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Abstract

The measurement of atmospheric visibility is an important element for road and air transportation safety.
We propose in this paper a novel estimator of the atmosphericvisibility by already existing conventional
highway cameras, with a technique based on the gradient magnitude selected by applying Lambert’s law
with respect to changes in lighting conditions. The response of this estimator is calibrated by non-linear
regression with data from a visibility meter installed in a test site which has been instrumented with a
camera. Through our technique, atmospheric visibility estimates are obtained with an average error of 30%
for images taken in the day, with sky luminance between 10 to 8,000 cd.m−2 and visibility distances up to 15
km. Our results allow us to envision practical implementation on roadsides in the near future to determine
local visibility for the benefit of road safety, meteorological observation and air quality monitoring.

Keywords: camera, atmospheric visibility, road safety, meteorological observation, air quality, Intelligent
Transportation Systems

1. Introduction

In the presence of dust, smoke, fog, haze or pollution, meteorological visibility is reduced. This con-
stitutes a common and vexing transportation problem for different public authorities in multiple countries
throughout the world.

First, low visibility is obviously a problem of traffic safety. It can be caused by dust, smoke or fog. Dust
storms potentially reduce the visibility to zero and cause dramatic pile-ups. These phenomena are likely to
occur in dry agricultural areas subject to land erosion, like the I-5 in California’s San Joaquin Valley in 1991
(164 vehicles involved, 151 injured, 17 dead) (Pauley et al., 1996) or the A19 Mecklenburg-Vorpommern
in Germany in 2011 (82 vehicles involved, 100 injured, 8 dead) (Hunfeld et al., 2011). Smoke caused by
factories or fires in the vicinity of highways is also a dramatic source of reduction of the visibility (Abdel-
Aty et al., 2011). Road crashes which occur in fog are generally more severe than the average crash (Abdel-
Aty et al., 2011). According to NOAA (Whiffen et al., 2004), in the United States there are approximately
700 annual fog-related fatalities, defined as occurring when visibility is less than1

4 mile (400 meters). Fog
constitutes an equally important issue in France, a smallercountry, with over 100 annual fatalities attributed
to low visibility. Indeed, fog causes similar and significant problems on Northern America and French
highways. The combination of fog and smoke is even worse. It was the cause of dramatic pile-ups in
France, e.g. on the A10 in 2002 near Coulombiers (58 vehiclesinvolved, 40 injured, 8 dead). Even if both
phenomena differ in their origin, their mutual effect on visibility is exponential, which leads to areas with
zero visibility. It should be stressed that the solution lies not necessarily in better low visibility detection
but in driver response to fog that is detected.
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Indeed, the behavior of drivers in fog is often inappropriate (e.g. reduced headways, altered reaction
times) but to understand the origins of these dangerous behaviors is difficult (Kang et al., 2008). Different
countermeasures have been tested to mitigate the impact of critically reduced visibility (Shepard, 1996).
The California San Joaquin and Sacramento Valley regions are particularly adequate test-beds for such
measures, because of the well-known Tule fog phenomenon. Inthe Stockton area of Caltrans District 10,
the Caltrans Automated Warning System (CAWS) employs roadside weather stations and visibility meters
to provide automated detection (Mac Carley, 2005). In District 6, Caltrans has installed the "Fog Pilot"
system, which provides a high-technology solution every1

4 mile along a 12-mile (20-km) portion of State
Route 99.

In addition to the safety problem, reduced visibility is cause of delays and disruption in air, sea and
ground transportation for passengers and freight. On freeways, massive pile-ups create exceptional traffic
congestions which sometimes force the operator to momentarily close the road. Fog-related road closures
are not an uncommon subject for news headlines. For example,the Heathrow airport was blocked for three
days during the 2006 Christmas period. Such events have of course important economic impacts (Pejovic
et al., 2009). According to Perry and Symons (1991), in 1974 fog was estimated to have cost over roughly
£120 millions at 2010 prices on the roads of Great Britain. This figure includes the cost of medical treatment,
damage to vehicles and property, as well as the administrative costs of police, services and insurance, but
they do not include the cost of delays to vehicles not directly involved in the accident.

