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Abstract

The measurement of atmospheric visibility is an importdaeiment for road and air transportation safety.
We propose in this paper a novel estimator of the atmosphdilgility by already existing conventional
highway cameras, with a technique based on the gradientitndgrselected by applying Lambert’s law
with respect to changes in lighting conditions. The resparfsthis estimator is calibrated by non-linear
regression with data from a visibility meter installed inesttsite which has been instrumented with a
camera. Through our technique, atmospheric visibilitinestes are obtained with an average error of 30%
for images taken in the day, with sky luminance between 10a0®cd.m? and visibility distances up to 15
km. Our results allow us to envision practical implemewtatbn roadsides in the near future to determine
local visibility for the benefit of road safety, meteorologii observation and air quality monitoring.

Keywords: camera, atmospheric visibility, road safety, meteora@abobservation, air quality, Intelligent
Transportation Systems

1. Introduction

In the presence of dust, smoke, fog, haze or pollution, melegical visibility is reduced. This con-
stitutes a common and vexing transportation problem fiedint public authorities in multiple countries
throughout the world.

First, low visibility is obviously a problem of tfeic safety. It can be caused by dust, smoke or fog. Dust
storms potentially reduce the visibility to zero and causarthtic pile-ups. These phenomena are likely to
occur in dry agricultural areas subject to land erosiom, fie |-5 in California’s San Joaquin Valley in 1991
(164 vehicles involved, 151 injured, 17 dead) (Pauley etl&196) or the A19 Mecklenburg-Vorpommern
in Germany in 2011 (82 vehicles involved, 100 injured, 8 ddatlinfeld et al., 2011). Smoke caused by
factories or fires in the vicinity of highways is also a draimaburce of reduction of the visibility (Abdel-
Aty et al., 2011). Road crashes which occur in fog are gelyaradre severe than the average crash (Abdel-
Aty et al., 2011). According to NOAA (Wliien et al., 2004), in the United States there are approxignatel
700 annual fog-related fatalities, defined as occurringnuhsibility is less than}—1 mile (400 meters). Fog
constitutes an equally important issue in France, a smadientry, with over 100 annual fatalities attributed
to low visibility. Indeed, fog causes similar and signifitgmoblems on Northern America and French
highways. The combination of fog and smoke is even worse. ak the cause of dramatic pile-ups in
France, e.g. on the A10 in 2002 near Coulombiers (58 vehioledved, 40 injured, 8 dead). Even if both
phenomena dier in their origin, their mutual féect on visibility is exponential, which leads to areas with
zero visibility. It should be stressed that the solutiors liet necessarily in better low visibility detection
but in driver response to fog that is detected.
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Indeed, the behavior of drivers in fog is often inapprogriét.g. reduced headways, altered reaction
times) but to understand the origins of these dangerousvimebas dificult (Kang et al., 2008). Dierent
countermeasures have been tested to mitigate the impaditichlty reduced visibility (Shepard, 1996).
The California San Joaquin and Sacramento Valley regioaarticularly adequate test-beds for such
measures, because of the well-known Tule fog phenomenothel&tockton area of Caltrans District 10,
the Caltrans Automated Warning System (CAWS) employs lidadseather stations and visibility meters
to provide automated detection (Mac Carley, 2005). In s, Caltrans has installed the "Fog Pilot"
system, which provides a high-technology solution e\%mile along a 12-mile (20-km) portion of State
Route 99.

In addition to the safety problem, reduced visibility is sawf delays and disruption in air, sea and
ground transportation for passengers and freight. On figewmassive pile-ups create exceptiondtitra
congestions which sometimes force the operator to monigntéwse the road. Fog-related road closures
are not an uncommon subject for news headlines. For exathgléjeathrow airport was blocked for three
days during the 2006 Christmas period. Such events haveuo§eamportant economic impacts (Pejovic
et al., 2009). According to Perry and Symons (1991), in 1@¢as estimated to have cost over roughly
£120 millions at 2010 prices on the roads of Great Britainis Tigure includes the cost of medical treatment,
damage to vehicles and property, as well as the adminiatratists of police, services and insurance, but
they do not include the cost of delays to vehicles not diyaattolved in the accident.

