
Intersecting curves
(variation on an observation of Maxim Kontsevich)

by
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Abstract

Consider the graphs of n distinct polynomials of a real variable intersecting at
some point. In the neighborhood of this point, the qualitative picture is described
by some permutation of {1, . . . , n}. We describe the permutations that occur in such
a situation.

In this note, we shall examine the relative positions of the graphs of several functions
in the neighborhood of a point where they intersect. In order to keep the discussion as
elementary as possible, we shall restrict ourselves to polynomials in the real variable x

f(x) = a0 + a1x+ . . .+ adx
d,

where the coefficients ai are real numbers. As usual, one says that the valuation of f at 0
is the integer k ≤ d such that a0 = a1 = . . . = ak−1 = 0 and ak 6= 0 (and ∞ if f = 0). It is
well known that the function f changes sign in the neighborhood of the origin if and only
if its valuation is odd.

Two curves

Assume now that the graphs of two distinct polynomials f1, f2 intersect in some point, say
the origin (0, 0). Then the relative position of the graphs of f1 and f2 in the neighborhood
of this point is easy to describe. If the valuation of f1 − f2 is odd, these graphs cross each
other. Otherwise they touch without crossing.

Figure 1: Two intersecting curves
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Three curves

Let us now look at the graphs of three distinct polynomials f1, f2, f3 vanishing at the origin.
The relative positions of these graphs are determined by the valuations of the differences
fi − fj. Looking at small negative values of x, we can rename the polynomials in such a
way that f1(x) > f2(x) > f3(x). For small positive numbers x, the ordering of the fi(x)
may be different so that the crossing of the three graphs can be described by one of the
six permutations of {1, 2, 3}. It is not difficult to show, by way of examples, that all six
permutations occur. Here are six examples:

(f1(x) = x2 ; f2(x) = 0 ; f3(x) = −x2)
(f1(x) = x2 ; f2(x) = −x3 ; f3(x) = 0)
(f1(x) = 0 ; f2(x) = x3 ; f3(x) = −x2)

(f1(x) = −x ; f2(x) = x2 ; f3(x) = −x2)
(f1(x) = −x ; f2(x) = 0 ; f3(x) = x)
(f1(x) = x2 ; f2(x) = −x2 ; f3(x) = x)

leading to the six permutations as illustrated in Figure 2.

Figure 2: Three intersecting curves

Four curves

Maxim Kontsevich observed that the situation is different when four graphs intersect1. Not
all permutations of {1, 2, 3, 4} occur. The following figure 3 shows four piecewise linear
functions which intersect in a way which is not possible for polynomials.

Theorem 1. There do not exist four polynomials f1, f2, f3, f4 such that:

1. they all vanish at the origin,

1Personal communication (2009).
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Figure 3: An impossible situation for polynomials

2. f1(x) > f2(x) > f3(x) > f4(x) for small negative x,

3. f2(x) > f4(x) > f1(x) > f3(x) for small positive x.

Proof. The proof is by contradiction.
Replacing the fi by fi − f4, we can assume that f4 = 0. Since f1 and f3 change sign

at the origin, their valuations val(f1), val(f3) are odd. Since f2 does not change sign, its
valuation val(f2) is even. From f1(x) > f2(x) > f3(x) > 0 for small negative x, we deduce
that val(f3) ≥ val(f2) ≥ val(f1). Similarly, from 0 > f1(x) > f3(x) for small positive x,
we deduce val(f1) ≥ val(f3). That would force the three valuations to be equal, but two
of them are odd and the third is even! This yields a contradiction. 2.

Note that the same proof applies to real analytic functions but does not apply to smooth
functions. Indeed the reader will easily find four C∞ functions fi crossing at the origin
according to the “forbidden” permutation (1, 2, 3, 4)→ (2, 4, 1, 3).

Changing orientations along the x-axis, one can see that the inverse permutation
(1, 2, 3, 4) → (3, 1, 4, 2) is also forbidden. As an exercise, I recommend showing that the
remaining 22 permutations of {1, 2, 3, 4} occur for suitable choices of the fi.

