Ar_2(TTLAJ).

Pick a vector v; € F; foreachi=1,...,r. Then (vq,...,v,) is an ordered
basis of V/O. Let [f] be the equivalence class of this basis: it does not depend
on the chosen vectors.
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Example 12.14.

w2

Vi Wq

wi = ary, wp = bry +cro.

where a,c > 0.
Definition 12.15. Given an orientation T, define

(0 1) {1 if o = [f]

—1 otherwise.
Then, in E°[A], 0 = (o: f)[f].

Recall that C,_ (TT[A]) = kA,_»(TT[A]).

Definition 12.16 (Wachs, Bjorner). Given a chamber C and an orientation o,
define the Wachs elements

WC,O' € Crfz (H[AD

by
Weo = Z (o: f) supp(f).
fEAmax (Z[A])
Cs=C
We will show that

We,o € Hro2(TTIA]) = ker (crzmuu) = muu)) .

Lemma 12.17. Let E, G be faces of A such thattE < G and rank(G) = rank(E) + 2.
Then there are exactly two faces F1 and F; such thatE < F; < G fori=1,2.

F /G\F
N
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Proof. If rank(A) = 2, this is clear.

)

Fq

In general, let X = supp(E), Y = supp(G). Then AY, is of rank 2 and [E, G]y 4
is in bijection with an interval from the center to a chamber of AY. O

Proposition 12.18. W¢ ; € H,_,(TT[A])

Proof.

A We,o) = Y (o:f)d(supp(f)).
f: C¢=C

This is a linear combination of chains of flats of the form
x=(L <X <...<)/(:<...<XT,1 < T).

Each chain of faces f such that supp(f) = x, there is exactly one other chain
' such that supp(f’) is x after removing the i-th element of the chain, and f’
differs from f in exactly place i. This is by Lemma 12.17.

su
£ P X

121



Lecture 23: Cohomology of Posets November 10, 2016

So it suffices to check that (o: f) + (o: f') = 0, that is, [f] # [f].

v _; =avi_j +bv; fora <0. O

12.3 Cohomology of Posets

Definition 12.19. Now let C*(TT[A]) = C;(TT[A])* be the dual of the space of
chains in P. This is called the space of cochains. We reverse all the arrows on
the complex of spaces of chains to get a complex of cochains.

0r_2 0r_3 I
Cr2 — Cr3 Co Cq
cr—2 2 cr—1 o] . co a0 c1!

H; > = ker(d;_3)
H™ 2 = coker(d"2) = C""2/im(d"2).
Definition 12.20. Define a map

J: CT2(MAl) — LIA]® EO[A]
¢ X teapn(zia) Plsupp(f)) Cr @ [f]

natural in A.

Lemma 12.21. ] factors through cohomology:

c2 L, 1@E°

HT—Z
and
J(d) =) dWcolC@o. (25)
CeL
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Proof. Pick an orientation o. By the definition of (o: f), we have

J(®)= >  d(supp(f))(o: )Cr@0

fE€Amax

= Z Z ¢ (supp(f))(o: f) | C® o
CelL fCGfA:méx

=Y ¢Wco)Cwo.

Cel
If ¢ = 3*(p) for some P € C™—3, then
d(We,o) =0(d(Wc,6)) =1(0) =0
for all C. So J(¢) = 0. O

Theorem 12.22 (Bjérner-Wachs). Pick a generic hyperplane H for A, and leth
be one of its closed half-spaces, h the opposite half space. Then

{WC,O': Cc H}
is a basis of H,_;(T1[A]), and therefore
dim Hy_ (TT[A]) = [u(L, T)| =#{C: C C h}

We won't prove this theorem, because it’s a lot of work, but we will use it
often.

Definition 12.23. Let {WE 7. C C h}be the dual basis of H"2(TT[A]), that is,
C,(T %
WET = (We o).

Lemma 12.24. The vectors ](W]L(Lt '%) are linearly independent.

Proof. A computation.