Moreover, reduced visibility also has environmental digance. Visibility is generally valued for
environmental and aesthetic reasons that dfeedit to express or quantify. Except for American national
parks (Committee on Haze in National Parks and Wildernesa#r1993) and regulations on freeway
advertisements, there are few places where visibility isiered a protected resource. Impaired visibility
is also a symptom of environmental problems because it @eeacge of air pollution (Hyslop, 2009). In
addition, it has been shown that impaired visibility and tality are related (Thach et al., 2010). According
to the authors, visibility provides a useful proxy for thesessment of environmental health risks from
ambient air pollutants and a valid approach for the assessofi¢he public health impacts of air pollution
where pollutant monitoring data are scarce.

An ability to accurately monitor visibility helps resolvhdse problems. Important transportation fa-
cilities where safety is critical, such as airports, areggaelly instrumented for monitoring visibility with
devices that are expensive and hence, scarce. Cost isglyettie reason why highway meteorological
stations are seldom equipped with visibility metering desi In this context, using already existing and
ubiquitous highway cameras is of great interest, as theséoar cost sensors already deployed for other
purposes such as ffic monitoring (Jacobs et al., 2009). Furthermore, intraclyiciew functionalities into
roadside cameras will make them multipurpose and thus nustedfective, easing their deployment along
the roads.

In the United States, this potential has been identified byD@F and was evaluated in the CLARUS
Initiative (Hallowell et al., 2007), and thes&arts may continue with the US DOT IntelliDrive program. In
France, a similar initiative has been launched betweetatf@rench institute of science and technology for
transport, development and networks), Météo France (Rrilational Weather Service) and IGN (French
National Geographical Institute), three public researddtitutes dealing respectively with road operation,
weather monitoring and forecasting, and geography andgraphy. The French initiative aims at assessing
the potential of highway cameras to monitor visibility faffdrent applications ranging from safety hazard
detection to air quality monitoring. This topic has alsobeematter of discussion and of potential col-
laboration between Ifsttar and California Partners for &ubed Transit and Highways (PATH) at Berkeley
University. In the future, such initiatives might make itgsible to monitor visibility reduction at the scale



of a road itinerary. Prediction, which will soon be possitdeairports (Roquelaure et al., 2009), might be
envisioned.

2. Background

2.1. Visibility Measurement

Reduced visibility in the atmosphere is directly relatetigbt scattering by air molecules and airborne
particles. This tenet of physics is the basis of the opeagatiinciple of visibility meters. There are two
types of instruments for measuring atmospheric visibilitgnsmissometers and scatterometers. The trans-
mitometer extrapolates the attenuation of a light beamtedthftom a source to a receiver at a known path
length in order to estimate the distance for which the enhltght is attenuated by 95%. The transmitometer
is also used to calibrate the scatterometer. A scatterorassesses the dispersion of a light beam. Visibility
meters can measure the meteorological visibility distanct a few tens of kilometers with an accuracy of
10%. Some studies seek to exploit the photosensitive ciefigenl cameras to measure the meteorological
visibility.

2.2. The Potential of the CCTV Camera Networks: The FrengdeCa

The annual statistics on fog occurrence in France, i.e.odps where the meteorological visibility
distance is lower than 1000 meters, are shown in Figure Ragth a data collection is obtained thanks
to 60 weather stations distributed over the entire tegri{@ee blue points in the Figure 1(a)). As such,
these observations cannot be used for predicting and vgarogd authorities. Indeed, the local nature
of this phenomenon is not compatible with the current cdpaafi meteorological agencies to monitor it
accurately.

A survey has been conducted on the French motorway networkstimate the potential of existing
CCTV networks to monitor the visibility: In 2009, the Frengtotorway network was 8,372 km long and
was equipped with approximately 2,000 cameras. Accouritinghe fact that some cameras are grouped
together and some are dedicated to tunnel safety, a pdtehtia000 cameras available to monitor the
weather is estimated. The French highway network is als@gppgd with cameras but they are less nu-
merous. This whole network covers the territory quite umifly, see Figure 1(b). Consequently, a sensor
network along the roadside constitutes a relevant meshtaliéeed meteorological centers with geolocal-
ized data. Another important information concerns the typiastalled camera. Most cameras have a low
resolution, from 470TVL to 570TVL. This lead us to chooseraikir camera type in our study. Further-
more, introducing new functionalities into roadside camsewill make them multipurpose and thus more
cost-dfective, easing the deployment of these cameras along the.roa

2.3. Related Research

There are several general approaches to measuring meigioed|visibility with a camera. The first
is to detect the contrast of the most distant targets in aescé&wor road safety, and visibility distances
below 400 m, Hautiére et al. (2008) assume that the road isTitay calculate all contrasts above 5% for
objects obtained from the camera images. Using the geanpetrjection, they then estimate the distance
to the farthest visible object with an intrinsic error of 10% another study by Baumer et al. (2008), in a
panoramic scene, extract gradients of targets whose degare known based on a 2-dimensional map. In
this work, ranges are longer because in meteorology, litgibistances are of the order of 10 km.