Moreover, reduced visibility also has environmental significance. Visibility is generally valued for
environmental and aesthetic reasons that are difficult to express or quantify. Except for American national
parks (Committee on Haze in National Parks and Wilderness Areas, 1993) and regulations on freeway
advertisements, there are few places where visibility is considered a protected resource. Impaired visibility
is also a symptom of environmental problems because it is evidence of air pollution (Hyslop, 2009). In
addition, it has been shown that impaired visibility and mortality are related (Thach et al., 2010). According
to the authors, visibility provides a useful proxy for the assessment of environmental health risks from
ambient air pollutants and a valid approach for the assessment of the public health impacts of air pollution
where pollutant monitoring data are scarce.

An ability to accurately monitor visibility helps resolve these problems. Important transportation fa-
cilities where safety is critical, such as airports, are generally instrumented for monitoring visibility with
devices that are expensive and hence, scarce. Cost is precisely the reason why highway meteorological
stations are seldom equipped with visibility metering devices. In this context, using already existing and
ubiquitous highway cameras is of great interest, as these are low cost sensors already deployed for other
purposes such as traffic monitoring (Jacobs et al., 2009). Furthermore, introducing new functionalities into
roadside cameras will make them multipurpose and thus more cost-effective, easing their deployment along
the roads.

In the United States, this potential has been identified by USDOT and was evaluated in the CLARUS
Initiative (Hallowell et al., 2007), and these efforts may continue with the US DOT IntelliDrive program. In
France, a similar initiative has been launched between Ifsttar (French institute of science and technology for
transport, development and networks), Météo France (French National Weather Service) and IGN (French
National Geographical Institute), three public research institutes dealing respectively with road operation,
weather monitoring and forecasting, and geography and cartography. The French initiative aims at assessing
the potential of highway cameras to monitor visibility for different applications ranging from safety hazard
detection to air quality monitoring. This topic has also been a matter of discussion and of potential col-
laboration between Ifsttar and California Partners for Advanced Transit and Highways (PATH) at Berkeley
University. In the future, such initiatives might make it possible to monitor visibility reduction at the scale
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of a road itinerary. Prediction, which will soon be possiblefor airports (Roquelaure et al., 2009), might be
envisioned.

2. Background

2.1. Visibility Measurement

Reduced visibility in the atmosphere is directly related tolight scattering by air molecules and airborne
particles. This tenet of physics is the basis of the operating principle of visibility meters. There are two
types of instruments for measuring atmospheric visibility: transmissometers and scatterometers. The trans-
mitometer extrapolates the attenuation of a light beam emitted from a source to a receiver at a known path
length in order to estimate the distance for which the emitted light is attenuated by 95%. The transmitometer
is also used to calibrate the scatterometer. A scatterometer assesses the dispersion of a light beam. Visibility
meters can measure the meteorological visibility distanceup to a few tens of kilometers with an accuracy of
10%. Some studies seek to exploit the photosensitive cells of fixed cameras to measure the meteorological
visibility.

2.2. The Potential of the CCTV Camera Networks: The French Case

The annual statistics on fog occurrence in France, i.e. episodes where the meteorological visibility
distance is lower than 1000 meters, are shown in Figure 1(a).Such a data collection is obtained thanks
to 60 weather stations distributed over the entire territory (see blue points in the Figure 1(a)). As such,
these observations cannot be used for predicting and warning road authorities. Indeed, the local nature
of this phenomenon is not compatible with the current capacity of meteorological agencies to monitor it
accurately.

A survey has been conducted on the French motorway networks to estimate the potential of existing
CCTV networks to monitor the visibility: In 2009, the Frenchmotorway network was 8,372 km long and
was equipped with approximately 2,000 cameras. Accountingfor the fact that some cameras are grouped
together and some are dedicated to tunnel safety, a potential of 1,000 cameras available to monitor the
weather is estimated. The French highway network is also equipped with cameras but they are less nu-
merous. This whole network covers the territory quite uniformly, see Figure 1(b). Consequently, a sensor
network along the roadside constitutes a relevant mesh ableto feed meteorological centers with geolocal-
ized data. Another important information concerns the typeof installed camera. Most cameras have a low
resolution, from 470TVL to 570TVL. This lead us to choose a similar camera type in our study. Further-
more, introducing new functionalities into roadside cameras will make them multipurpose and thus more
cost-effective, easing the deployment of these cameras along the roads.

2.3. Related Research

There are several general approaches to measuring meteorological visibility with a camera. The first
is to detect the contrast of the most distant targets in a scene. For road safety, and visibility distances
below 400 m, Hautière et al. (2008) assume that the road is flat. They calculate all contrasts above 5% for
objects obtained from the camera images. Using the geometric projection, they then estimate the distance
to the farthest visible object with an intrinsic error of 10%. In another study by Bäumer et al. (2008), in a
panoramic scene, extract gradients of targets whose distances are known based on a 2-dimensional map. In
this work, ranges are longer because in meteorology, visibility distances are of the order of 10 km.

