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Abstract

The video segmentation problem consists in the identification of the boundary between consecutive shots. The

common approach to solve this problem is based on dissimilarity measures between frames. In this work, the video

segmentation problem is transformed into a problem of pattern detection, where each video event is transformed into a

different pattern on a 2D image, called visual rhythm, obtained by a specific transformation. In our analysis we use

topological and morphological tools to detect cuts. Also, we use discrete line analysis and max tree analysis to detect

fade transitions and flashes, respectively. We present a comparative analysis of our method for cut detection with

respect to some other methods, which shows the better results of our method.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The video hierarchical model is usually divided

into four levels according to the temporal resolu-

tion. The lowest level is the frame. Several frames

are grouped into a shot that represents a contin-

uous camera recording. Some shots with a story-

telling coherence are grouped into scenes and

different scenes constitute a digital video. Amongst
the problems related to analysis and indexing of

video, the video segmentation can be considered as

an essential and first step. The video segmentation
problem consists in the identification of the

boundary between consecutive shots, called tran-

sition. The simplest transition between two con-

secutive shots is the sharp transition (cut) that is

simply a concatenation of these shots. The com-

mon approach to cope with the cut detection is

based on the use of a dissimilarity measure. Wang

et al. (2000) and Del Bimbo (1999) review some
of the most popular methods for cut detection,

such as pixel-wise comparison, histogram com-

parison, etc. Unfortunately, the cut detection is

complicated by the presence of effects, like gradual

transitions, flashes and fast camera and object

motions. The simplest gradual transition, the fade,

consists in the gradual darkening (lightening) of

a shot. Some works for fade detection can be
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found in (Zabih et al., 1995; Fernando et al., 1999;

Lienhart, 1999). Zabih et al. (1995) proposed an

algorithm based on edge detection which is very

costly due to the computation of edges for each

frame of the sequence. Fernando et al. (1999) and

Lienhart (1999) used a statistical approach con-
sidering features of the luminance signal. This

approach presents high precision on long fades.

Another approach to the video segmentation

problem is to transform the video V into a 2D

image R, and to apply image processing methods

on R to extract the different patterns related to

each transition. Informally, each frame is trans-

formed into a vertical line of R, as illustrated in
Fig. 1(a). This approach can be found in (To-

nomura et al., 1993; Chung et al., 1999; Ngo et al.,

1999). Tonomura et al. (1993) defined the X-ray

and Y-ray as the result of a video transformation

obtained by a linear image transformation in each

axis, and an edge analysis was performed to detect

cuts. They also cited another video transformation

based on the intensity histogram, but it was not
well defined and not exploited. Chung et al. (1999)

defined the visual rhythm and Ngo et al. (1999)

defined the spatio-temporal slice, both are related

to the same video transformation and a sub-sam-

pling of each frame, like the principal diagonal

sub-sampling (illustrated in Fig. 1(b)). Chung et al.

applied statistical measures to detect some pat-

terns, but the number of false detections is very
high. Ngo et al. applied Markov models for shot

transition detection, but it fails when there is low

contrast between textures of consecutive shots.

We propose, in this work, different specific

methods for video segmentation based on analysis

of a 2D image, taking advantage of the fact that

each video event is represented by a specific pattern
in this image. This work is an extension of Gui-

mar~aaes et al. (2001) which used morphological and
topological tools to detect cuts by analysis of the

visual rhythm by sub-sampling. Here, we introduce

the notion of visual rhythm by histogram, and we

use it to detect different kinds of transition, mainly

fades. On these two variants of visual rhythm,

namely visual rhythm by sub-sampling and visual
rhythm by histogram, we apply morphological,

topological and discrete geometry tools to segment

the video without the need of defining a dissimi-

larity measure between frames. In the general way,

the simplicity of implementation, the low process-

ing cost and the high quality of results can be

considered as the main contributions of our work.