The second general approach to measuring meteorologgibllity is based on machine learning, and
requires a calibration phase with meteorological dateect#d with a visibility meter for several days and
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Figure 1: Existing meteorological visibility observat®nompared to the potential of CCTV networks: (a) Average lmemof
foggy days observed in France between 1971 and 2000. Thadeaaf automated weather stations which collect visipilit
measurements are depicted by blue points. (b) The Frenahhigiiway network is well spread on the whole territory anttibo
a potential of 1,000 CCTV cameras which are already availibmonitor the meteorological visibility distance.

in different visibility conditions. In his study, Hallowell et §R007) exploit the road surveillance video
camera network by proposing a fuzzy logic-based method widientifies four classes of visibility using
image information. Other approaches which exploit machéaening seek to find the frequency response
characteristics linking the image with visibility data. deed, Xie et al. (2008) and Liaw et al. (2010)
seek the linear correlation between some indicator of eshaind meteorological visibility data. Xie et al.
(2008) applies a low pass filter to the Fourier transform efithage. Hagiwara et al. (2006) also propose
the WIPS frequency operator (Weighted Intensity Power 8per) which was proven to be well correlated
with human perception. Liaw et al. (2010) acquire imagesidtay, seeking ways to reduce the influence
of changing illumination.

The approach in this paper belongs to the second categodgedh an image-based estimator using
a fixed Closed Circuit Television (CCTV) camera is proposétstimation results can be verified with
meteorological visibility ground truth data collected litneteorological instruments. Unlike previous
approaches, this one is stable to illumination change amfibre more indicative of the visibility. This
article is organized as follows: Section 2 establishes itile between visibility and the gradient in the
image; Section 3 clarifies the robustness of the approaehigtults are presented in Section 4; a discussion
follows, from which conclusions are drawn.

3. Method

3.1. Reduction in Visibility by Scattering
Although, the word "visibility" seems to be trivial, a moregpise definition dedicated to meteorology

is established through the theory of Koschmieder (Midalei®52) which provides an analytic expression
of the luminancel of an object observed from a distandghrough an atmosphere with an extinction



codficientk. This is given by Equation 1:
L = Loe™@+ Ly (1- ™) 1)

The physical luminance of an objdcteaching the camera is a linear combination of the intrihgitnance
of the objectlLy and the luminance of the sky,. The linear cofficient is an exponential function of the
optical depthkd of the atmosphere which lies between the object and the eaffudlowing Beer-Lambert
law). From Equation 1, Duntley (Middleton, 1952) derivedomizast attenuation law:

C= (—LO - Lb) e d = Coed )

Lp

The quantityC denotes the apparent contrast at a distaiafean object of luminanck against the sky in the
background with a luminande,. Cg is the intrinsic contrast of this object. The Internatio@ammission
on lllumination (CIE) recommends a threshold contrast of t8%lefine visibility, so the meteorological
visibility Vyet, €xpressed in Equation 3, is defined as the distance for vehiidack objectCy = —1) has a
5% contrast against the sky (CIE, 1987):

1
Vet = K log (0.05) ~

~lw

®3)

3.2. Stability of Contrast in Lambertian Zones

In order to work with pixel intensity (or gray level) valueswen by a camera, the arguable assumption
can be made that the response of the sensor is linear witp@asld he intensityl of an object in the image
can be expressed according to the valudf its physical luminance as shown in Equation 4:

| =aL 4)

Using Equation 4 with Koschmieder law in Equation 1 yields tbllowing relation between the intensity
| of a pixel, the optical deptld of the atmosphere between the camera and the object in thetidir
subtended by this pixel, and the intensity, of the background sky:

| =loe™+ A (1-e™) (5)

Let us introduce the texture contr&Stexure defined for two adjacent points of intenslgyandl, found at
the same distana#y = d, = d. Then from Equation 5, Equation 6 is obtained:

o —1 lgo — |
Crexture = 2Aoo L ( OZAOO Ol)e_kd (6)

