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1 Kaluza-Klein Redu
tion on S

1

and T

n

Ten-dimensional string theory and eleven-dimensional M-theory are at present our best


andidates for providing a uni�ed des
ription of all the fundamental for
es in nature. For

example, the e�e
tive low-energy limit of M-theory is an eleven-dimensional �eld theory

whose bosoni
 se
tor 
omprises the metri
 tensor and a 4-index antisymmetri
 tensor �eld

strength. The entire low-energy theory 
ontains a fermioni
 �eld of spin

3

2

as well, and

together with the bosoni
 �elds gives rise to the long-known theory of eleven-dimensional

supergravity. If we 
on
entrate just on the bosons, the equations of motion 
an be derived

from the Lagrangian density

L =

p

�g

�

R�

1

48

F

MNPQ

F

MNPQ

�

+

1

20736

�

M

1

���M

11

F

M

1

���M

4

F

M

5

���M

8

A

M

9

���M

11

; (1.1)

where as a 4-form, F = dA. In terms of indi
es, F

MNPQ

= 4�

[M

A

NPQ℄

.

Two things are evident. Firstly, if the eleven-dimensional theory, or string theories in ten

dimensions, are truly fundamental, then we should be interested in all their predi
tions and


onsequen
es, in
luding solutions in the higher dimensions. Se
ondly, espe
ially if we hope

that one day they may allow us to des
ribe our four-dimensional world, we need to have a

way of extra
ting four-dimensional physi
s from higher-dimensional theories. A satisfa
tory

by-produ
t of learning how to perform dimensional redu
tion is that we �nd that many of the

lower-dimensional theories that we wish to 
onsider are derivable from simpler theories in a

higher dimension. For example, the four-dimensional N = 8 supergravity mentioned above


an be derived by dimensional redu
tion from eleven-dimensional supergravity. Contrary

to what one might have thought, things are immensely simpler in eleven dimensions than in

four, and so this provides a very useful way of learning about the four-dimensional theory.

To begin, therefore, let us make a preliminary study of how dimensional redu
tion works.

This will lead us on to a number of topi
s that will develop in various dire
tions, in
luding

the study of 
omplex manifolds and K�ahler geometry, and a study of 
oset spa
es and

non-linear sigma models. Our �rst step, though, will be a relatively humble one, where

we perform a dimensional redu
tion in whi
h the spa
etime dimension is redu
ed by 1.

This is the original example 
onsidered by Kaluza and Klein, and although there have been

many developments and advan
es sin
e their days, the general pro
edure for dimensional

redu
tion bears their names.
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1.1 Kaluza-Klein redu
tion on S

1

The higher-dimensional theories that we shall 
onsider will all be theories of gravity plus

additional �elds, and so a good starting point is to study how the dimensional redu
tion of

gravity itself pro
eeds. In fa
t this is really the hardest part of the 
al
ulation, and so on
e

this is done the rest will be 
omparatively simple.

Let us assume that we are starting from Einstein gravity in (D+1) dimensions, des
ribed

by the Einstein-Hilbert Lagrangian

L =

p

�ĝ

^

R ; (1.2)

where as usual

^

R is the Ri

i s
alar and ĝ denotes the determinant of the metri
 tensor.

We put hats on the �elds to signify that they are in (D+1) dimensions. Now suppose that

we wish to redu
e the theory to D dimensions, by \
ompa
tifying" one of the 
oordinates

on a 
ir
le, S

1

, of radius L. Let this 
oordinate be 
alled z. In prin
iple, we 
ould simply

now expand all the 
omponents of the (D + 1)-dimensional metri
 tensor as Fourier series

of the form

ĝ

MN

(x; z) =

X

n

g

(n)

MN

(x) e

i nz=L

; (1.3)

where we use x to denote 
olle
tively the D 
oordinates of the lower-dimensional spa
etime.

If one does this, one gets an in�nite number of �elds inD dimensions, labelled by the Fourier

mode number n.