JWE) =Y Wi °(Wp,)D®o by Eq. (25)
DeL
=) W Wpo)D®o+ Y W°(Wps)D®o
DeL Del
DCh D¢h
=CRo+ Y Wy Wp,e)D®o
Del
D¢Zh

Each ](WE ') has a term C ® o that doesn’t appear in any other ](W}CLj ,’U) for any
other chamber C’. Therefore, these vectors should be linearly independent. [J
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Lemma 12.25. Let f = (O < F; < ... < F.) € Anax(Z[A]). For each i, let
Gi be the second face, other than F;, such that Fi_1 < G; and supp(G;) =
supp(Fi).Then

Z [Q]Cg:(Fl_G1)"'(Fr_Gr)
geAmax
supp(g)=supp(f)

where the product is taken in kX[A].

Assuming this lemma, each F; — G; is an element of the radical of kX =
ker(supp). Hence,

[](Fi —Gy) € rad(ks) C Lie.

Theorem 12.26.
H™2(TTLAl) —— LIA] @ EOLA]

Lie[A] ® E°[A]
Proof. It suffices to show that

J: H™=2(MA) ® E°[A] — L[A]
PR ) fen,,, Plsupp(f))(o: f)Cy

has image in Lie[A] (this is enough because EO[A] ® EC[A] = k). O
Corollary 12.27. J: H™2(TT[A]) = Lie[A] ® E°[A]

13 Connections to classical algebra

Definition 13.1. Let V be a vector space. Then define the following:
(a) T(V) is the free associative algebra on V,
(b) S(V) is the free commutative algebra on V,

() L(V) is the free Lie algebra on V.
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Fact 13.2.
@ T(V)= & ver
n>0
(b) S(V) is the abelianization of T (V).
(c) T (V) is the universal enveloping algebra of L(V).
(d) T (V) isa Hopf algebra.
(e) L(V) is the primitive elements of T(V).
LV)=xeT+(V)IAX)=10x+x® 1}

Proof sketch.

(a) This object satisfies the universal property of the free associative algebra
onV.

(b) Both objects satisfy the universal property of the free commutative algebra
onV.

(c) Both objects satisfy the universal property of the free associative algebra
onV.

(d) T(V) is the universal enveloping algebra of a Lie algebra, and there-
fore Hopf. Explicitly, the coproduct is given on a homogeneous element
ViVy -+ v by

Aviva--vm) = Y vs®vr.
SUT=[n]

(e) For any Lie algebra g, the set of the primitive elements of U(g) is isomor-

phic to g as Lie algebra. O

L(V) is the Lie subalgebra of T(V) with the commutator bracket [v,w] =
vw —wv. It is generated by V, and it’s elements are finite brackets of elements
of v.

Definition 13.3. The Dynkin operator is

Ov:T(V) — L(V)

Vicovn o 2Ly val vl vl

Theorem 13.4 (Dynkin-Weber-Specht). ®y is an idempotent and ©v/ |y = id.
Example 13.5. Whenn =2,

0% (vw) = % <;(vw—wv)—1(wv—vw)) = 1(vw—wv) = Oy (vw).
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13.1 The Schur functor of a species

Definition 13.6. Let P be a species. Its Schur functor Fp: Vec — Vec is

Fp(V) = @ Vo™ @xs, Pnl.

n>0
Recall that P[n] is a left S,-module and V€™ is a right S,-module via
VI QVn 0=V5(1) & QVqg(n)-
Example 13.7. We have that, as kS, -modules,

T(V)= V" = P Vo™ @xs,, kLn],

n>0 n>0
since kL[n] is the regular representation of Sy, hence kS = kL[n]. So T = Fi.

Definition 13.8. If G acts on W on the right, then the space of coinvariants of
this action is

W
We = /k{w—w'g\WGW,geG}'

As a kG-module, Wg = W ®y g k, where k is the trivial G-module.

Example 13.9. As kS,,-modules,

S(V) = @@ (VE™)s, = @ VO™ @xs, k= P VO™ ®xs,, kEM].

n>0 n>0 n>0
Hence, S = FyE.

Fact 13.10. There is a species Lie such that £ = Fpj.. This means that

L(V)= P V™ ®xs, Lieln].

n>0

13.2 Schur-Weyl Duality

The classical Schur-Weyl Duality gives a relation between GL(V)-representations
and Sy -representations, where dim V = n.