Many curves

Planting trees

Let us now analyze the situation when the graphs of n polynomials intersect at the origin.
Let us first coin a name.

Definition. Let n ≥ 2 be some integer and π : {1, 2, ..., n} → {1, 2, ..., n} some permuta-
tion. We say that π is an interchange if there exist n polynomials f1, ..., fn vanishing at 0
and such that:
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1. f1(x) > f2(x) > . . . > fn(x) for small negative x, and

2. fπ(1)(x) > fπ(2)(x) > . . . > fπ(n)(x) for small positive x.

Our goal is to give a fairly precise description of interchanges. We start with some
estimate of the growth of the number of interchanges.

Theorem 2. Let a(n) denote the number of interchanges of {1, 2, . . . , n}. Then 1
n

log a(n)

converges to log
(
3 + 2

√
2
)

when n tends to infinity.

Note in particular that a(n) is much smaller than the total number n! of permutations.
Here is a “concrete” way of computing a(n).

Theorem 3. The number a(n) of interchanges is twice the number of possible ways of
parenthesizing a word of length n in a “correct way”. More precisely, one requires that
each pair of opening-closing parenthesis contains at least two letters and that there is a
pair containing the full word.

Examples.

1. For n = 3, one can parenthesize abc in three different ways: ((ab)c), (a(bc)), (abc).
We do not count “useless” parenthesis, like double (( )), as in (((ab))c) containing a
useless pair around ab.

2. For the 4-letters word abcd, there are 11 ways: (abcd), ((ab)cd), (a(bc)d), ((ab(cd)),
((ab)(cd)), ((abc)cd), (a(bcd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))). Twice
eleven gives twenty-two and we do recover the twenty-two allowable permutations of
four graphs.

Theorem 4. One can program a computer to answer the question: “Is a given permutation
π of {1, 2, . . . , n} an interchange?” in such a way that the computing time is bounded by
some polynomial in n.

Theorem 5. A permutation π of {1, 2, . . . , n} is an interchange if and only if there does
not exist four integers a, b, c, d which are permuted as in the forbidden permutations, i.e.,
satisfying n ≥ a > b > c > d ≥ 1 and π(b) > π(d) > π(a) > π(c) or π(c) > π(a) > π(d) >
π(b).

Actually, we shall not prove these results since they will appear as obvious consequences
of the description of interchanges that follows.
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Some arboriculture

Let us consider the following eight polynomials, (almost) chosen at random.

f1(x) = x2 − x3 + x5 + x6 + x8,
f2(x) = 2x+ 2x2 − x3 − x4 + x5 + x6,
f3(x) = −x+ x2 + x3 + x4 − x5 + x6 + x7 − x8,
f4(x) = 2x+ x2 + x4 + 2x5 − x6,
f5(x) = −x2 − x3 + 2x4 + x5,
f6(x) = −x2 − x3 − x4 + 2x5 + x6 − x7,
f7(x) = −x+ x2 + x3 + x4 + x5 − x6, and
f8(x) = −x+ x2 + x3 + x4 + x5 − 2x6.

Figure 4 shows their graphs.

Figure 4: Eight graphs

We are going to analyze their relative positions for small x, positive or negative.
Let us consider first the degree 1 terms. One finds only three possibilities.

• 2x (for f2 and f4),

• 0 (for f1, f5, f6), or

• −x (for f3, f7 and f8).

This corresponds to the fact that if we zoom on the origin, we essentially only see three
graphs. Of course, for x > 0, one has −x < 0 < 2x, so that we can say that for small
positive x, the graph of f3 for instance is below the graph of f2. However, the degree 1
terms do not contain enough information to distinguish between f1 and f5. We picture the
situation in Figure 5.
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Figure 5: Degree one terms

Figure 6: Degree two terms

Let us now consider the degree 2 terms. We have now four possibilities −x+ x2, −x2,
2x+ x2, 2x+ 2x2, pictured in Figure 6.