It turns out that the modes with n 6= 0 are asso
iated with massive �elds, while those

with n = 0 are massless. The basi
 reason for this 
an be seen by 
onsidering a simpler toy

example, of a massless s
alar �eld

^

� in 
at (D + 1)-dimensional spa
e. It satis�es

^

^

� = 0 ; (1.4)

where

^

= �

M

�

M

. Now if we Fourier expand

^

� after 
ompa
tifying the 
oordinate z, so

that

^

�(x; z) =

X

n

�

n

(x) e

i n z=L

; (1.5)

then we immediately see that the lower-dimensional �elds �

n

(x) will satisfy

�

n

�

n

2

L

2

�

n

= 0 : (1.6)

This is the wave equation for a s
alar �eld of mass jnj=L.

The usual Kaluza-Klein philosophy is to assume that the radius L of the 
ompa
tifying


ir
le is very small (otherwise we would see it!), in whi
h 
ase the masses of the the non-zero
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modes will be enormous. (By small, we mean that L is roughly speaking of order the Plan
k

length, 10

�33


entimetres, so that the non-zero modes will have masses of order the Plan
k

mass, 10

�5

grammes.) Thus unless we were working with a

elerators way beyond even

intergala
ti
 s
ales, the energies of parti
les that we ever see would be way below the s
ales

of the Kaluza-Klein massive modes, and they 
an safely be negle
ted. Thus usually, when

one speaks of Kaluza-Klein redu
tion, one has in mind a 
ompa
ti�
ation together with a

trun
ation to the massless se
tor. At least in a 
ase su
h as our 
ompa
ti�
ation on S

1

,

this trun
ation is 
onsistent, in a manner that we shall elaborate on later.

Our Kaluza-Klein redu
tion ansatz, then, will simply be to take ĝ

MN

(x; z) to be inde-

pendent of z. The main point now is that from the D-dimensional point of view, the index

M , whi
h runs over the (D + 1) values of the higher dimension, splits into a range lying in

the D lower dimensions, or it takes the value asso
iated with the 
ompa
ti�ed dimension

z. Thus we may denote the 
omponents of the metri
 ĝ

MN

by ĝ

��

, ĝ

�z

and ĝ

zz

. From the

D-dimensional viewpoint these look like a 2-index symmetri
 tensor (the metri
), a 1-form

(a Maxwell potential) and a s
alar �eld respe
tively.

We 
ould simply de�ne ĝ

��

, ĝ

�z

and ĝ

zz

to be the D-dimensional �elds g

��

, A

�

and �

respe
tively. There is nothing logi
ally wrong with doing this, and it would give perfe
tly


orre
t lower-dimensional equations of motion. However, as a parameterisation this simple-

looking 
hoi
e is a
tually very unnatural, and the equations of motion that result look

like a dog's breakfast. The reason is that this naive parameterisation pays no attention to

the underlying symmetries of the theory. A mu
h better way to parameterise things is as

follows. We write the (D + 1) dimensional metri
 in terms of D-dimensional �elds g

��

, A

�

and � as follows:

dŝ

2

= e

2��

ds

2

+ e

2��

(dz +A)

2

; (1.7)

where � and � are 
onstants that we shall 
hoose for 
onvenien
e in a moment, and A =

A

�

dx

�

. All the �elds on the right-hand side are independent of z. Note that this ansatz

means that the 
omponents of the higher-dimensional metri
 ĝ

MN

are given in terms of the

lower-dimensional �elds by

ĝ

��

= e

2��

g

��

+ e

2��

A

�

A

�

; ĝ

�z

= e

2��

A

�

; ĝ

zz

= e

2��

: (1.8)

Thus as long as we 
hoose � 6= 0, this will adequately parameterise the higher-dimensional

metri
.

To pro
eed, we make a 
onvenient 
hoi
e of vielbein basis, namely

ê

a

= e

��

e

a

; ê

z

= e

��

(dz +A) : (1.9)
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(One should pause here, to take note of exa
tly whi
h is a vielbein, and whi
h is an expo-

nential! We are using latin letters a, b, et
. to denote tangent-spa
e indi
es inD dimensions.

The use of z as the index asso
iated with the extra dimension will not, hopefully, 
reate too

mu
h 
onfusion. Thus ê

z

here means the z 
omponent of the (D+1)-dimensional vielbein.)

Noti
e, by the way, that if we had 
hosen the \naive" identi�
ation of D-dimensional �elds

mentioned above, we would have been hard-pressed to 
ome up with any way of writing

down a vielbein basis; it would be possible, of 
ourse, but it would have been messy.)