Also, we verified that our methods are more robust
than other implemented methods with respect to

the tuning of threshold values. The fact that two

different video events may be represented by the

same visual rhythm pattern can be considered as

the main drawback of our method. Fortunately,

this problem is not frequent in real cases.

This paper is organized as follows. In Section

2 we define the video transformations, the visual
rhythm by sub-sampling and by histogram. In

Section 3 we present a methodology for cut detec-

tion. In Section 4 we propose a new method for

fade detection based on analysis of the visual

rhythm by histogram. In Section 5 we present two

methods for flash detection. In Section 6 we report

on a comparative analysis for cut detection in-

volving our method and some other methods, using
four different quality measures. According to these

measures, we can verify that our method presents

generally the best results. Some conclusions and a

summary of future works are given in Section 7.

2. Video transformation

Let D�Z2; D¼f0; . . . ;H �1g�f0; . . . ;W �1g,
where H and W are the height and the width of

Fig. 1. Video transformation: (a) simplification of the video

content by transformation of each frame into a column on R;

(b) a real example of the principal diagonal sub-sampling.
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each frame, respectively. A video V, in domain

2Dþ t, can be seen as a sequence of frames ft and
can be described by V ¼ ðftÞt2½0;T�1� where T is the
number of frames contained in the video.

2.1. Visual rhythm by sub-sampling

Informally, the visual rhythm by sub-sampling

(or simply visual rhythm) is a simplification of

the video content represented by a 2D image.

This simplification can be obtained by a systematic

sampling of points of the video, such as extraction

of the diagonal points of each frame.

Definition 1 (Visual rhythm Chung et al., 1999 or
spatio-temporal slice Ngo et al., 1999). Let V ¼
ðftÞt2½0;T�1� be an arbitrary video, in domain 2Dþ t.
The visual rhythm, in domain 1Dþ t, is a simpli-
fication of the video in which each frame ft is
transformed into a vertical line of the visual

rhythm image A, defined by Aðt; zÞ ¼ ftðrx � zþ
a; ry � zþ bÞ, where z 2 f0; . . . ;HA � 1g and t 2
f0; . . . ; T � 1g, HA and T are the height and the
width of the visual rhythm, respectively, rx and ry
are ratios of pixel sampling, a and b are shifts
on each frame.

Thus, according to these parameters, different

pixel samplings could be considered, for example,

if rx ¼ ry ¼ 1 and a ¼ b ¼ 0 and H ¼ W , then we
obtain all pixels of the principal diagonal. The

choice of the pixel sampling constitutes a problem

in the sense that different samplings produce dif-

ferent visual rhythms in which video events (cuts,

fades, flashes, etc.) will appear as different pat-

terns. Chung et al. (1999) presented different pixel

sampling possibilities with their correspondent vi-

sual rhythms. They said that the best results are
found when the sampling is based on a diagonal

because it contains both horizontal and vertical

features. In Fig. 1(b) and 2(a), we show examples

of visual rhythm obtained by the principal diago-

nal sub-sampling.

2.2. Visual rhythm by histogram

To take advantage of the properties of an image

histogram, such as global information, invariance

to rotation and translation, we define here a new
video transformation, called visual rhythm by

histogram (VRH), where the video is transformed

into a 2D image containing histogram frame in-

formation.

Definition 2 (Visual rhythm by histogram (VRH)).
Let V ¼ ðftÞt2½0;T�1� be an arbitrary video, in do-
main 2Dþ t and ðHftÞt2½0;T�1� the sequence of his-
tograms computed from all frames of V. The
visual rhythm by histogram B is a 2D representa-

tion of all frame histograms where each vertical

line represents a frame histogram, B is defined by
Bðt; zÞ ¼ HftðzÞ, where t 2 ½0; T � 1� and z 2 ½0; L�
1�, T is the number of frames and L the number
of histogram bins.