The luminance of an object results from the reflection of latitbct sunlight and light scattered through the

atmosphere onto its surface. For objects with rough (anefitvee Lambertian) surfaces, the reflected part
of illuminanceE is scattered evenly in all directions, and the luminahde directly related to the albedo

p of the surface material. In that cagés the difuse reflection factor of the object. This is expressed by
Lambert’s law, wherdE is the illuminance on the surface:

L=po @




Figure 2: Module of Sobel gradient of the image: (a) imagedadyvisibility conditions; (b) Module of Sobel gradient bietsame
image.

Hence, the expression of texture contrast for Lambertigactdbis independent of illumination, and only
depends on the object albedosandp,, the distanceal and the extinction cdicientk as shown in Equa-
tion 8:

CTextureLambert = (,02 - ,01) e_kd (8)

The main advantage of using the texture contrast is thatlitsevis robust to variations of illumination in
the scene since it is expressed as a function of albedo, lmsintcharacteristic of materials. Therefore,
according to Equation 8, this contrast is expected to beyastayng indicator of the meteorological visibility
despite illumination changes. There is no need to assunhalttabjects in the scene are Lambertian, only
to select those that are.

3.3. Contrast as a Module of Sobel Gradient

The contrast defined above is a one-dimensional concepturlcase, however, the imageis two-
dimensional. The module of Sobel gradient, which indic#ltesvalue of the largest change from bright to
dark at each pixel, is calculated with Equation 9:

G=,/G2+G? 9)

The horizontal and vertical gradients, respectiv@lyandGy, are calculated by the convolution of the masks
given in Equation 10:

+1 0 -1 +1 +2 +1
Gy=|+2 0 -2|*J and Gy=[(0 O OfxJ (20)
+1 0 -1 -1 -2 -1

The outcome of this processing is illustrated in Figure 2e ®hginal image is shown in Figure 2(a) and
the gradient image, with edges enhanced as a direct reghk &obel operator, is presented in Figure 2(b).

3.4. Segmentation of Lambertian Surfaces

Calculating the gradient of the image has been explainedealithose gradients which are most robust
against illumination changes are extracted by selectingleatian surfaces within the scene. The best
indicators of visibility variations are determined viaghnethod, as shown with Equation 8. In practice,
segmenting Lambertian areas in an image can be achievedckingehe best linear correlation between
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Figure 3: Confidence that the pixels belongs to Lambertiaa.alhe intensity determines the level of correlation betwgixel
intensity and scene illumination over time.

the intensity changes of each pixel over time and the variatof illumination characterized by the sky
luminancelsky The probabilityPiL’j that the surface at pixel, (j) is Lambertian can be calculated using the
temporal correlation of Bravais-Pearson:

Pf; = corr (Lij. Lsky) (11)

This is illustrated in Figure 3 where the intensity denotaghtcorrelation and, as a consequence, high
probability for the surfaces to be Lambertian. More prdgjseis possible to demonstrate using clear-sky
photometric models that such a method, inspired by (KoppaiNarasimhan, 2006; Andersen et al., 2006;
Seon Joo, 2008), detects a set of pixels, which include pixelonging to North-oriented Lambertian sur-

faces. This segmentation especially allows discardingieeular reflections, such as sunlight on smooth
surfaces, as well as shadows created by the movement ofritdusing the day.

4. Estimation of Meteorological Visibility

4.1. Visibility Estimation based on Robust Gradient

Let the estimatoE?! equal the sum of all existing gradients in the image, abseptcansideration
of reflection (for the time being). This allows using Equatit?2 and also corresponds to precedent in the
literature (Xie et al., 2008; Liaw et al., 2009). Now, let usnsider the estimator of visibilitf- based
on the sum of the module of Sobel gradient, weighted by thdidemceP- of the pixel to belong to a
Lambertian area, defined by Equation 13.

B = ) Co e (12)
(i.)ed

E- = ) PiCa,e™® (13)
(.)eT

where {, j) denotes the coordinates of an image pixel.