It is now a me
hani
al, if slightly tedious, exer
ise to 
ompute the spin 
onne
tion, and

then the 
urvature. Our goal is to express the (D+1)-dimensional quantities in terms of the

D-dimensional ones, so that eventually we 
an express the (D + 1)-dimensional Einstein-

Hilbert Lagrangian in terms of a D-dimensional Lagrangian. For the spin 
onne
tion, one

�nds that

!̂

ab

= !

ab

+ � e

���

(�

b

� ê

a

� �

a

� ê

b

)�

1

2

F

ab

e

(��2�)�

ê

z

;

!̂

az

= �!̂

za

= �� e

���

�

a

� ê

z

�

1

2

F

a

b

e

(��2�)�

ê

b

; (1.10)

where �

a

� means E

�

a

�

�

�, and E

�

a

is the inverse of the D-dimensional vielbein e

a

= e

a

�

dx

�

.

Also, F

ab

denotes the vielbein 
omponents of the D-dimensional �eld strength F = dA.

The 
al
ulation of the 
urvature 2-forms pro
eeds uneventfully. Rather than present all

the formulae here, we shall just present the key results. Firstly, we 
an exploit our freedom

to 
hoose the values of the 
onstants � and � in the metri
 ansatz in the following way.

There are two things that we would like to a
hieve, one of whi
h is to ensure that the

dimensionally-redu
ed Lagrangian is of the Einstein-Hilbert form L =

p

�g R+ � � �. If the

values of � and � are left un�xed, we instead end up with L = e

(�+(D�2)�)�

p

�g R + � � �.

Thus we immediately see that we should 
hoose � = �(D � 2)�. Provided we are not

redu
ing down to D = 2 dimensions, this will not present any problem. The other thing

that we would like is to ensure that the s
alar �eld � a
quires a kineti
 term with the


anoni
al normalisation, meaning a term of the form �

1

2

p

�g (��)

2

in the Lagrangian.

This determines the 
hoi
e of overall s
ale, and it turns out that we should 
hoose our


onstants as follows:

�

2

=

1

2(D � 1)(D � 2)

; � = �(D � 2)� : (1.11)

With these 
hoi
es for the 
onstants in the metri
 ansatz, we 
an now present the results

for the vielbein 
omponents of the Ri

i tensor:

^

R

ab

= e

�2��

�

R

ab

�

1

2

�

a

��

b

�� � �

ab

�

�

�

1

2

e

�2D��

F

a




F

b


;
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^

R

az

=

^

R

za

=

1

2

e

(D�3)��

r

b

�

e

�2(D�1)��

F

ab

�

; (1.12)

^

R

zz

= (D � 2)� e

�2��

�+

1

4

e

�2D��

F

2

;

where F

2

means F

ab

F

ab

. From these, it follows that the Ri

i s
alar

^

R = �

AB

^

R

AB

=

�

ab

^

R

ab

+

^

R

zz

is given by

^

R = e

�2��

�

R�

1

2

(��)

2

+ (D � 3)� �

�

�

1

4

e

�2D��

F

2

: (1.13)

Now, �nally, we 
al
ulate the determinant of the metri
 ĝ in terms of the determinant of g,

from the ansatz (1.7), �nding

p

�ĝ = e

(�+D�)�

p

�g = e

2��

p

�g ; (1.14)

where the se
ond equality follows using our relation between � and � given in (1.11). Putting

all the results together, we see that the dimensional redu
tion of the higher-dimensional

Einstein-Hilbert Lagrangian gives

L =

p

�ĝ

^

R =

p

�g

�

R�

1

2

(��)

2

�

1

4

e

�2(D�1)��

F

2

�

; (1.15)

where we have dropped the � term in (1.13) sin
e it just gives a total derivative in L,

whi
h therefore does not 
ontribute to the �eld equations. In modern parlan
e, the s
alar

�eld � is 
alled a dilaton.