There is an action of GL(V) on V from the left, so we get an action of GL(V)
on V¥ diagonally;

A-Vi®@v® - @vn) =(Av1) ® (Av2) ® - - @ (Avn).

Definition 13.11. The centralizer algebra of this action is Endgp (v (V®™).
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If f € Endgy(v)(V®™), then f is a linear map f: V¥™ — V& such that

ven _f o yen

ol

ven _f o yen

for all g € GL(V). That is, f commutes with all g € GL(V).
The right-action of o € Sy, on V®™ by permuting the factors defines a map

Sn — Endgp (v (VE™).
Moreover, this commutes with the action of GL(V).
Theorem 13.12 (Schur-Weyl Duality). If dim V > n, then
kSn — Endgp (v) (VE™).
Theorem 13.13 (Categorical Schur-Weyl Duality ). The functor

Sp — End(Vect)
P — Fp

is full and faithful.
This says that given two species,
Homs, (P, Q) — Hom(Fp, Fq)

Therefore, for any f: P — Q a morphism of species, we have a natural transfor-
mation Fp — Fq given by

FpV) ——— Fo(V)

id f
VI @s Pl SN VE @ s Q]

Why is this theorem called Categorical Schur-Weyl duality?
Example 13.14. In the case of T = Fi1,

End(T) = Endsp (kL) = | | Endys,, (kLIn])

n>0 n>0

12
—]
a3
E)

On the right, Schur’s lemma gives that Endys (kL[n]) = kL[n], since kL[n] =
kSn.
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In particular, we have by Categorical Schur-Weyl duality,
Hom(T, £) = Homgy, (kL, Lie) = Lie

Extracting the componentwise isomorphisms for a vector space V, we see that
for all n, the following holds.

Hom/(V®™, ven ®xs,, Lie[n]) = Homys, (kLn], Lie[n]) = Lie[n].
Let’s apply this to the Dynkin operator. We have
Ov: T(V) = L(V)

for each vector space V. Verifying naturality in V is the same as checking that
the following diagram commutes for all g: V — W linear.

TV) -2Y% £(v)

lT(g] lﬁ(g)

T(W) — L(W)

This is routine, and gives us a natural transformation © € Hom(T, £).
This natural transformation © corresponds to a sequence of linear maps
(On)n>o with ©,, € Lie[n]. We have

OVVi® - ®@vn) =V ® - Qvn Vs, On € ven ®xs,, Lie[n].

Example 13.15.
! .
Ov(uww) = 3 [, v, W] ®s, ids,
= % (ww —vuw —wuv +wvu) ®s, (12 3)
1

=z uww—uw-(213)—uvw-(3712)+uvw-(321))®s, (123)

—_ W

ziuvw®53 ((123)—(213)—(312)+(321))

So in this case, we have

@3:%((123)—(213)—(312)+(321)) € Lie[3]

We write this sometimes as

0, = % 1,2],3]

where the boldface digits 1, 2, 3 are formal symbols, not numbers.

Remark 13.16. Here Lie is a species, and so Lie[n] is an Sy -module; neither
are Lie algebras. The Lie algebra in question is £(V). But just as kL is a Hopf
monoid in Sp, the species Lie is a Lie monoid in Sp.
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13.3 Fock Functor

To define the Schur functor Fp, we fixed P, but let V vary to get Fp: Vect —
Vect. If we fix V but let P vary, then we get the Fock functor.

Definition 13.17. The Fock functor Ky : Sp — gVec from the category of
species to the category of graded vector spaces is defined by

Ky (P) = € V™ @xs,, Pnl.

n>0

Remark 13.18 (Recall). Sp is a symmetric monoidal category under the Cauchy
product, and so is the category gVec of graded vector spaces.

Fact 13.19. Ky is a strong symmetric monoidal functor. Therefore, if P is a
monoid in Sp, then Ky (P) is a graded algebra.

If P is Hopf, then kv (P) is a graded Hopf algebra, and if P is a Lie monoid,
then Ky (P) is a graded Lie algebra.

Example 13.20. If P = kL, then Ky (kL) = 7 (V) is a cocommutative graded
Hopf algebra.

If P = kE, then Ky (kE) = S(V) is a commutative and cocommutative graded
Hopf algebra.