To adjust the response function of the visibility estimagiwen by Equation 13, an empirical and non-
linear model described by Equation 14 is given. This fumciothe response of the estimafr according
to changes in visibility conditiong)e; obtained by a visibility meter. The exponential relatiapdbetween
the contrast and the meteorological visibility distanocgressed in Equations 6 and 13, explains the non-
linearity of the function. Therefore, the response of themestor E- of Equation 14 is adjusted by refining
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its parameteré\ andB. This is done by minimizing the quadratic error between #sponse function and
the cloud of points relating the visibility estimat&- from the image and the measured meteorological
optical rang&Vet:

EL = A+ Blog (Vmer) (14)

4.2. Correlation as a Reliability Indicator of Visibility sEimation

When the quadratic error is minimal, the correlation fatiween estimator and visibility is close to 1.
So, estimating the visibility/yet by inversing the functiofe™ will be closer to the reference values given by
the visibility meter. The correlation factor constitutesiadicator of reliability in estimating this response
function E-.

4.3. Error due to Model Fitting

Parameters A and B must be adjusted so as to mjnimize theajicadrrory? between the measured
visibility Vet and the visibility estimated by the functicEHVMet, A, B) with Equation 15:

N
= 7D [Viret, ~ E- Vet A B[ (15)
=1

1
N
n

4.4. Weighted Fitting for Low Visibilities

Most of the time, images of low visibility will be rare compatto images of good visibility. Because the
proposed model is empirical, this drives the largest erfoh@® estimation in the more sparse low visibility
data set. Therefore the curve fitting is weighted by givingemmnfidence to cases of low visibility. Since
the error increases linearly with visibility, the inversietioe accuracyry,,, is used as a confidence factor.
This typically corresponds to 10% of the value of visibilifyier. The results are shown in Figure 5.

N
X2 = %Z = [VMeI;1 - EL(VMetn,Aa B)]Z (16)

(b)

Figure 4: Examples of images taken over several months igtking conditions from 0 to 10,000 cd:thand visibility conditions
from 0 to 50 km: (a) Sunny day with shadows, (b) cloudy day|d)visibility.
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Figure 5: Data collection: (a) Meteorological optical rangriation and (b) sky luminance variation during threesday

5. Results

5.1. Image and Data Collection

Visibility and lighting data have been collected over savenonths. These data were matched with
images taken from a camera. Indeed, a meteorological aiseywvas instrumented with a CCTV camera
and a digital video recorder. The camera has the same quaality typical roadside camera (cf. section
2.2): 570TVL and a dynamic range of 8 bits per pixel. Imagesvaequired every 10 minutes for several
months, with sky luminance between 0 and 10,000 cd.amd meteorological optical range between 80
m and 50 km. Sample images withfidirent weather conditions are shown in Figure 4. The lumimanc
data were collected by means of a luminance meter (Degreanieadd LU320), and the visibility data
were obtained by means of a scatterometer (Degreane HOBE®20). Both instruments are common
meteorological measurement systems often found on aépbheir operating principle was recalled in the
background section. Sample data are shown in Figure 5. Artiengollected data, we selected a subset,
which correspond to two fog episodes. During these peribdsmeteorological visibility distance dropped
very low. The data used for experimental evaluation are thade of 150 images (approximately 48 hours
of observation spread on thredfdrent days).

5.2. Qualitative Evaluation

The sum of the module of Sobel gradient computed from the émag plotted as a function of the
measured meteorological visibility in Figure 6(a). An atstity and dispersion of the response of the
estimatorE?! can be observed. This instability is related to the chand@hting conditions, and this
directly afects the values of object luminance in the scene and theréfeffects the resulting gradients.
The instability is also related to theffiirent reflections of sunlight on glass or other smooth, namertian
surfaces. Because the imaged scene contains these elethemsodule of Sobel gradient of the entire
image cannot be a robust indicator of the measured metgacalorisibility.

Results for the estimatdt- are shown in Figure 6(b) with the continuous blue line. Poiepresenting
the visibility estimatorE- as a function of the measured visibilitje: follow an empirical law which
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Figure 6: Logarithmic model fitting of the plot of the estiret as a function of reference visibilities: @', sum of the module of
Sobel gradient in the entire image; (8), sum of the module of Sobel gradients weighted by the condiglefi pixels to belong to
Lambertian surfaces represented by the continuous blegfln sum of the module of Sobel gradient weighted by the confielenc
of pixels to belong to Lambertian surfaces and with weigliitefdr low visibility distances represented by the dashetiliige.

appears to be logarithmic. For visibility distances belo#Km, the curve fit is weightedr{,,,., = 10%) so
as to reduce the influence of data with very high visibilitesRlts of this weighted curve fitting are shown
in Figure 6(b) with the dashed red line.