The main problem of this representation is as-

sociated with the transformation of all histogram

values into grayscale values. The simplest way for

histogram representation is obtained by normal-

ization of each histogram independently. Another

possibility is the truncation of the values greater

than G� 1, where G is the number of grayscales.
Due to the loss of information in the representa-
tion by truncation, we chose the histogram nor-

malization for representing the visual rhythm by

histogram. Furthermore, this normalization pro-

duces a filtering effect on the weakest histogram

values, which mainly occurs when most pixels are

grouped in only few bins. In fact, this kind of fil-

tering is desirable for our application. In Fig. 2(b),

we illustrate an example of visual rhythm by his-
togram where each value of the histogram is in the

range ½0; 255�.

Fig. 2. Visual rhythm by sub-sampling (a) and by histogram

(b) computed from the same video.
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3. Cut detection

All cuts appear as ‘‘vertical lines’’ on the visual

rhythm, as illustrated in Fig. 2. To facilitate the

description of our method, the visual rhythm by
sub-sampling or by histogram will be denoted by

R, and each step will be separately described.

Filtering. In this step, we reduce noise on R

using mathematical morphology filters (see Serra,

1988; Soille, 1999). The filtered visual rhythm is

denoted by RF. Here, we apply an opening (clos-
ing) by reconstruction to eliminate the small light

(black) components. These morphological filters
have the interesting property to preserve the sharp

contours of the image.

Horizontal gradient. The aim of this step is to

detect the locations where horizontal grayscale

discontinuities occur in the filtered visual rhythm.

These locations, when vertically aligned, can rep-

resent a cut. So, we calculate the norm of the

horizontal gradient rh of the filtered image by
jrhRFðt; zÞj ¼ jRFðt; zÞ � RFðt � 1; zÞj.

Thinning. This transformation is used here to

simplify the peak detections (see Bertrand et al.,

1997). Intuitively, a horizontal transition between

two consecutive regions corresponds to a ‘‘peak’’ in

the horizontal gradient of each line. In the case of a

cut, the maximum of this peak is generally reduced
to only one pixel but for gradual video transitions,

for example, the maximum of a peak may consist of

several neighboring pixels. In such cases, a simple

maximum detection would result in multiple re-

sponses for a single transition. This is why we in-

troduce the thinning step, with the aim of reducing

every peak to a one-pixel-thin maximum.

Detection of the maximum points. After the
thinning operation, we have a new image IT where
each horizontal peak is represented by a point,

called maximum point. A point x in 1D image g is

maximum if its two neighbors have values strictly

smaller than gðxÞ. So, we must find all maximum
points of the image IT to identify the center points
of the transitions. The image of maximum points

is denoted by M.

Fig. 3. Cut detection from a visual rhythm by sub-sampling (a)–(f) and by histogram (g)–(l): visual rhythms (a) and (g); thinning (b)

and (h); maximum points (c) and (i); maxima filtering (d) and (j); normalized number of maximum points in the range ½0; 255� (e) and
(k); detected cuts (white bars) superimposed on the visual rhythms (f) and (l).
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Maxima image filtering. As illustrated in Figs.

3(c) and (i), the locations of the cuts appear as

‘‘vertical lines’’ in image M, embedded in irrele-

vant components (noise) which can be reduced

by a morphological filtering. This filtering is an

opening by reconstruction with a vertical struc-
turing element of size k ¼ 7, defined empirically.
The filtered maxima image is denoted by MF.

Detection of cuts. From the filtered maxima

image MF, we create a 1D image P where each

point t has a value P ðtÞ representing the number of
maximum points of the vertical line t on MF. Fi-

nally, when the value of the point P ðtÞ is greater
than or equal to a threshold T, then a cut is de-
tected at time t.

In Fig. 3, we illustrate the results of the main

steps of our method when applied to a visual

rhythm by sub-sampling (or histogram) obtained

from the same real video.