The second degree terms enabled us to distinguish between f2 and f4 and it will be
therefore useless to continue analyzing these two polynomials to higher degrees. However,
f3, f7, f8 an f1, f5, f6 are still equally placed. We have to proceed to a finer analysis.

Degree 3 is useless, and does not allow us to distinguish between two previously undis-
tinguishable fi as illustrated in Figure 7. We have to go on.

The final result us illustrated in Figure 8: we have to wait until the fifth degree to
separate all these polynomials.

We can therefore encode the situation by a planar tree: at each level the nodes are
ordered from left to right. In this paper, we only deal with planar trees and for simplicity
we skip the word planar.

Let us check that this tree contains enough information to construct the associated
interchange. Indeed, here is the recipe.

For small x > 0, it should be obvious to the reader, from the tree, that:

f3(x) < f8(x) < f7(x) < f6(x) < f1(x) < f5(x) < f2(x) < f4(x).

How should we order the polynomials for small negative x? We have to evaluate the
valuations of the fi − fj. One should simply determine at which level the two paths
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Figure 7: Degree three terms

Figure 8: Final picture

starting from the root of the tree and aiming at i and j bifurcate. If this level is odd, the
valuation of fi − fj is one more, and is hence even: π(i) and π(j) are in the same order as
i and j. If the bifurcation level is even, we obtain the contrary.

For instance, on Figure 8, in order to go in the tree from f3 to f8, one has to go down
until level 3, so that the valuation of f8− f3 is 4. Since f8(x)− f3(x) > 0 for small positive
x, the same is true for small negative x.

In our situation, we find for small negative x that:

f2(x) < f4(x) < f6(x) < f1(x) < f5(x) < f3(x) < f7(x) < f8(x).

In order to determine the corresponding interchange, we have to rename the fi in such a
way that for small negative x the sequence fi(x) is decreasing and then observe the ordering
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for small positive x. One finds

(1, 2, 3, 4, 5, 6, 7, 8)→ (7, 8, 4, 5, 6, 2, 1, 3).

One could also say that the permutation is obtained by twisting the tree “over” at
every even level and watching what happens to the leaves.

Of course, the convention that we used, looking first at the positions of the graphs for
small negative x and then for small positive x, is only one of the possible conventions. One
could change the orientation along either axis, but this would not change the definition of
interchange.

In summary, given the polynomials, on can construct a tree and, given the tree, we can
easily order the polynomials for small values of x and deduce the corresponding interchange.

Pruning

Our trees contain too much information and we shall prune their branches. Let us introduce
some vocabulary. Our trees have three kinds of vertices: one root, some nodes, and several
leaves (terminal vertices). An edge connecting two vertices will be called a branch. Each
vertex lies at some level which is the number of branches connecting it to the root. The
two endpoints of a branch are called child and parent, the parent being at a lower level.

Suppose two vertices x, y are connected in the tree by some path consisting of an even
number of branches. Suppose moreover that all the intermediate vertices between x and
y are non-ramified, i.e., that have only one child. Let us cut all these paths. The tree
now consists of several trees, one of which contains the initial root. Let us identify the
endpoints x, y on each of these paths. This produces a new tree. Of course, in this process,
the levels of some vertices have changed, but only by an even number.

Figure 9: Pruning

Therefore, if one computes the valuation of fi − fj in the new tree, the parity did
not change and this parity is the only information that matters in order to construct the
interchange. Note that the pruned tree has the property that all its nodes have at least
two children.

In summary, given n polynomials, one can construct a tree such that:

1. the root can have any number of children,
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2. every node has at least two children,

3. there are exactly n leaves, labeled by the n polynomials.

Let us say that a tree is pruned if it satisfies these properties. It should be clear that
for any pruned tree, one can find n polynomials such that the associated pruned tree is the
given one. In particular, the number of interchanges is less than or equal to the number of
pruned trees.

We shall now show that these two numbers are actually equal. Two lists of polynomials
might theoretically give the same interchange but different pruned trees. The issue is to
show that one cannot have two different pruned trees giving the same permutation. In
other words, we have to show that the interchange determines uniquely the pruned tree.