5.3. Quantitative Evaluation

Meteorological visibility was estimated using an empiri@sponse function. The values obtained are
given in Table 1 for dierent applications, along with the average relative eﬁ@érfrom the reference
values measured by a visibility meter. Processing the wimadgye results in a correlation factor of 0.82.
For large visibility distances, this corresponds to an agerrelative error of 100 to 200%, meaning that
the visibility estimation is irrelevant. Using gradients iambertian surfaces and a weighted fit for low
visibility distance as described in this paper brings therage relative error down to 25%, which makes
the estimation of the visibility more robust and reprodigibver time. For visibility distances beyond 5
km, the average relative error becomes 33% using the unteeidit, and it is as low as 10% for visibility
distances below 400 m using the weighted fit. Finally, anssssent of the visibility estimator is carried
out, wherein the model is calibrated with a first fog episode i#s predictions are compared with the data
of the second fog episode. In this way, we try to replicateadvneorld application. The results are given in
the last line of Table 1. Compared to the use of all data fabration, the error increases approximately of
10%, which also corresponds to the uncertainty of the \ligibheter itself.

6. Emerging Applications

6.1. Air Pollution Mitigation

Air pollution has negative feects on human health. Living or even attending school nesy boads
have been proven to increase respiratory symptoms. A lag@fi maximum speed limits has been proven
effective to reduce air pollution related toffia in the direct vicinity of highway (Dijkema et al., 2008). In
case of sudden ozone or nitrogen dioxide pollution, tenmyospeed limits reduction are often posted or
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Application Highway fog Fog Haze Air quality Correlation

Visibility range 0-400 m 0-1,000 m 1,000-5,000 m 5,000-D6,6n R2
(Number of images) 13 images 19 images 26 images 105 images O imiges
= 22% 39% 205% 125% 0.82
E' before weighted fit 11% 53% 60% 33% 0.95
E" after weighted fit 10% 25% 26% 48% 0.90
EL weighted fit on fog episode 1 19% 20% 37.5% 65% 0.89

Table 1: Average relative erraV/V expressed in % as a function of range of application. Hereoheslation factor is between
0.89 and 0.95 and corresponds to an error of 25% (short raargksveighted fit) to 33% (long ranges and unweighted fit). For
highway fog with less than 400 m visibility, the error is redd to 10% (weighted fit).

alternate trffic rules are decided. These two transport policies have lemmsto have positivefiects on
air quality (Schillinger et al., 2007). Air quality sens@® mainly installed in cities. By using the proposed
camera-based monitoring method, road operators haveiatitgosal a flexible solution to assess the air
quality and to potentially implement new strategies airmamgnaintaining the air quality along their road
networks.

6.2. Winter Maintenance

The monitoring of meteorological visibility hasftirent applications for winter maintenance (Nagata
et al., 2008). First, the knowledge of a low visibility arsamportant for the safety of winter maintenance
operations. Second, a sudden drop of the visibility can bgpsymatic of heavy snow falls. The relation-
ship between liquid equivalent snowfall rate and visipilitas also been investigated (Rasmussen, 1999),
which means that a camera-based visibility meter is patyt good snow sensor. Finally, meteorological
models have been developed to forecast pavement temm=ratsiwell as snow height (Bouilloud et al.,
2009). Nebulosity and fog are phenomena which alter theigifed, since the radiative transfer between
the pavement and the air is changed. The assimilation dfilfgidata in these prediction models may be
useful to increase the accuracy of forecasts.

6.3. Fog Nowcasting

The forecasting of the weather within the next six hours terofreferred to as nowcasting. In this
time range, it is possible to forecast smaller features sscimdividual showers and thunderstorms with
reasonable accuracy, as well as other features too smadl tesblved by a computer model. Guidard and
Tzanos (2007) show that combining satellite-based fotegpef low clouds with terrestrial measurements
of humidity allows computing a probability of fog occurrenc A camera-based visibility meter could
easily substitute the measurement of the humidity. Indesthg camera-based visibility estimation and
meteorological data, Yasuhiro et al. (2011) shows thabiligi can be predicted up to 15 minutes with
1-km mesh meteorological data. Such camera-based nongastithods may be good solutions to allow
the re-routing of vehicles before they reach a low-vidipiiirea in a timely manner.