If P = Lie, then Ky/(Lie) = £(V) is a graded Lie algebra.

Remark 13.21.
L(V)=P(T(V)) & Lie=P(klL)

where P denotes taking the primitive elements.

As,t: HII — HIS] @ H[T]

14 Additional (Category Theory) Topics

14.1 Monoidal Functors

We'll return to the situation of Section 3 and discuss what it means for a functor
to preserve the monoidal structure of a monoidal category C.
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Let C and D be monoidal categories, and F: C — D a functor. Let M be a
monoid in C, with Me M £ M, 15 Miit's multiplication and identity maps.
Is F(M) a monoid object in D?

We can apply F to both p and t, but this doesn’t quite get us a structure of
a monoid on F(M). We need, in addition, maps F(M) e F(M) — F(M e M) and
I — F(I).

W m)

Definition 14.1. A (lax) monoidal functor (C,e,I) — (D, e,I)isa triple (F, ¢, o)
where F: C — D is a functor,

dx,y: F(X) e F(Y) = F(XeY)
a natural transformation, and
bo: I = F(I)
a morphism, subject to the following diagrams commuting.

F(X) o F(Y) o F(Z) XS 7F (X o Y) o F(Z)

lidF[X].(bY,Z J{¢'X-Y,Z
PX,YoZ
F(X)eF(YeZ) ——— F(XeYeZ)

F(D) o F(X) -2 F(IeX)

L.idXT

H
TeF(X) =——— F(X)

Definition 14.2. A monoidal functor (F, ¢, ¢o) is strong if ¢, b are isomor-
phisms, and strict if ¢, ¢ are identities.

Proposition 14.3. If (F, ¢, do) are lax monoidal, and (M, u, ) is a monoid in C,
then (FM, F(u) o dm m, F(1) o do) is a monoid in D.

Exercise 14.4. Prove the proposition above.

Definition 14.5. A colax monoidal functor (C, e, 1) — (D, I)isa triple (F, ¥, o)
where F: C — D is a functor

Pxy: F(X,Y) = F(X) @ F(Y)
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a natural transformation and

Po: F(I) — 1
a morphism, subject to the dual axioms as in Definition 14.1.
Proposition 14.6. Colax monoidal functors preserve comonoids.

Remark 14.7. Strong monoidal functors are both lax and colax monoidal func-
tors.

Definition 14.8. Let C and D be braided monoidal categories with braiding f3.
A bilax monoidal functor C — D consists of a functor F: C — D that is both

lax and colax
bx,y

F(X) o F(Y) 11)<:> F(XeY)

[}
I 4><¢7° F(T)
0

such that the following diagrams commute for any A, B, C,D € C.
F(AeB)eF(CeD)

wA,B"l’B/ \MA-B,C-D)
F(A) e F(B) e F(C) @ F(D) F(AeBeCeD)
lidoﬁoid lF(idoﬁoid)
F(A)eF(C)e F(B) e F(D) F(AeBeCeD)

da,coedp,c (/Il’AoC,BoD
D)

F(AeC)eF(Be
(and three other axioms)

Proposition 14.9. Bilax monoidal functors preserve bimonoids.
Definition 14.10. A bilax monoidal functor is bistrong if ¢ = Pl
Remark 14.11. It turns out that F is bistrong if and only if

o (F, ¢, do) is strong,

o (F,, Vo) is costrong,

e The diagram below commutes.

$AB

F(A) o F(B) F(AeB) 25 F(A) e F(B)

I |Fie) |e

$B,A Vg,A

F(B)eF(A) —— F(BeA) —— F(B)eF(A)
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14.2 Monoidal properties of the Schur Functor

Example 14.12. Consider the Schur functor. Given a species P and vector space
Vv,
Fp(V) = D V" ®s, Pnl.

n>0

This gives rise to a functor

Sp — End(Vect)
P +— .7:]).

The objects of End(Vect) are the functors F: Vect — Vect, and the morphisms
are natural transformations.
(Sp, o) is a monoidal category under substitution:

(PoQl= P PXI® ® QB
]

XeTT[I BeX
(End(Vect), o) is a monoidal category under composition:
(Fo G)(V) =F(G(V)).
Fact 14.13. F: (Sp, o) — (End(Vect), o) is strong monoidal.