4. Fade detection

The fade process is characterized by a progres-

sive darkening of a shot until the last frame be-

comes completely black, or inversely (Del Bimbo

(1999)). A more general definition is given by

Lienhart (1999) where the black frame is replaced

by a monochrome frame. A natural way for de-

tecting the fades is to study the behavior of lumi-
nosity changing (Lienhart, 1999; Fernando et al.,

1999) by modeling the process of fade creation with

mathematical equations. Unfortunately, this pro-

cess fails due to noise, when the extremal frames

are not completely monochrome, and mainly,

when we have short fades. If we study the behavior

of image histograms in a fade, respecting the time

coherence, inclined edges can be found on the

visual rhythm by histogram (VRH), due to the

shrinking (or expansion) of the histogram width

during the fade, that corresponds to the number of

non-zero bins. So, we propose a methodology for

fade detection based on the VRH analysis which

consists in the detection of inclined edges.
Fig. 4 illustrates an example of the fade detec-

tion by VRH analysis. In the first step, a thres-

holding is applied to the VRH (Fig. 4(b)). A

gradient operator allows to extract the contours of

the segmented image (Fig. 4(c)). The gradient op-

erator used here is the external morphological

gradient. Finally, an algorithm for line approxi-

mation described in (Dunham, 1986) is used. Af-
terwards, an analysis of size and inclination is

realized (Fig. 4(d)), in this example, the permitted

inclination is between )44� and 44� and the mini-
mal size of the fade edges is 100 pixels. These

values were empirically defined.

5. Flash detection

The flash presence is very common in digital

videos, mainly in television journal videos. When

a flash occurs, an increase of the luminosity in a

few frames is produced, as illustrated in Fig. 5.

When we calculate a dissimilarity measure, we

can see that this measure is very high in the

frames affected by a flash. In fact, the presence of
flashes often perturbs the cut detection. In this

work, we propose two methods for flash detection

without taking into account dissimilarity mea-

sures. The first one is a variant of the proposed

method for cut detection and the second one

considers a filtering of the max tree calculated

from statistical measures of each frame (or frame

sub-samplings).

Fig. 4. Fade detection process: (a) visual rhythm by histogram, (b) thresholding, (c) gradient, (d) line filtering and (e) result super-

imposed on the visual rhythm by histogram (a).
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5.1. Filtering by top-hat

On the visual rhythm, we can observe that the
flashes are transformed into thin light vertical

lines, as showed in Fig. 5(a). So, these lines can be

extracted through a white top-hat by recon-

struction operation. The white top-hat by recon-

struction is a mathematical morphology operator

defined as the difference between the original im-

age g and the opening by reconstruction of g

(Serra, 1988; Soille, 1999). Informally, this opera-
tor detects light regions according to shape and

size specifications of the structuring element. Our

first method for flash detection can be described

as follows: (1) calculate the visual rhythm by sub-

sampling using the principal diagonal pixel

sampling; (2) apply the white top-hat by recon-

struction with a square structuring element of size

k ¼ 5. This size is associated with the potential
duration of a flash; (3) apply a 1D thinning to each

line of the above image; (4) find the maximum

points; (5) apply an opening by reconstruction with

vertical structuring element of size k ¼ 7, defined
empirically; (6) calculate the number of maximum

points of each column of the above image. As the

method for cut detection, this method detects the

center of the regions of interest, in this case, re-
gions with peak luminosity. Thus, we can have

false detections in regions of high luminosity

changing that is not due to a flash. Usually, this

method produces good results when the flash ap-

pears in the middle of the shot.

5.2. Max tree filtering

Usually, the frames affected by a flash are

visually similar to their neighbors but with a

higher luminosity. The analysis of flash presence

can be given by the computation of some statistical

measures like mean or median, because the frames
affected by a flash present higher mean and median

values with respect to their neighbors. From the

computation of these statistical measures for all

frames of the video, we can create a 1D image

from the visual rhythm, or preferably from the

original video data. From this 1D image, we need

to find the ‘‘peaks’’ whose ‘‘height’’ is greater than

a certain value h, and a ‘‘basis area’’ less than or
equal to a value S that corresponds to the duration

of the flash. In this work, we consider that the

maximum flash duration is 5 frames, i.e., S ¼ 5.
The parameter h influences the sensitivity of the

method and has a role similar to the threshold in

Section 3. The notions of peak, height and basis

area can be precisely defined thanks to a data

structure called max-tree (Salembier et al., 1998)
(refer to this paper for more details).