6.4. Pile-up Prevention and Mitigation

6.4.1. Best Practice

McLawhorn (2004) has proposed a review of best practicesring of mitigation of highway visibility
problems, in particular fog related issues. In this pap&escription of existing installations in the USA
dedicated to driver alert in case of low visibility on the Imgay is proposed. Apart from fog dispersal
techniques, the best practices are related to the timetyadlthe drivers who approach a foggy area. Then,
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Prevention “Safety’

Figure 7: Futuristic decentralized fog-pilot, which makisge of CCTV cameras to monitor the visibility and allows opting the
speed of drivers approaching a low visibility area, as welhee intensity of road studs.

depending on the fog density,fitirent advisory speed limits may be posted. In the same thmeegyublic
lighting is adapted. The component of these systems are wfageather stations, CCTV cameras and
Variable Message Signs (VMS). More recently, Caltrans hatlled the "Fog Pilot" system in District 6,
which provides a high-technology solution evekynile along a 12-mile (20-km) portion of State Route
99. This centralized solution relies on the use of infradtie-to-vehicle communications to alert drivers
of sudden low speed areas.

6.4.2. Decentralized Fog-Pilot

In this section, we envision a decentralized fog-pilot, ahimakes use of CCTV cameras to monitor
the visibility and allows optimizing the speed of drivergpapaching a low visibility area, as well as the
intensity of road studs. Thefiiérent components of the fog-pilot are schematized in FigurBased on
best existing practices, its principle is to warn the divef a foggy area with enough time, so that their
speed is adapted to the prevailing visibility distance wihey reach the dangerous area.

Speed Managemeni he key aspect of this problem is to select the relevant bliklessage Sign (VMS),
on which to display the information about an incoming foggsea In this paragraph, we propose to compute
the relative position of the VMS with respect to the positidrihe foggy area.

The stopping distancBsop for a vehicle is determined by its deceleratipnwhich depends on the
effective codficient of friction between the tires and the road, and theet'sweaction timel, in a braking

situation (Kiencke and Nielsen, 2000):
2

Detop = SoTr + 2—; (17)

whereSg denotes the initial speed of the vehicle.
By solving the equatioDsiop = Vivet, We obtain the maximum spe&iax at which a driver should
drive through fog, so as to be able to prevent a collision witftopped vehicle:

Smax=—Try + yTA2 + 2 Vet (18)
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The distancé®y,ake COvered by a vehicle with a deceleratipifrom initial speedSy to the target spee8max
is given by the following equation:
1

Dbrake = E

2 2
Smax - So

Y

(19)

So as to obtain a smooth deceleration, ¢.¢.3 m.s 2, the optimal distanc®,ms between two VMS is:

Dyms = Dbrake+ SoTlatency (20)

whereTiaency COMprises the latency of the system to detect the low vitsitarea and to display the infor-
mation on the relevant VMS. We thus have:

Tlatency = Tdetection+ Tdisplay (21)

The time which is necessary to detect is usually very low camaxgb to the time necessary to transmit and
to display the information. In the case of our camera-bagetbs, TyetectioniS Very small (lower than 0.1
second). In the case of a centralized system, the informatiast be validated by a human operator, which
may take some additional time. In the case of a decentrafigstem,Tqisplay COMprised the latency of the
telecommunication system and might be of a few seconds. dcdise of an incoming car driving at 130
km.h approaching a section wittyet = 50 m, the distancByms is approximately equal to 400 meters for
a smooth deceleration ¢f= 3 m.s2 and a very low latency (1 second). This optimal distancessponds
also to the definition of highway fog given in the introductiand validates the positioning of the VMS in
the Fog-Pilot system.

Adaptive Road Lightingln case of fog presence, the road lighting must also be adlaptest, streetlights
are usually switchedfda Adaptive lighting are put on the roadside and road studsherpaivement are
switched on so as to better delineate the highway. In addliti@ believe that intelligent road studs (Boys
and Green, 1997) should be able to adapt their intensity n@@tpect to the visibility distance.