The second general approach to measuring meteorological visibility is based on machine learning, and
requires a calibration phase with meteorological data collected with a visibility meter for several days and

3



A 2

A 4 A 4

A 4

A 5
A 6

A 6

A 6

A 7

A 7

A 10

A 10

A 10

A 9

A 11

A 11

A 13
A 13

A 16

A 16

A 20

A 20

A 64

A 71

A 71

A 26

A 26

A 26

A 75

A 75

A 31

A 31

A 31

A 35

A 35

A 36

A 62

A 61

A 83

A 81

A 84

N137
A 11

N165

N 12

N165

N 13

N 10

N 10

A 89

A 89

A 72

A 9

A 51

N 24

A 8

A 77

N 57

N 51

A 40

(a) (b)

Figure 1: Existing meteorological visibility observations compared to the potential of CCTV networks: (a) Average number of
foggy days observed in France between 1971 and 2000. The location of automated weather stations which collect visibility
measurements are depicted by blue points. (b) The French main highway network is well spread on the whole territory and holds
a potential of 1,000 CCTV cameras which are already available to monitor the meteorological visibility distance.

in different visibility conditions. In his study, Hallowell et al.(2007) exploit the road surveillance video
camera network by proposing a fuzzy logic-based method which identifies four classes of visibility using
image information. Other approaches which exploit machinelearning seek to find the frequency response
characteristics linking the image with visibility data. Indeed, Xie et al. (2008) and Liaw et al. (2010)
seek the linear correlation between some indicator of contrast and meteorological visibility data. Xie et al.
(2008) applies a low pass filter to the Fourier transform of the image. Hagiwara et al. (2006) also propose
the WIPS frequency operator (Weighted Intensity Power Spectrum) which was proven to be well correlated
with human perception. Liaw et al. (2010) acquire images at midday, seeking ways to reduce the influence
of changing illumination.

The approach in this paper belongs to the second category. Indeed, an image-based estimator using
a fixed Closed Circuit Television (CCTV) camera is proposed.Estimation results can be verified with
meteorological visibility ground truth data collected with meteorological instruments. Unlike previous
approaches, this one is stable to illumination change and therefore more indicative of the visibility. This
article is organized as follows: Section 2 establishes the link between visibility and the gradient in the
image; Section 3 clarifies the robustness of the approach; the results are presented in Section 4; a discussion
follows, from which conclusions are drawn.

3. Method

3.1. Reduction in Visibility by Scattering

Although, the word "visibility" seems to be trivial, a more precise definition dedicated to meteorology
is established through the theory of Koschmieder (Middleton, 1952) which provides an analytic expression
of the luminanceL of an object observed from a distanced through an atmosphere with an extinction
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coefficientk. This is given by Equation 1:

L = L0e−kd
+ Lb

(

1− e−kd
)

(1)

The physical luminance of an objectL reaching the camera is a linear combination of the intrinsicluminance
of the objectL0 and the luminance of the skyLb. The linear coefficient is an exponential function of the
optical depthkd of the atmosphere which lies between the object and the camera (following Beer-Lambert
law). From Equation 1, Duntley (Middleton, 1952) derived a contrast attenuation law:

C =

(

L0 − Lb

Lb

)

e−kd
= C0e−kd (2)

The quantityC denotes the apparent contrast at a distanced of an object of luminanceL against the sky in the
background with a luminanceLb. C0 is the intrinsic contrast of this object. The InternationalCommission
on Illumination (CIE) recommends a threshold contrast of 5%to define visibility, so the meteorological
visibility VMet, expressed in Equation 3, is defined as the distance for whicha black object (C0 = −1) has a
5% contrast against the sky (CIE, 1987):

VMet = −
1
k

log(0.05) ≈
3
k

(3)

3.2. Stability of Contrast in Lambertian Zones

In order to work with pixel intensity (or gray level) values given by a camera, the arguable assumption
can be made that the response of the sensor is linear with a slopeα. The intensityI of an object in the image
can be expressed according to the valueL of its physical luminance as shown in Equation 4:

I = αL (4)

Using Equation 4 with Koschmieder law in Equation 1 yields the following relation between the intensity
I of a pixel, the optical depthkd of the atmosphere between the camera and the object in the direction
subtended by this pixel, and the intensityA∞ of the background sky:

I = I0e−kd
+ A∞

(

1− e−kd
)

(5)

Let us introduce the texture contrastCTexture, defined for two adjacent points of intensityI1 andI2 found at
the same distanced1 = d2 = d. Then from Equation 5, Equation 6 is obtained:

CTexture=
I2 − I1

A∞
=

(

I02 − I01

A∞

)

e−kd (6)

The luminance of an object results from the reflection of bothdirect sunlight and light scattered through the
atmosphere onto its surface. For objects with rough (and therefore Lambertian) surfaces, the reflected part
of illuminanceE is scattered evenly in all directions, and the luminanceL is directly related to the albedo
ρ of the surface material. In that caseρ is the diffuse reflection factor of the object. This is expressed by
Lambert’s law, whereE is the illuminance on the surface:

L = ρ
E
π

(7)
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(a) (b)

Figure 2: Module of Sobel gradient of the image: (a) image in good visibility conditions; (b) Module of Sobel gradient of the same
image.

Hence, the expression of texture contrast for Lambertian objects is independent of illumination, and only
depends on the object albedosρ1 andρ2, the distanced and the extinction coefficient k as shown in Equa-
tion 8:

CTexture,Lambert= (ρ2 − ρ1) e−kd (8)

The main advantage of using the texture contrast is that its value is robust to variations of illumination in
the scene since it is expressed as a function of albedo, an intrinsic characteristic of materials. Therefore,
according to Equation 8, this contrast is expected to be a very strong indicator of the meteorological visibility
despite illumination changes. There is no need to assume that all objects in the scene are Lambertian, only
to select those that are.

3.3. Contrast as a Module of Sobel Gradient

The contrast defined above is a one-dimensional concept. In our case, however, the imageI is two-
dimensional. The module of Sobel gradient, which indicatesthe value of the largest change from bright to
dark at each pixel, is calculated with Equation 9:

G =
√

G2
x +G2

y (9)

The horizontal and vertical gradients, respectivelyGx andGy, are calculated by the convolution of the masks
given in Equation 10:

Gx =





















+1 0 −1
+2 0 −2
+1 0 −1





















∗ I and Gy =





















+1 +2 +1
0 0 0
−1 −2 −1





















∗ I (10)

The outcome of this processing is illustrated in Figure 2. The original image is shown in Figure 2(a) and
the gradient image, with edges enhanced as a direct result ofthe Sobel operator, is presented in Figure 2(b).

3.4. Segmentation of Lambertian Surfaces

Calculating the gradient of the image has been explained above. Those gradients which are most robust
against illumination changes are extracted by selecting Lambertian surfaces within the scene. The best
indicators of visibility variations are determined via this method, as shown with Equation 8. In practice,
segmenting Lambertian areas in an image can be achieved by seeking the best linear correlation between
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Figure 3: Confidence that the pixels belongs to Lambertian area. The intensity determines the level of correlation between pixel
intensity and scene illumination over time.

the intensity changes of each pixel over time and the variations of illumination characterized by the sky
luminanceLS ky. The probabilityPL

i, j that the surface at pixel (i, j) is Lambertian can be calculated using the
temporal correlation of Bravais-Pearson:

PL
i, j = corr

(

Li, j , LSky

)

(11)

This is illustrated in Figure 3 where the intensity denotes high correlation and, as a consequence, high
probability for the surfaces to be Lambertian. More precisely, it is possible to demonstrate using clear-sky
photometric models that such a method, inspired by (Koppal and Narasimhan, 2006; Andersen et al., 2006;
Seon Joo, 2008), detects a set of pixels, which include pixels belonging to North-oriented Lambertian sur-
faces. This segmentation especially allows discarding thespecular reflections, such as sunlight on smooth
surfaces, as well as shadows created by the movement of the sun during the day.

4. Estimation of Meteorological Visibility

4.1. Visibility Estimation based on Robust Gradient

Let the estimatorEall equal the sum of all existing gradients in the image, absent any consideration
of reflection (for the time being). This allows using Equation 12 and also corresponds to precedent in the
literature (Xie et al., 2008; Liaw et al., 2009). Now, let us consider the estimator of visibilityEL based
on the sum of the module of Sobel gradient, weighted by the confidencePL of the pixel to belong to a
Lambertian area, defined by Equation 13.