6. Experimental analysis

In this section, we show the experimental results

for cut, fade and flash detection. Nowadays, our

video database contains 450 videos, but we use
only 32 videos for cut detection experiments, 46

videos for fade detection experiments and 10 vid-

eos for flash detection experiments. The choice of

the videos was associated with the presence of the

different events, such as cut, dissolve, wipe, flash,

zoom-in, zoom-out, pan, tilt, object motion, cam-

era motion, computer effects. In Table 1, we show

some features of the chosen videos. To compare
the different methods, we define some quality

measures as follows.

Fig. 5. Flash video detection: (a) some frames of a sequence with the flash presence; (b) visual rhythm by sub-sampling; (c) detected

flash.
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6.1. Quality measures

The first step to realize a comparison analysis is

to manually identify the video events that will be

considered as reference for classifying the type of

detection (e.g., correct, false or miss). We denote

by #Event the number of events (cuts, fades, fla-

shes, etc.), by #Correct the number of events cor-
rectly detected, by #False the number of detected

frames that do not represent an event and by

#Miss the number of the events that were not

detected, defined by #Miss ¼ #Event � #Correct.
From these numbers we can define two basic

quality measures.

Definition 3 (Recall and error rates). The recall
and error rates represent the ratios of correct and

false detection, respectively, and are given by

a ¼ #Correct
#Event

ðrecallÞ; b ¼ #False
#Event

ðerrorÞ:

Let s be the threshold used for event detection
normalized in the range ½0; 1�. If we consider that
for each threshold s we obtain different values for
a and b, we can represent these relations as func-
tions aðsÞ and bðsÞ, respectively. A new measure

can be created to relate ranges in which a and b
are adequate, according to the ratios of miss and
of false detection that are permitted.

Definition 4 (Robustness). Let Pm and Pf be the
ratio of miss and false detections that are permit-

ted. The robustness l measures the width of the
interval where the recall and error rates have val-

ues smaller than ð1� PmÞ and Pf , respectively. This
measure is in the range ½0; 1� and is given by
lðPm; PfÞ ¼ a�1ð1� PmÞ � b�1ðPfÞ, where a�1 and

b�1 are the inverses of the functions aðsÞ and bðsÞ,
respectively.

In Fig. 6, we illustrate the robustness measure
obtained from functions aðsÞ and bðsÞ. To follow,
we define two other measures, Em and Rf , that are
associated with the absence of miss and false de-

tection, respectively.

Definition 5 (‘‘Missless error’’). The missless error
Em is associated with the ratio of false detection
when we have results without miss (a small ratio of
miss Pm can be permitted, like 0.03). The missless
error is given by

EmðPmÞ ¼ bðmaxfs ¼ a�1ðqÞj1� q6 PmgÞ:

Definition 6 (‘‘Falseless recall’’). The falseless

recall Rf is associated with the ratio of correct
detection when we have results without false de-

tection (a small number of false detection Pf can
be permitted, like 0.01). The falseless recall is given

by

RfðPfÞ ¼ aðminfs ¼ b�1ðpÞjp6 PfgÞ:

When we use methods for event detection, we

expect that the recall is highest with a smallest error

Fig. 6. Robustness (l) measure.

Table 1

Features of the videos which were selected for the experiments

Videos Cuts Fades Flashes Frames Frames/event (mean)

Corpus 1 (Cut) 32 778 15 14 29 933 0

Corpus 2 (Fade) 46 – 59 – 41 881 14.2

Corpus 3 (Flash) 10 – – 23 8392 3
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rate. To find a compromise between these two re-

quirements, we must define a ‘‘reward function’’

combining aðsÞ and bðsÞ. Since high values of a and
low values of b have to be rewarded, the function
aðsÞ � ð1� bðsÞÞ is a natural choice.