If the s
alar �eld in (1.15) were set to zero, we would simply have the Einstein-Maxwell

Lagrangian in D dimensions. This is in fa
t what some people thought that Kaluza and

Klein originally did (whi
h, apparently, they did not, although it is not 
ommon to en-


ounter anyone who has ever looked at their papers). It would be a tempting thing to do,

sin
e it 
ould then be viewed as a uni�
ation of Einstein's theory of gravity and Maxwell's

ele
trodynami
s, reformulated as pure gravity in �ve dimensions. However, it is not a
tually

allowed to set the s
alar �eld to zero; this would be in 
on
i
t with the �eld equation for

�. To see this, and for general future referen
e, let us pause to work out the �eld equations


oming from (1.15). They are

R

��

�

1

2

Rg

��

=

1

2

�

�

�

��

�

��

1

2

(��)

2

g

��

�

+

1

2

e

�2(D�1)��

�

F

2

��

�

1

4

F

2

g

��

�

;

r

�

�

e

�2(D�1)��

F

��

�

= 0 ; (1.16)

� = �

1

2

(D � 1)� e

�2(D�1)��

F

2

;

where we have de�ned F

2

��

= F

��

F

�

�

. A
tually, it is usually more 
onvenient to eliminate

the �

1

2

Rg

��

term in the Einstein equation, by subtra
ting out the appropriate multiple of

6



the tra
e, so that we get

R

��

=

1

2

�

�

��

�

�+

1

2

e

�2(D�1)��

�

F

2

��

�

1

2(D � 2)

F

2

g

��

�

: (1.17)

We see from the last equation in (1.16) that one 
annot in general set � = 0, sin
e

there is a sour
e term on the right-hand side of the equation, involving F

2

. In other

words, the details of the intera
tions between the various lower-dimensional �elds prevent

the trun
ation of the s
alar �. Thus it is an Einstein-Maxwell-S
alar system that 
omes

from the 
onsistent dimensional redu
tion of the higher-dimensional pure Einstein theory.

One would not noti
e this subtlety if one simply made the ansatz (1.7) but with � = 0, and

plugged the resulting Ri

i s
alar into the higher-dimensional Einstein-Hilbert Lagrangian.

What one would be failing to noti
e is that su
h an ansatz would be in
onsistent with the

higher-dimensional equations of motion, spe
i�
ally, with the

^

R

zz


omponent of the higher-

dimensional Einstein equation. Negle
ting some of the 
ontent of the higher-dimensional

equations of motion is, from a modern viewpoint, a philosophi
ally unattra
tive thing to

do, sin
e it would be denying the fundamental signi�
an
e of the higher-dimensional theory.

Nevertheless, the mistake of substituting an ansatz into a Lagrangian, and noti
ing that the

resulting apparently-sensible lower-dimensional equations are masking a failure to satisfy

all the 
omponents of the higher-dimensional equations, is a 
ommon one. It has been

responsible for a 
onsiderable amount of 
onfusion over the years. In these le
tures we shall

be 
areful never to believe in any ansatz until it has been veri�ed either by substituting

into the higher-dimensional equations of motion, or by 
onstru
ting an argument to prove

that it would satisfy all the equations if the substitution were performed.

After this little 
autionary tale, one might wonder whether we ourselves might be guilty

of exa
tly the same o�en
e. Re
all that early on, we set all the non-zero modes in the Fourier

expansion (1.3) of the metri
 to zero. Suppose we had kept them instead, and eventually

worked out the analogue of (1.15) with the entire in�nite towers of massive as well as

massless �elds. Might we not have found that the equations of motion of the massive �elds

would forbid us from setting them to zero? The answer is that a little bit of (elementary)

group theory saves us. The mode fun
tions e

im nz=L

in the Fourier expansion (1.3) are

representations of the U(1) group of the 
ir
le S

1

. The mode n = 0 is a singlet, while the

non-zero modes are all doublets, in the sense that the modes with numbers n and �n are


omplex 
onjugates of ea
h other. When we trun
ated out all the non-zero modes, what we

were doing was keeping all the group singlets, and throwing out all the non-singlets. This

is guaranteed to be a 
onsistent trun
ation, sin
e no amount of multiplying group singlets

together 
an ever generate non-singlets. To put it another way, the label n is like a U(1)

7




harge, and there is a 
harge-
onservation law that must be obeyed. Ea
h term in �eld

equation for any parti
ular �eld labelled by n will ne
essarily have net 
harge equal to n,

and so at least one fa
tor in ea
h term in the equation must have non-zero 
harge whenever

n is non-zero. Thus provided we trun
ate out all the non-zero modes, the 
onsisten
y is

guaranteed.