Eall
=

∑

(i, j)∈I

C0i, j e
−kdi, j (12)

EL
=

∑

(i, j)∈I

PL
i, jC0i, j e

−kdi, j (13)

where (i, j) denotes the coordinates of an image pixel.
To adjust the response function of the visibility estimatorgiven by Equation 13, an empirical and non-

linear model described by Equation 14 is given. This function is the response of the estimatorEL according
to changes in visibility conditionsVMet obtained by a visibility meter. The exponential relationship between
the contrast and the meteorological visibility distance, expressed in Equations 6 and 13, explains the non-
linearity of the function. Therefore, the response of the estimator ẼL of Equation 14 is adjusted by refining
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its parametersA andB. This is done by minimizing the quadratic error between the response function and
the cloud of points relating the visibility estimatorEL from the image and the measured meteorological
optical rangeVMet:

ẼL
= A+ B log(VMet) (14)

4.2. Correlation as a Reliability Indicator of Visibility Estimation

When the quadratic error is minimal, the correlation factorbetween estimator and visibility is close to 1.
So, estimating the visibilityVMet by inversing the functioñEL will be closer to the reference values given by
the visibility meter. The correlation factor constitutes an indicator of reliability in estimating this response
function ẼL .

4.3. Error due to Model Fitting

Parameters A and B must be adjusted so as to minimize the quadratic errorχ2 between the measured
visibility VMet and the visibility estimated by the functioñEL(VMet,A, B) with Equation 15:

χ2
=

1
N

N
∑

n=1

[

VMetn − ẼL(VMetn,A, B)
]2

(15)

4.4. Weighted Fitting for Low Visibilities

Most of the time, images of low visibility will be rare compared to images of good visibility. Because the
proposed model is empirical, this drives the largest error of the estimation in the more sparse low visibility
data set. Therefore the curve fitting is weighted by giving more confidence to cases of low visibility. Since
the error increases linearly with visibility, the inverse of the accuracyσVMet is used as a confidence factor.
This typically corresponds to 10% of the value of visibilityVMet. The results are shown in Figure 5.

χ2
=

1
N

N
∑

n=1

1
σVMetn

[

VMetn − ẼL(VMetn ,A, B)
]2

(16)

(a) (b) (c)

Figure 4: Examples of images taken over several months underlighting conditions from 0 to 10,000 cd.m−2 and visibility conditions
from 0 to 50 km: (a) Sunny day with shadows, (b) cloudy day, (c)low visibility.
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Figure 5: Data collection: (a) Meteorological optical range variation and (b) sky luminance variation during three days.

5. Results

5.1. Image and Data Collection

Visibility and lighting data have been collected over several months. These data were matched with
images taken from a camera. Indeed, a meteorological observatory was instrumented with a CCTV camera
and a digital video recorder. The camera has the same qualityas a typical roadside camera (cf. section
2.2): 570TVL and a dynamic range of 8 bits per pixel. Images were acquired every 10 minutes for several
months, with sky luminance between 0 and 10,000 cd.m−2 and meteorological optical range between 80
m and 50 km. Sample images with different weather conditions are shown in Figure 4. The luminance
data were collected by means of a luminance meter (Degreane Horizon LU320), and the visibility data
were obtained by means of a scatterometer (Degreane HorizonDF320). Both instruments are common
meteorological measurement systems often found on airports. Their operating principle was recalled in the
background section. Sample data are shown in Figure 5. Amongthe collected data, we selected a subset,
which correspond to two fog episodes. During these periods,the meteorological visibility distance dropped
very low. The data used for experimental evaluation are thusmade of 150 images (approximately 48 hours
of observation spread on three different days).

5.2. Qualitative Evaluation

The sum of the module of Sobel gradient computed from the images is plotted as a function of the
measured meteorological visibility in Figure 6(a). An instability and dispersion of the response of the
estimatorEall can be observed. This instability is related to the change inlighting conditions, and this
directly affects the values of object luminance in the scene and therefore it affects the resulting gradients.
The instability is also related to the different reflections of sunlight on glass or other smooth, non-Lambertian
surfaces. Because the imaged scene contains these elements, the module of Sobel gradient of the entire
image cannot be a robust indicator of the measured meteorological visibility.