The luminance of a road stud perceived by a driver at distdricease of fog is given by Allard’s Law
(CIE, 1987):

|
d d Vet

wherel, denote the maximum intensity of the luminous source (seer€i§). To obtain the same lumi-
nance in fog as in clear conditions, it is enough to compenkatthe decrease of light intensity caused
by fog. By reversing Equation 22, we found that the intensitya road stud must increased by a factor
exp(%). In this equationgdy denotes the distance at which the intensity of the road stpeiceived at
the maximum (40 meters in case of a road stud dedicated tavhighpplications, i.es ~ 2°andh = 1.2 m

in Figure 8).

Ly o« I—”; exp(-3kd) ~ = exp(— 3d ) (22)

7. Discussion

7.1. Qualitative Comparison with other Methods

It is quite dificult to compare meteorological visibility estimation madls, because the data sets and
the reference sensorttlir from one method to another. Nevertheless, we have shawtatting Lambertian
areas into account is more robust than relying on the whotgérgradients. In this way, we improve the
previous methods proposed by Xie et al. (2008) and Liaw €2@0D9). Compared to previous methods, we
are able to estimate visibility ranges down to very shorgeanlike (Hautiére et al., 2008), as well as up

13



&

m

do

Figure 8: Geometry related to the luminous intensity distiibn of a road stud at grazing angleWith this geometryd, denotes
the distance at which the intensity of the road stud is peeceat the maximum. It is equal to 40 meters for a car driiet (1.2
m) looking at a roadstud dedicated to highway applicatiens 2°).

to long ranges like Liaw et al. (2010). We are (among) the fo'giropose a non-linear fitting to estimate

the meteorological visibility distance. Unlike methodsigthdetect known targets in the landscape, e.g.
(Baumer et al., 2008), we do not systematically undereséirtree meteorological visibility distance. We do

not rely on high resolution either since we use a camera wikialfready massively deployed on highway

networks. Finally, we are not sensitive to the geometriébcation of the camera contrary to (Hautiére

et al., 2008), since we compute a global visibility desaniphstead of a local one.

7.2. Perspectives

Despite the good properties of the methods and the promissgts, the proposed model stillfEers
two main limitations. First, fixed camera is a requirememttf® here proposed method which is intended
to operate with roadside cameras such as those used fiic sarveillance. Second, the method does not
deal currently with rapid changes in the field of view causgdraffic. Third, the seasonality also impacts
the amount of gradients in the image. The second and thirdalions can be circumvented by using
background modelling methods so as to constantly updatentiuel, as previously proposed by Hautiére
et al. (2008).

To implement this method of visibility estimation on a sifiecsite, calibrating the logarithmic response
curve is mandatory. In this aim, the simplest method camdéistatching image contrasts with visibility
and luminance data collected by reference sensors (¥igibileter and luminance meter) during at least
one foggy episode. For a massive deployment of the methodamry dliferent sites, more dedicated work
is needed to simplify the calibration process so as to gatfritie reference sensors. A first model-driven
approach aiming at replacing the empirical logarithmiarfola is proposed by Hautiére et al. (2011). Itis a
promising solution. However, the experimental resultsastiat our data-driven approach still gives better
results in terms of relative error.

8. Conclusion

This study proposes a robust empirical law for estimatirgrtreteorological visibility in daylight by
means of a typical CCTV camera. The methodology presentdusrpaper is to link meteorological vis-
ibility to the sum of the module of Sobel gradient weightedthg confidence of the pixels to belong to
Lambertian surfaces. It is demonstrated and validatedtitieaproposed estimator is robust to changes in
lighting conditions, and that any variation in measurenmestlts are due to the variation of visibility in the
atmosphere. Applying this estimator on real images acduirgler a variety of visibility and lighting con-
ditions, an estimated atmospheric visibility was obtaiaed then compared and validated with reference
data collected with a meteorological instrument.

The approach for estimating visibility was also tested aalittated under a large range of visibility and
lighting conditions. It showed the relevance and the repedality of the approach. We believe therefore
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that this method for estimating meteorological visibility easily deployable using the camera network
already installed alongside highways throughout the ward therefore of high impact to ffec safety

at marginal cost. Once deployed, this concept should iser#fze quality and the spatial accuracy of the
visibility information and could feed weather forecastisigstems. Importantly, our system may serve to
inform drivers of relevant speed limits under low visihjlitonditions.

In future work, we will express errors in estimating visityilas a function of camera characteristics to
ascertain the accuracy with which visibility can be estdatvith current and future CCTV systems. We
believe, however, that our work has given both a fundamemdlpractical basis to consider deployment of
our potentially life-saving real-time roadside visibjlineters.
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