Definition 14.14. An operad is a monoid in a monoidal category. A monad on
C is a monoid in the monoidal category (End(C), o).

Remark 14.15. As a consequence of Fact 14.13, if P is an operad, then Fp is a
monad on Vect. Moreover, Fp (V) is the free algebra on V over the operad P.

Example 14.16. kL is an operad, and therefore Fy (V) = T(V) is the free asso-
ciative algebra on V. kE is an operad, and therefore Fy.g (V) = S(V) is the free
commutative algebra on V. So we say that kL is the associative operad, and kE
is the commutative operad.

Example 14.17. Define three bilax monoidal functors K, XV, K: Sp — gVec by

K(P) = (P])n>o,
KV (P) = (Pn)n>o-

Although K and KVee are the same on objects, they will have different bilax
structures.
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Given species P and Q, define ¢, on components of degree n by

dr0
K(P) e K(Q) K(PeQ)
VYp,Q ‘
Di+j—n Plil ® Q[ DsuT=m PISI@ Q[T] = (P e Q)]
. . id®can(i 1, n] . . o
¢: Pl ® Q[j] PAl® Qi+1,...,i+j=mn]
can7]®can71
P: P[S] @ Q[T] > il Pls] @ QIt]
Likewise, define ¢V and ¢ by
¢V Pli) @ Qfj] Z=5N, ™ pis] @ Q]
IS|=1
ITl=j

P[s] ® Q[t] if S initial

id -1
$VPIS] @ PT) T
0 otherwise.

Fact 14.18. (K, ¢, V) is a bilax monoidal functor from Sp to gVec.

Definition 14.19 (Notation). If S C N is a finite subset, and s = |S|, then there is
a unique order-preserving bijection o: [s] — S. Hence we have o,: P[s] — P[S].
Call ¢, = cang.

Remark 14.20. If G is a finite group and W is a G-module, then the norm
transformation is

w — W
wo Zg-w
geG

Proposition 14.21. There exists a morphism of bilax monoidal functors k: K —
KV. This is given by

0-X

q

€Sn

In characteristic zero, this gives rise to a new bilax monoidal functor K(P),
which is the image of «. It is given by
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where Vg denotes the space of coinvariants of the action of Gon V.

K—*—— KV

N

Note also that IC(P) = Fp(k), because for any G-module W, k ®c W = Wg.

14.3 Simplicial Objects

Definition 14.22. The simplicial category A has for objects the finite, nonempty,
totally ordered sets, and for morphisms the order-preserving maps.

Definition 14.23. The facemap 6;: {0 <1 <...<n—-1} -{0<1<...<n}
is the unique injective, order preserving map with image missing 1.

The degeneracymap o;: {0 <1 <...<n+1} = {0 <1< ... <n}is the
unique surjective, order preserving map that identifies i and i + 1.

n
5, i+1 ' _
i4+1 :
1 i i"i
8. i — i
i—1+—i-1 Oi
5. 0 —% .o
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3 2=3-1

1 1=2-1

Definition 14.24. Let Cbe a category. A simplicial objectin C is a contravariant
functor X: A — C. Write

Xn=X{0<1<...<n})
for n > 0. By contravariance, we have morphisms in C
83Xy =2 Xpqforn>1,0<1<n
07 :Xn =2 Xpgrforn>1,0<1<n

Proposition 14.25. Let X be a simplicial vector space. Define
n .
O =) (—1)'8}: Xn = Xn_1
i=0

foralln > 1. Then 6;,_1 0 6, =0 for allm > 2. Thus;

Ont1 0 On_1 0

is a chain complex.
Lemma 14.26. For0 <i<j<mn,
6]'5{ :5i6]‘_] :{0,1,...,n—1}—={0,1,...,n+1}

Proof. Both composites are injective and order-preserving, and miss i and j from
the image. Hence, they are equal. O
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Proof of Proposition 14.25.

n—1 n o
m_godn=>) Y (-1)"s;o8}

i=0 j=0
n—1 n

— Z Z 1+) 6 08 )
i=0 j=0

_Z 1—0—]606 Z 1+]606)
i<j j<i

=Y (=)o) + ) (—1)(8508:)" by Lemma 14.26
i<j j<i
*Z YR (84, 0 81)* +Z 1+5(6j061)* seth=1, k=j—1

h<k j<i
=0

O

Example 14.27. Let X be a topological space. There is a simplicial set S(X) such
that S (X) = {f: A™ — X continuous}, where A™ is the geometric n-simplex
(dim A™ =n).