From an interchange to a tree

Let T be a pruned tree with n ≥ 2 leaves and let π : {1, 2, . . . , n} → {1, 2, . . . , n} be the
associated interchange. From now on, we always label leaves from 1 to n, from left to
right. We want to show that π determines T . On our way, we shall produce an algorithm
which determines if a given permutation is associated to some pruned tree, i.e., if it is an
interchange.

Let us say that a (non-empty) subset of {1, 2, . . . , n} is an interval if it consists of a
certain number of consecutive integers. If a is a node, the set D(a) of leaves which are
descendants of a is an interval. One easily checks that the interchange π maps each of
these intervals D(a) onto some interval. In combinatorics, such permutations are called
separable (see for instance [3, section 2.2.5] for references).

The root of a pruned tree with n ≥ 2 leaves can have one, or at least two children.
In the first case, the unique child of the root has at least two children a1, . . . , am. The

corresponding consecutive intervals D(a1), . . . , D(am) are invariant by π. Moreover, this
decomposition of {1, 2, . . . , n} is maximal: none of these intervals D(ai) can be split into
two sub-intervals which are invariant by π.

In the second case, the children a1, . . . , am of the root define consecutive intervals
D(a1), . . . , D(am) which are now invariant by π̄ where π̄ denotes the permutation π followed
by the flip i 7→ n+ 1− i.

We therefore have the following algorithm constructing the tree T from its interchange
π. If it is possible to decompose {1, . . . , n} into at least two intervals which are invariant
by π, we are in the first case and we conclude that the root of T has only one child. The
children of this unique child are indexed by the unique maximal decomposition of {1, . . . , n}
in consecutive intervals invariant by π. By induction, we continue the description of T by
looking at the restrictions of π to these invariant intervals.

If it is possible to decompose {1, . . . , n} into at least two intervals which are invariant by
π̄, we are in the second case and we conclude that the root has at least two children. These
children are indexed by the unique maximal decomposition of {1, . . . , n} in consecutive
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intervals invariant by π̄. By induction, we continue the description of T by looking at the
restrictions of π̄ to these intervals.

Note that these two situations cannot occur simultaneously, since π−1(1) < π−1(n) in
the first case and π−1(1) > π−1(n) in the second case.

This algorithm can be applied to any permutation, without assuming a priori that it
is associated to a pruned tree. If, at some stage of the algorithm, it is not possible to split
an interval into sub-intervals which are invariant under the permutation or its composition
with the flip, we conclude that the permutation is not an interchange and the algorithm
stops.

We therefore have reached the conclusion that the number of interchanges is equal to
the number of pruned trees.

Some exercises

Exercise 1: Prove theorem 3.
Hint: The root of a pruned tree can have one child or at least two children. If it has only
one child, one can delete the root and the resulting tree has a new root having at least two
children. Conversely, given a pruned tree such that the root has at least two children, on
can add a new root, one level below, which will be the parent of the previous root.

Figure 10: Deleting the root

Hence, the number of pruned trees is twice the number of pruned trees which are such
that the root has at least two children. These trees can be interpreted as ways of placing
parenthesis on a word. For instance, Figure 11 corresponds to ((ab)c(d(e(fgh)))).

Exercise 2: Prove theorem 5.
Hint: It is clear that an interchange cannot “contain” the forbidden permutations. The
main content of the theorem is the sufficient condition: if π does not contain those two
permutations, it is possible to construct a pruned tree giving rise to π. The proof is by
induction. Starting from some permutation π, one orders first π(1), π(2), . . . , π(n−1). This
produces a permutation of {1, 2, . . . , n− 1}, for which you apply the induction hypothesis.
You therefore get a pruned tree with n− 1 leaves and you still have to show how to place
the last leaf.

Exercise 3: Prove theorem 4. Is is possible to find some algorithm in linear time in n?

10



Figure 11: Parenthesis

Let us count!