Results for the estimator̃EL are shown in Figure 6(b) with the continuous blue line. Points representing
the visibility estimatorEL as a function of the measured visibilityVMet follow an empirical law which
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Figure 6: Logarithmic model fitting of the plot of the estimators as a function of reference visibilities: (a)Eall, sum of the module of
Sobel gradient in the entire image; (b)ẼL , sum of the module of Sobel gradients weighted by the confidence of pixels to belong to
Lambertian surfaces represented by the continuous blue line; ẼL , sum of the module of Sobel gradient weighted by the confidence
of pixels to belong to Lambertian surfaces and with weightedfit for low visibility distances represented by the dashed red line.

appears to be logarithmic. For visibility distances below 1.5 km, the curve fit is weighted (σVMet = 10%) so
as to reduce the influence of data with very high visibility. Results of this weighted curve fitting are shown
in Figure 6(b) with the dashed red line.

5.3. Quantitative Evaluation

Meteorological visibility was estimated using an empirical response function. The values obtained are
given in Table 1 for different applications, along with the average relative error∆V

V from the reference
values measured by a visibility meter. Processing the wholeimage results in a correlation factor of 0.82.
For large visibility distances, this corresponds to an average relative error of 100 to 200%, meaning that
the visibility estimation is irrelevant. Using gradients in Lambertian surfaces and a weighted fit for low
visibility distance as described in this paper brings the average relative error down to 25%, which makes
the estimation of the visibility more robust and reproducible over time. For visibility distances beyond 5
km, the average relative error becomes 33% using the unweighted fit, and it is as low as 10% for visibility
distances below 400 m using the weighted fit. Finally, an assessment of the visibility estimator is carried
out, wherein the model is calibrated with a first fog episode and its predictions are compared with the data
of the second fog episode. In this way, we try to replicate a real-world application. The results are given in
the last line of Table 1. Compared to the use of all data for calibration, the error increases approximately of
10%, which also corresponds to the uncertainty of the visibility meter itself.

6. Emerging Applications

6.1. Air Pollution Mitigation

Air pollution has negative effects on human health. Living or even attending school near busy roads
have been proven to increase respiratory symptoms. A lowering of maximum speed limits has been proven
effective to reduce air pollution related to traffic in the direct vicinity of highway (Dijkema et al., 2008). In
case of sudden ozone or nitrogen dioxide pollution, temporary speed limits reduction are often posted or

10



Application Highway fog Fog Haze Air quality Correlation
Visibility range 0-400 m 0-1,000 m 1,000-5,000 m 5,000-15,000 m R2

(Number of images) 13 images 19 images 26 images 105 images 150 images
Eall 22% 39% 205% 125% 0.82

ẼL before weighted fit 11% 53% 60% 33% 0.95
ẼL after weighted fit 10% 25% 26% 48% 0.90

ẼL weighted fit on fog episode 1 19% 20% 37.5% 65% 0.89

Table 1: Average relative error∆V/V expressed in % as a function of range of application. Here thecorrelation factor is between
0.89 and 0.95 and corresponds to an error of 25% (short rangesand weighted fit) to 33% (long ranges and unweighted fit). For
highway fog with less than 400 m visibility, the error is reduced to 10% (weighted fit).

alternate traffic rules are decided. These two transport policies have been shown to have positive effects on
air quality (Schillinger et al., 2007). Air quality sensorsare mainly installed in cities. By using the proposed
camera-based monitoring method, road operators have at their disposal a flexible solution to assess the air
quality and to potentially implement new strategies aimingat maintaining the air quality along their road
networks.

6.2. Winter Maintenance

The monitoring of meteorological visibility has different applications for winter maintenance (Nagata
et al., 2008). First, the knowledge of a low visibility area is important for the safety of winter maintenance
operations. Second, a sudden drop of the visibility can be symptomatic of heavy snow falls. The relation-
ship between liquid equivalent snowfall rate and visibility has also been investigated (Rasmussen, 1999),
which means that a camera-based visibility meter is potentially a good snow sensor. Finally, meteorological
models have been developed to forecast pavement temperatures as well as snow height (Bouilloud et al.,
2009). Nebulosity and fog are phenomena which alter the prediction, since the radiative transfer between
the pavement and the air is changed. The assimilation of visibility data in these prediction models may be
useful to increase the accuracy of forecasts.

6.3. Fog Nowcasting

The forecasting of the weather within the next six hours is often referred to as nowcasting. In this
time range, it is possible to forecast smaller features suchas individual showers and thunderstorms with
reasonable accuracy, as well as other features too small to be resolved by a computer model. Guidard and
Tzanos (2007) show that combining satellite-based forecasting of low clouds with terrestrial measurements
of humidity allows computing a probability of fog occurrence. A camera-based visibility meter could
easily substitute the measurement of the humidity. Indeed,using camera-based visibility estimation and
meteorological data, Yasuhiro et al. (2011) shows that visibility can be predicted up to 15 minutes with
1-km mesh meteorological data. Such camera-based nowcasting methods may be good solutions to allow
the re-routing of vehicles before they reach a low-visibility area in a timely manner.