871 Sn(X) — Sn—1(X) is restriction to the facet of A™ that misses i. o7 is simi-
larly defined from o;. More generally, an order-preserving map y: {0,1,...,n} —
{0,1,...,m} gives rise to amap y: A™ — A™ and then

Y Sm(X) — Sa(X)
f — foy

Let C (X) = kS (X). Then C(X) is a simplicial vector space.
By Proposition 14.25, (C(X), 0) is a chain complex, called the singular chain
complex of X.

Example 14.28. Let G be a group. There is a simplicial set B(G) such that
Bn(G) = G™. 8}: Bn(G) — Bn_1(G) is defined by

5* (92/---/91’1) l:O/
(91/"'191’1) }—l> (91/--w9191+1/---/9n) O<"L<TL,
(91,++,9gn-1) i=n

07: Bn(G) — Bny1(G) is defined by

(911"'1911) L — (91r~--/91',/1/91',+l/-~-19n)
Let Cn(G) = kBn (G). Then (C(G), 9) is the bar complex of G.
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Example 14.29. Let K be a simplicial complex with vertex set V (a family of
subsets of V ordered under inclusion). Fix a partial order on V that induces a
total order each simplex of K (for example, any total order on V will do). There
is a simplicial set S(K) such that

Sn(K) = {(Vo,...,vn) eEVtivg<vy<...<vpand{vg,...,vn} € K}

N )

(vo,.--,vn)

61 Sn(K) — Snii(K)

(vo,---,vn) > (Vo,.-., Vi, Vi, Vig1, ... Vn)

Remark 14.30. Example 14.28 can be carried out for any small category C. The

simplicial set is the nerve of C.
If we think of a poset as a category, we have a commutative diagram as

below.

n(K — Sn—l (K)

Vn) o (Vo,ee e, Vi1, Vig1,..-Vn)

/Vn

small categories

/ nerve (Example 14.28)

posets simplicial sets

order m %mml 14.29

ordered simplicial complex

Poset homology is the chain complex given by either of the two ways around
this diagram, either through nerves of small categories or through an ordered
simplicial complex.

Example 14.31. Let C be any set-theoretic comonoid in the category of set
species. There is a simplicial set B(C) such that

Bn(C) ={(I,x,S1,...,Sn) | I=S1U...USx,x € C[I]}.
Then 87 : By (C) — By—1(C) is given by

(I\S1IX/51152/'-'/ST1) 120
(Lx,S1,..,Sn) > ¢ (I,x,S1,...,5USi41,...,5,) O0<i<n
(I\Sn,xIns,,S1,---,Sn1) i=mn

07 : Bn(C) = Bn41(C) is simpler:
(I,X,S],...,Sn) — (I,X,S],...,Si,®,51+1,...,5n).

This gives rise to a notion of homology of species.

137



Lecture 27: Simplicial Objects December 1, 2016

Definition 14.32. For C a category, let sC be the category of simplicial objects
in C.

Fact 14.33. If (C, ®) is monoidal, then sC is monoidal as well. Everything is
done diagonally.

(X®Y)n E— Xn®Yn

léf lé;‘@éf{

(X®@Y)n—1 = Xn1®Yn_q
Remark 14.34. S: Top — sSet is strong monoidal.