In more 
ompli
ated Kaluza-Klein redu
tions, where the 
ompa
tifying manifold is not

simply a 
ir
le or a produ
t of 
ir
les (a torus), the issue of the 
onsisten
y of the trun
ation

to the massless se
tor is a mu
h more tri
ky one. It is a question that is usually ignored

by those who do 
ompa
ti�
ations on K3 or Calabi-Yau manifolds, but there is always a

lurking suspi
ion (or hope?) that one day their sins will 
at
h up with them. We shall

study this question in detail later, when we dis
uss Kaluza-Klein sphere redu
tions.

Having seen how the Kaluza-Klein S

1

redu
tion of the metri
 works, we shall now see how

an antisymmetri
 tensor �eld strength is redu
ed from (D+1) to D dimensions. Suppose we

have an n-index �eld strength in the higher dimension, whi
h we denote by

^

F

(n)

. Suppose,

furthermore, that this is given in terms of a potential

^

A

(n�1)

, so that

^

F

(n)

= d

^

A

(n�1)

. In terms

of indi
es, it is 
lear that after redu
tion on S

1

there will be two kinds of D-dimensional

potentials, namely one with all (n � 1) indi
es lying in the D-dimensional spa
etime, and

the other with (n � 2) indi
es lying in the D-dimensional spa
etime, and the remaining

index being in the dire
tion of the S

1

. This is most easily expressed in terms of di�erential

forms. Thus the ansatz for the redu
tion of the potential is

^

A

(n�1)

(x; z) = A

(n�1)

(x) +A

(n�2)

(x) ^ dz : (1.18)

Now, let us 
al
ulate the �eld strength. Clearly, we shall have

^

F

(n)

= dA

(n�1)

+ dA

(n�2)

^ dz : (1.19)

One might naively be tempted to identify dA

(n�1)

and dA

(n�2)

as the lower-dimensional �eld

strengths F

(n)

and F

(n�1)

. There is nothing logi
ally wrong with doing so, but it is not a

very 
onvenient 
hoi
e. Mu
h better is to add and subtra
t a term in (1.19), so that we get

^

F

(n)

= dA

(n�1)

� dA

(n�2)

^A

(1)

+ dA

(n�2)

^ (dz +A

(1)

) ;

� F

(n)

+ F

(n�1)

^ (dz +A

(1)

) ; (1.20)

where A

(1)

is the Kaluza-Klein potential that we en
ountered in the metri
 redu
tion. We

have appended a subs
ript (1) to it now, in keeping with our general notation to indi
ate

the degrees of di�erential forms. Thus the D-dimensional �eld strengths are given by

F

(n)

= dA

(n�1)

� dA

(n�2)

^A

(1)

; F

(n�1)

= dA

(n�2)

: (1.21)
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This is in a sense a purely notational 
hange from the \naive" 
hoi
e mentioned above; it is

entirely up to us to de
ide what parti
ular 
ombination of quantities will be digni�ed with

the name F

(n)

. The point is that the spe
i�
 
hoi
e in (1.21) has a parti
ular signi�
an
e,

whi
h be
omes apparent when we 
al
ulate the higher-dimensional kineti
 term

^

F

2

(n)

in terms

of the lower-dimensional �elds.

1

The 
al
ulation is most easily done in the vielbein basis,

sin
e then the metri
 is just the diagonal one �

AB

. Consequently, in view of the de�nition

of the vielbeins in (1.9), the vielbein 
omponents of the (n � 1)-form �eld strength in D

dimensions will be the ones where the n'th index is a vielbein z index, not a 
oordinate

z index, meaning that we should read o� F

(n�1)

from F

(n�1)

^ (dz + A

(1)

), and not from

F

(n�1)

^dz. It is now easily seen from (1.9) and (1.21) that in terms of vielbein 
omponents

we shall have

^

F =

1

n!

^

F

A

1

���A

n

ê

A

1

^� � �^ê

A

n

=

e

n��

n!

^

F

a

1

���a

n

e

a

1

^� � �^e

a

n

+

e

((n�1)�+�)�

(n�1)!

^

F

a

1

���a

n�1

z

e

a

1

^� � �^e

a

n�1

^(dz+A

(1)

) ;

�

1

n!

F

a

1

���a

n

e

a

1

^� � �^e

a

n

+

1

(n�1)!