6.4. Pile-up Prevention and Mitigation

6.4.1. Best Practice
McLawhorn (2004) has proposed a review of best practices in terms of mitigation of highway visibility

problems, in particular fog related issues. In this paper, adescription of existing installations in the USA
dedicated to driver alert in case of low visibility on the highway is proposed. Apart from fog dispersal
techniques, the best practices are related to the timely alert of the drivers who approach a foggy area. Then,
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Figure 7: Futuristic decentralized fog-pilot, which makesuse of CCTV cameras to monitor the visibility and allows optimizing the
speed of drivers approaching a low visibility area, as well as the intensity of road studs.

depending on the fog density, different advisory speed limits may be posted. In the same time, the public
lighting is adapted. The component of these systems are madeof weather stations, CCTV cameras and
Variable Message Signs (VMS). More recently, Caltrans has installed the "Fog Pilot" system in District 6,
which provides a high-technology solution every1

4 mile along a 12-mile (20-km) portion of State Route
99. This centralized solution relies on the use of infrastructure-to-vehicle communications to alert drivers
of sudden low speed areas.

6.4.2. Decentralized Fog-Pilot
In this section, we envision a decentralized fog-pilot, which makes use of CCTV cameras to monitor

the visibility and allows optimizing the speed of drivers approaching a low visibility area, as well as the
intensity of road studs. The different components of the fog-pilot are schematized in Figure7. Based on
best existing practices, its principle is to warn the drivers of a foggy area with enough time, so that their
speed is adapted to the prevailing visibility distance whenthey reach the dangerous area.

Speed Management.The key aspect of this problem is to select the relevant Variable Message Sign (VMS),
on which to display the information about an incoming foggy area. In this paragraph, we propose to compute
the relative position of the VMS with respect to the positionof the foggy area.

The stopping distanceDstop for a vehicle is determined by its decelerationγ, which depends on the
effective coefficient of friction between the tires and the road, and the driver’s reaction timeTr in a braking
situation (Kiencke and Nielsen, 2000):

Dstop= S0Tr +
S2

0

2γ
(17)

whereS0 denotes the initial speed of the vehicle.
By solving the equationDstop = VMet, we obtain the maximum speedSmax at which a driver should

drive through fog, so as to be able to prevent a collision witha stopped vehicle:

Smax = −Trγ +

√

T2
r γ

2 + 2γVMet (18)
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The distanceDbrakecovered by a vehicle with a decelerationγ from initial speedS0 to the target speedSmax

is given by the following equation:

Dbrake=
1
2















S2
max− S2

0

γ















(19)

So as to obtain a smooth deceleration, e.g.γ = 3 m.s−2, the optimal distanceDvms between two VMS is:

Dvms = Dbrake+ S0Tlatency (20)

whereTlatency comprises the latency of the system to detect the low visibility area and to display the infor-
mation on the relevant VMS. We thus have:

Tlatency= Tdetection+ Tdisplay (21)

The time which is necessary to detect is usually very low compared to the time necessary to transmit and
to display the information. In the case of our camera-based system,Tdetection is very small (lower than 0.1
second). In the case of a centralized system, the information must be validated by a human operator, which
may take some additional time. In the case of a decentralizedsystem,Tdisplay comprised the latency of the
telecommunication system and might be of a few seconds. In the case of an incoming car driving at 130
km.h−1 approaching a section withVMet = 50 m, the distanceDvms is approximately equal to 400 meters for
a smooth deceleration ofγ = 3 m.s−2 and a very low latency (1 second). This optimal distance corresponds
also to the definition of highway fog given in the introduction and validates the positioning of the VMS in
the Fog-Pilot system.

Adaptive Road Lighting.In case of fog presence, the road lighting must also be adapted. First, streetlights
are usually switched off. Adaptive lighting are put on the roadside and road studs on the pavement are
switched on so as to better delineate the highway. In addition, we believe that intelligent road studs (Boys
and Green, 1997) should be able to adapt their intensity withrespect to the visibility distance.