Definition 14.35. Let dgVec be the category of chain complexes of vector spaces.
The objects are pairs (V,09), where V € gVec, with V = (Vi)n>0 and also
3= (0n:Vn = Vn_1)n>1 with 3% = 0.

dgVec is monoidal under the Cauchy product:

b b

(VW1 2 Vi @Wj+VioW;,
dgVec is braided under

vw_—*P sw.v

U U
VieW; —— W;0V;
w w
voaw —— (=1)Yvev

Theorem 14.36. The chain complex functor

(sVec,®,B) — (dgVec,-,B)
X — (C(X),8)

is bilax monoidal, with

o ¢: C(X)-C(Y) = C(X®Y), called the Eilenberg-Zilber map (degenera-
cies).

e P: C(X®Y) — C(X) - C(Y), called the Alexander-Whitney map (faces).
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14.4 The Eckmann-Hilton argument

Proposition 14.37 (Eckmann-Hilton 1960). Consider a set with two operations
+ and X, and two elements 0 and 1. Assume

a+0=a=0+a

axl=a=1xa

and moreover,
(a4+b)x(c+d)=(axc)+(bxd).

Then + and X coincide, 1 = 0, and the operation is commutative.

Proof. Seta=d=0,b=c=1 = 1=0.Setb=c=0 = axd=a+d
Finally,seta=d=0 = bxc=c+b. O

Exercise 14.38. Deduce that the operations + and X are associative.

Example 14.39. Recall that any continuous map f: X — Y induces a morphism
fie: (X, x0) = m1(Y,yo) for some choice of basepoints xp € X,yp € Y. Let G
be a topological group. Then in particular p: G x G — G is continuous, so we
get a morphism of groups

m1(G,e) x 1 (G, e) =m(G x G, (e,e)) 5 m(G,e)
(a,b) — a+b

Let’s denote the product of 711 (G, e) by a - b.
The constant map e is the unit for both - and +. We have that

(a,b)— a+b
(c,d)—c+d
Since . is a morphism of topological groups, we get
(a-c,b-d)— (a+b):(c+4d)

Therefore,
(a-c)+(b-d)=(a+Db)-(c+d).

Then by the Eckmann-Hilton argument, a +b = a - b and 711 (G, e) is abelian.

Example 14.40. Let I = [0, 1]. Recall that

(X, x0) = {homotopy classes of maps f: I? — X such that f(3I?) = xo}
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12 (X, x0) is a group where the product of f and g is defined as the homotopy

class of

£(2x,y) ifo<x<?
(f'g)(x,y)z{ Y o > fog=| f | 9
g2x—1,y) if 3 <x <1,
We may define f + g by
fix,2y—1) ifF <y <1 !
X, - I 5 < =
(f+gixy) =4 V-0 Pa=¥= ftg=
g(x,2y) if0 <y <. g
We have that
f h
(f+g)-(h+k)= =(f-h)+(g-k)
g k

Here 0 = 1 is the constant map xp. Then by the Eckmann-Hilton argument,

75 (X, x0) is abelian.

14.5 2-monoidal categories

Definition 14.41. A 2-monoidal category (C, ¢, *,1,]) or a duoidal category
consists of a category C with two monoidal structures: (C, ¢,I) and (C, %, ]), and

a natural transformation

CaBcD:(AxB)o(CxD)— (AoC)x(BoD),

and maps
o:1—=1Ix] T ]=]0], Co: I —7T.

Such that the following diagrams commute:

(A%B)o(CxD)o(ExF) —CCPEF (A L B)o((CoE)x(DoF))

lCA/B,C/DQid lCA,B,CoE,DoF

((AoC)%(BoD))o(E+F) —CBPEF (A CoE)x(BoDoF)
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CA,B+C,D,E+
—

(AxBxC)o(D=x*Ex*F) F(AOD)*((B*C)O(E*F))

J/CA*B,C,D*E,F Jid*CB,C,E,F
CA,B,D,E*id

(A*B)o(D*E))*(CoF)"—= (A¢D)*(BoE)*(CoF)
(some unit axioms)
(Note: we do not require any of these maps to be invertible!)

Definition 14.42. If ¢, {p, o, T are isomorphisms, then the 2-monoidal category
is called strong.

Example 14.43. Let G be a monoid and C be the category of G-graded vector
spaces. Then an object looks like

V= (Vg )gEG/
and there are both the Cauchy product

(VoW)g= @ Vi @W,
g=xy

and the Hadamard product

The map ( is given component-wise by the map across the bottom of the follow-
ing square.