Definition 7 (Gamma). The gamma measure c
represents the maximal value of the reward func-

tion defined above for all possible values of s:

c ¼ maxfaðsÞ � ð1� bðsÞÞjs 2 ½0; 1�g:
The quality of the results is related to the values

of the measures above defined. The highest values

of robustness, falseless recall and gamma measure

represent the best results of a method. The lowest

values of missless error represent the best results of

a method. In the next sections, we describe the

experiments for cut, fade and flash detection.

6.2. Experiments for cut detection

In these experiments, we implemented three
methods described in literature: a variant of pixel-

wise comparison, a histogram intersection and a

statistical technique based on visual rhythm. We

chose these methods due to their simplicity and

their effectiveness according to Demarty (2000),

Del Bimbo et al. (2000) and Chung et al. (1999),

respectively. We also implemented the proposed

method with some variants. To follow, we describe
all experiments applied to the corpus 1 followed

by a global analysis of their results.

Experiment 1. This experiment uses the differ-
ence between pixels according to Demarty (2000)

as the dissimilarity measure. A 1D signal is created

from the dissimilarity values calculated in each

frame of the video. Then a mathematical mor-
phology operator, called inf top-hat, is applied to

this signal, and finally, a threshold is used to detect

the cuts.

Experiment 2. This experiment uses the histo-
gram intersection according to Del Bimbo et al.

(2000) as the dissimilarity measure. If the dissimi-

larity value is greater than a threshold, then a cut

is detected. With the aim of improving the results,
a subdivision of each frame is realized.

Experiment 3. This experiment uses the visual
rhythm for cut detection based on a statistical

method as described in (Chung et al., 1999). Here,

the parameters are different from those used in the

other mentioned methods, particularly the thresh-

old. While in this method the threshold is locally
adaptive and related to a parameter that varies

from 1 to 10, in the other methods the threshold

is fixed and global.

Experiment 4. In this experiment, we compute a
1D image associated with the mean of the differ-

ence between pixels in consecutive frames. We

apply the following algorithm on this image: (i)

apply a white top-hat by reconstruction with a flat
structuring element of size 3; (ii) apply a thinning;

and (iii) apply a thresholding.

Experiment 5. In this variant of our method
introduced in Section 3, instead of applying the

summation of the number of maximum points to

each vertical line, we use the filtered maxima MF

image as a mask to select the grayscale values as-

sociated with all maximum points. Afterwards, we
find the mean of these grayscale values in each

vertical line. Then, a thresholding is applied to

these results.

Experiments 6 and 7. These experiments are
related to the method defined in Section 3 con-

cerning the analysis of the visual rhythm by sub-

sampling and by histogram, respectively.

In Fig. 7, we show graphically the experimental

results for each experiment previously described.

The graphics relate the threshold (rate with respect

to the maximum value obtained from each exper-

iment) to recall and error rates. From the curves

shown in these graphics, it is possible to find the

robustness, missless error rate, falseless recall rate

and gamma measures, that are outlined in Table
2(a). From these experiments, we can verify that

the proposed method based on visual rhythm

analysis generally produces the best results, mainly

according to the robustness and the missless error

rate. The good value of the robustness means that

the proposed method is not very sensitive to small

variations around an ‘‘optimal value’’ of the

main parameter. Another interesting aspect of our
method concerns the missless error rate since, in

general, we want results without miss and with a
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smallest possible ratio of false detections, so that
we can eliminate them posteriorly. Indeed, a post-

processing is essential to increase the quality of the

results because many false detections are due to

the presence of effects like flash, pan, zoom. Also,

we can observe that the processing time for ex-

periments based on visual rhythm by sub-sampling

is significantly lower than for the experiments ap-

plied directly to the video. We notice that the re-

sults of the proposed method based on analysis of

the visual rhythm by sub-sampling are better with

respect to analysis of the visual rhythm by histo-

gram.