The luminance of a road stud perceived by a driver at distanced in case of fog is given by Allard’s Law
(CIE, 1987):

Lr ∝
Im

d2
exp(−3kd) ≈

Im

d2
exp

(

−

3d
VMet

)

(22)

whereIm denote the maximum intensity of the luminous source (see Figure 8). To obtain the same lumi-
nance in fog as in clear conditions, it is enough to compensate for the decrease of light intensity caused
by fog. By reversing Equation 22, we found that the intensityof a road stud must increased by a factor
exp

(

3d0
VMet

)

. In this equation,d0 denotes the distance at which the intensity of the road stud is perceived at
the maximum (40 meters in case of a road stud dedicated to highway applications, i.e.ε ≈ 2˚andh = 1.2 m
in Figure 8).

7. Discussion

7.1. Qualitative Comparison with other Methods

It is quite difficult to compare meteorological visibility estimation methods, because the data sets and
the reference sensor differ from one method to another. Nevertheless, we have shown that taking Lambertian
areas into account is more robust than relying on the whole image gradients. In this way, we improve the
previous methods proposed by Xie et al. (2008) and Liaw et al.(2009). Compared to previous methods, we
are able to estimate visibility ranges down to very short ranges like (Hautière et al., 2008), as well as up
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Figure 8: Geometry related to the luminous intensity distribution of a road stud at grazing angleε. With this geometry,d0 denotes
the distance at which the intensity of the road stud is perceived at the maximum. It is equal to 40 meters for a car driver (h = 1.2
m) looking at a roadstud dedicated to highway applications (ε ≈ 2˚).

to long ranges like Liaw et al. (2010). We are (among) the firstto propose a non-linear fitting to estimate
the meteorological visibility distance. Unlike methods which detect known targets in the landscape, e.g.
(Bäumer et al., 2008), we do not systematically underestimate the meteorological visibility distance. We do
not rely on high resolution either since we use a camera whichis already massively deployed on highway
networks. Finally, we are not sensitive to the geometric calibration of the camera contrary to (Hautière
et al., 2008), since we compute a global visibility descriptor instead of a local one.

7.2. Perspectives

Despite the good properties of the methods and the promisingresults, the proposed model still suffers
two main limitations. First, fixed camera is a requirement for the here proposed method which is intended
to operate with roadside cameras such as those used for traffic surveillance. Second, the method does not
deal currently with rapid changes in the field of view caused by traffic. Third, the seasonality also impacts
the amount of gradients in the image. The second and third limitations can be circumvented by using
background modelling methods so as to constantly update themodel, as previously proposed by Hautière
et al. (2008).

To implement this method of visibility estimation on a specific site, calibrating the logarithmic response
curve is mandatory. In this aim, the simplest method consists in matching image contrasts with visibility
and luminance data collected by reference sensors (visibility meter and luminance meter) during at least
one foggy episode. For a massive deployment of the method on many different sites, more dedicated work
is needed to simplify the calibration process so as to get ridof the reference sensors. A first model-driven
approach aiming at replacing the empirical logarithmic formula is proposed by Hautière et al. (2011). It is a
promising solution. However, the experimental results show that our data-driven approach still gives better
results in terms of relative error.

8. Conclusion

This study proposes a robust empirical law for estimating the meteorological visibility in daylight by
means of a typical CCTV camera. The methodology presented inthis paper is to link meteorological vis-
ibility to the sum of the module of Sobel gradient weighted bythe confidence of the pixels to belong to
Lambertian surfaces. It is demonstrated and validated thatthe proposed estimator is robust to changes in
lighting conditions, and that any variation in measurementresults are due to the variation of visibility in the
atmosphere. Applying this estimator on real images acquired under a variety of visibility and lighting con-
ditions, an estimated atmospheric visibility was obtainedand then compared and validated with reference
data collected with a meteorological instrument.

The approach for estimating visibility was also tested and validated under a large range of visibility and
lighting conditions. It showed the relevance and the reproducibility of the approach. We believe therefore
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that this method for estimating meteorological visibilityis easily deployable using the camera network
already installed alongside highways throughout the worldand therefore of high impact to traffic safety
at marginal cost. Once deployed, this concept should increase the quality and the spatial accuracy of the
visibility information and could feed weather forecastingsystems. Importantly, our system may serve to
inform drivers of relevant speed limits under low visibility conditions.

In future work, we will express errors in estimating visibility as a function of camera characteristics to
ascertain the accuracy with which visibility can be estimated with current and future CCTV systems. We
believe, however, that our work has given both a fundamentaland practical basis to consider deployment of
our potentially life-saving real-time roadside visibility meters.
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