(AxB)o(CxD) (AoC)*(BoD)

] ]
P Ac@Bx®Cy®Dy — (@ AX®Cy)®< S B;®D{J>

g=xy Xy=g x'y’'=g

Notice that C is just an inclusion; there’s no chance of it being invertible here.
Exercise 14.44. Adapt this to the category of species.

Example 14.45. Let P be a lattice. Let C be the poset associated to the poset P,
with a unique map x — y whenx <y inP.
Then definexoy =xVyand x*y =x/Ay. Then

C:(aAB)V (cAd)— (aVe)A(bVd)

exists if and only if (a Ab)V (cAd) < (aVe)/A(bVd)in P. It's enough to
check thataAb < (aVec)A(bVd),andcAd < (aVe)A(bVa).
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For the first, it’s enough to know thata Ab < aVcand aAb < bV, and
likewise for the second, it’s enough to know thatc Ad < aVcandcAd <bVd.
All of these hold by general properties of meets and joins.

Therefore, there is such a map . But again, it may not be an isomorphism!

Exercise 14.46. Generalize to any category C with finite products and coprod-
ucts.

Exercise 14.47. Fix a set X. A digraph on X is a triple (A, s, t) where A is a set
and s, t: A — X are two maps. Given a € A, we write a: s(a) — t(a). Let Cbe
the category of digraphs on X, where morphisms (A, s, t) — (B, s, t) preserve
source and target.

Define

AoB={(ab)cAxB]s(a) :t(b)}:{*L*&*}
A xB ={(a,b) € AxB|s(a)=s(b),t(a) :t(b)}:{ e }

The exercise is to define (.

Proposition 14.48. Let (C,e,3) be a braided monoidal category. Then C is
strong 2-monoidal with ¢ = * = e, and

ide 3 eid
—

(=(AeB)e(CeD) (AeC)e(BeD)

Proof Sketch. The axioms for ¢ follow from the axioms for (3. O

This is a kind of converse to an Eckmann-Hilton argument. A version of the
Eckmann-Hilton argument for categories is that the converse holds.

Theorem 14.49 (Eckmann-Hilton for Cat, Joyal Street). Let (C,©,*,1,]) be a
strong 2-monoidal category. Then C satisfies © = *, I = ], and the monoidal
structure (C,¢,1) = (C, *,]) on C is braided.

14.6 Double monoids

Definition 14.50. Let (C, ¢, *,1,]) be a 2-monoidal category. A double monoid
(A, 11, 12, 41, 12) consists of an object A together with two monoid structures
(A, AcA = AT o A)and (A, up: A*xA = A, 1: ] — A), such that the
following commute.

(AxA)o(ArA) —AAA A G AY 4 (AoA)
luzouz lm*m
AcA H A AxA
K2
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(some unit axioms)
Similarly, we may define double comonoids.
Definition 14.51. A double bimonoid consists of an object B that is both a

monoid (B,pu: BoeB — B,t: I — B) with respect to 6, and also a comonoid
(B,6: B — B xB,e: B — J) with respect to *, such that the following commute.

(B,B,B,B

(BxB)o(Bx*B)
AOA J{H*H
BoB s B A BB

(BoB) * (BoB)

(some unit axioms)

Theorem 14.52 (Categorical Eckmann-Hilton). Let (C, o, 3) be a braided monoidal
category. View it as a strong 2-monoidal category. Let (A, 111, 12) be a double
monoid. Then i = Wy, and the monoid structure on A is commutative.

Proof sketch. Consider

AoIoIoAdwi?/\voAoA % AeA

= N

AeA idepReid=( idepReid=( A

S o

AoIoIoAdmi?/\voAoA % AeA

The top is 1, and the bottom is (1. Each smaller diagram commutes by some
axioms of either the monoidal structure or naturality. Therefore, j1; = py. O

Remark 14.53. The classical Eckmann-Hilton argument is the case of the above
when C = Set.

Remark 14.54. To summarize, categorical Eckmann-Hilton says that double
monoids in C are the same as commutative monoids in C. Here are some
settings where we know versions of the Eckmann-Hilton argument.

C = Set C = braided monoidal category | C = 2-monoidal category

classical True False

C =Cat C = braided monoidal 2-category | 2-monoidal 2-category

Theorem 14.49 To be done! (By you?) False
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