We are going to count the number a(n) of interchanges.
Let b(n) be the number of pruned trees with n leaves which are such that the root does

not have a single child (hence has no child, if n = 1, and at least two children if n ≥ 2).
We know that a(n) = 2b(n) for n ≥ 2. The first values of b are:

1. b(1) = 1: a tiny tree whose root is also its unique leaf,

2. b(2) = 1: a tiny tree with two branches and two leaves,

3. b(3) = 3.

Figure 12: Small trees

It is very tempting to establish an recurrence relation for b(n).
To do this, start with a pruned tree with n leaves such that the root has at least two

children. If one deletes the root and the adjacent branches, one gets a certain number of
trees, having a total of n leaves. Conversely, if one starts with at least two pruned trees
having n leaves in total, one can add a new root and connect it to the previous roots, in
order to construct a pruned tree with n leaves.

Therefore, we have the following relation:

b(n) =
n∑
k=2

∑
i1+i2+...ik=n

b(i1)b(i2) · · · b(ik).
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Figure 13: Recurrence

We now use the classical method of generating series (see for instance [1]). Define the
formal power series H by:

H(t) =
∞∑
n=1

b(n)tn = t+ t2 + 3t3 + . . . .

Let us square H:
H(t)2 = t2 + 2t3 + 4t4 + . . . .

The coefficient of tn in this new series is
∑
i1+i2=n b(i1)b(i2), which is equal to the number

of pruned trees with n leaves such that the root has exactly two children. Using H(t)3, we
would count the number of trees whose root has three children, etc.

The infinite series
G(t) = H(t)2 +H(t)3 + . . .

counts therefore all trees, except the only one which has a single leaf. Hence, this infinite
sum is H(t)− t. We have proved that,

G(t) = H(t)− t = H(t)2 +H(t)3 + . . . .

Summing the geometric series, we get,

H(t)− t =
H(t)2

1−H(t)

or
2H(t)2 − (1 + t)H(t) + t = 0,

which yields,

H(t) =
∞∑
n=1

b(n)tn = (1 + t−
√

1− 6t+ t2)/4.

As a function of a complex variable, (1 + t+
√

1− 6t+ t2)/4 is well defined and holomor-
phic in the disc of center 0 whose radius is the smallest of the two roots of 1− 6t+ t2 = 0,
i.e., t = 3− 2

√
2. The radius of convergence of H(t) is therefore (3− 2

√
2). In other words

lim sup
n→∞

1

n
log a(n) = log(3 + 2

√
2).

This is theorem 2. Not quite..., but the reader will easily show that the lim sup can be
replaced by a lim.
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Visiting Sloane’s website

The “On-Line Encyclopedia of integer sequences” [5], is a very powerful tool. In our
example, we know that a(1) = 1, a(2) = 2, a(3) = 6, a(4) = 22. Let us type 1, 2, 6, 22
in the main window of this website, and we get immediately a page fully devoted to the
Schröder sequence. Indeed the sequence a(n) is not a newcomer in mathematics. It has
already appeared in many different contexts, long time ago, and the bibliography on this
topic is huge.

In Sloane’s site, one finds many recurrence relations, many equivalent definitions of
a(n), a numerical table of a(n), and much more.

For instance, one finds a refined description of the asymptotic growth of a(n):

a(n) ∼ (3 + 2
√

2)n(
n
√

2πn
√

3
√

2− 4
(
1− 9

√
2+24
32n

)
+ . . .

) .
Or, this recurrence relation, enabling a quick computation:

(n+ 1)a(n+ 1)− 3(2n− 1)a(n)− (n− 2)a(n− 1) = 0.

Prove this relation as an exercise! The trick is to find a second order differential equation
satisfied by H(t).

From the bibliography in this website, one can easily trace the history of this se-
quence. According to Plutarch, it seems that Hipparchus, (second century BC), proved
that b(10) = 103049. What was his motivation? Which method did he use? See [2, 6] for
some interesting historical comments.

However, Ernst Schröder made the first systematic study of a(n) in 1870 [4]. His
motivation was not related to the behavior of intersecting curves. If you like counting
trees, you will probably enjoy this paper [7].

A slightly different French version of this note appeared online

http://images.math.cnrs.fr/Quand-beaucoup-de-courbes-se.html.
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