6.3. Experiments for fade detection

In these experiments, we apply the method de-
scribed in Section 4 to the corpus 2. An important

aspect of this method is its robustness with respect

to the fade size and to the quality of the fade

frames, that is, our method can detect fades

even when the extremal frames are not com-

pletely monochrome. On the other hand, fades

with a small luminosity difference between extre-

mal frames are not detected. In these experiments,
we distinguished the long fades (duration P 15

frames) which are, in general, the easiest ones to

detect. The quality measures are outlined in Table

2(b).

6.4. Experiments for flash detection

In these experiments, we apply the methods
described in Section 5.1 and in Section 5.2 to the

corpus 3. In Fig. 8, we illustrate some experimental

results. The quality measures of the filtering of the

max tree and the top-hat filtering are outlined in

Table 2(c).

Fig. 7. Experimental results.

Table 2

Quality measures

l Em Rf c

(a)

Experiment 1 0.01 0.80 0.10 0.77

Experiment 2 0.00 0.51 0.00 0.68

Experiment 3 0.00 1.20 0.51 0.72

Experiment 4 0.06 0.49 0.21 0.80

Experiment 5 0.01 0.48 0.44 0.78

Experiment 6 0.11 0.37 0.35 0.80

Experiment 7 0.11 0.46 0.42 0.75

(b)

Top-hat 0.05 0.61 0.26 0.56

Max tree 0.11 0.67 0.43 0.69

(c) Fades Recall Error

All fades 59 0.95

(56)

0.30

(18)

Long fades 20 0.95

(19)

0.05 (1)

Cut detection (a) lð0:10; 0:30Þ, Emð0:03Þ, Rf ð0:01Þ and c; flash
detection (b) lð0:40; 0:30Þ, Emð0:05Þ, Rf ð0:01Þ and c; fade de-
tection (c). The best values are highlighted.
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7. Discussions and conclusions

In this work, we transform the video segmen-

tation problem into a 2D image segmentation

problem. Methods for cut, fade and flash detection

are proposed. The main contribution of our work

is the application of operators of mathematical

morphology and digital topology to solve a prob-

lem of video segmentation. The exploitation of

the visual rhythm by histogram, mainly for fade
detection, also represents an original contribution

of this work. We verified that we can identify short

fades with a small ratio of false detections. For

flash detection, the extraction of peaks by max tree

analysis allows a detection of flashes in all posi-

tions of the shot.

The effectiveness of the results is associated with

the choice of good parameters. Two types of pa-
rameters can be distinguished: fixed and variable.

The fixed parameters, like the size of structuring

elements, can be pre-determined for all applica-

tions. The use of a variable parameter, in our case,

the threshold value, is interesting and sometimes

necessary, because it plays an important role in the

segmentation process where the user can adequate

it according to the nature of data and the type of
application. Also, the tuning of this parameter

allows to find a compromise between over-seg-

mentation and under-segmentation.

To realize a comparative analysis between dif-

ferent methods for event detection, we defined

four quality measures: robustness, missless error,

falseless recall and the gamma measure. According

to these quality measures, we verified that the
proposed method for cut detection has the best

values of robustness, missless error and gamma

measure, when compared experimentally to the

other methods. We also computed the quality

measures for flash detection, and according to

these measures, the method based on max tree

analysis generally presents the best results.

From this work, we observed that the visual
rhythm by sub-sampling and by histogram present

an adequate simplification of the video content,

which can constitute the basis for future develop-

ments such as: (i) identify some other video events,

like pan and zoom from the detection of their

correspondent patterns; (ii) modify the proposed

method for cut detection to detect gradual video

transitions, using the multi-scale morphological
gradient (Soille, 1999) to compute the horizontal

gradient. We can also remark that considering the

video sequence as 3D images, we could apply an

extension of our method directly to the video

data. We have to verify if the computation effort is

rewarded by a better segmentation quality.
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Fig. 8. Experimental results for flash detection.
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