F

a

1

���a

n�1

e

a

1

^� � �^e

a

n�1

^(dz+A

(1)

) ; (1.22)

implying that

^

F

a

1

���a

n

= e

�n��

F

a

1

���a

n

;

^

F

a

1

���a

n�1

z

= e

(D�n�1)��

F

a

1

���a

n�1

; (1.23)

where we have used (1.11) to express � in terms of �. It is now easy to see, bearing in mind

the relation (1.14) between the determinants of the metri
s in (D + 1) and D dimensions,

that the kineti
 term for the (D + 1)-dimensional n-form �eld strength

^

F

(n)

will give, upon

Kaluza-Klein redu
tion to D dimensions,

L = �

p

�ĝ

2 n!

^

F

2

(n)

= �

p

�g

2n!

e

�2(n�1)��

F

2

(n)

�

p

�g

2 (n�1)!

e

2(D�n)��

F

2

(n�1)

: (1.24)

At this point, let us pause for a moment in order to �nd a ni
er way to present the

Lagrangians that we are en
ountering. There are two reasons for doing so; �rstly, on

general aestheti
 grounds, but also, and more importantly, to make the pro
ess of varying

the Lagrangian to obtain the equations of motion as simple and straightforward as possible.

The advantage of doing this is already evident if we 
onsider what happens when we want to

vary the redu
ed Lagrangian (1.24) with respe
t to the potential A

(n�2)

. Not only does this

potential appear in its \own" �eld strength F

(n�1)

, but it also appears in the \transgression"

1

The mathemati
ians have, 
uriously, atta
hed the name \transgression" to the pro
ess by whi
h these

extra modi�
ations to �eld strengths arise. The etymology is un
lear.

9



term in F

(n)

(see equation (1.21)). Already in this example, therefore, it is apparent that

getting the right signs, 
ombinatori
 fa
tors, et
. when working out the equation of motion

in index notation will be a tedious and wearisome business. It is highly preferable to be

able to work with the language of di�erential forms.

Re
all that we de�ne the Hodge dual of the basis for p-forms in D dimensions by

�(dx

�

1

^ � � � ^ dx

�

p

) �

1

q!

�

�

1

����

q

�

1

����

p

dx

�

1

^ dx

�

q

; (1.25)

where q = D � p. Here, �

�

1

����

D

is the totally antisymmetri
 Levi-Civita tensor, whose


omponents are �

p

jgj or 0, given by

�

�

1

����

D

=

q

jgj "

�

1

����

D

; (1.26)

where "

�

1

����

D

is the totally antisymmetri
 Levi-Civita tensor density, with

"

�

1

����

D

� (+1;�1; 0) (1.27)

a

ording to whether �

1

� � � �

D

is an even permutation of the 
anoni
ally-ordered set of

index values, an odd permutation, or no permutation at all. A natural 
anoni
al ordering

of indi
es would be 0; 1; 2; : : :, but it is, of 
ourse, ultimately a matter of pure 
onvention.

It is also sometimes useful to de�ne a totally antisymmetri
 tensor density with upstairs

indi
es, and 
omponents given numeri
ally by

"

�

1

����

D

� (�1)

t

"

�

1

����

D

; (1.28)

where t is the number of timelike 
oordinates. Note that this is the one and only time

that we ever introdu
e a pair of obje
ts for whi
h we use the same symbol, but where the

one with upstairs indi
es is not obtained by raising the indi
es on the one with downstairs

indi
es using the metri
. In terms of "

�

1

����

D

, the Levi-Civita tensor with upstairs indi
es

is given by

�

�

1

����

D

=

1

p

jgj

"

�

1

����

D

: (1.29)

This, of 
ourse, is obtained from �

�

1

����

D

simply by raising the indi
es using the metri
.

It is easy to see from the de�nition (1.25) that if we apply the Hodge dual to a p-form

A, we get a (D � p)-form B = �A with 
omponents given by

B

�

1

����

q

=

1

p!

�

�

1

����

q

�

1

����

p

A

�

1

����

p

; (1.30)

where q � D � p. (Note the order in whi
h the indi
es appear on the epsilon tensors in

(1.25) and (1.30).) As a parti
ular 
ase, we see that the Hodge dual of the pure number 1

10



(a 0-form) is the D-form whose 
omponents are the Levi-Civita tensor, and thus we may

write

�1 = � =

1

D!

�

�

1

����

D

dx

�

1

� � � dx

�

D

;

=

q

jgj dx

0

� � � dx

D�1

=

q

jgj d

D

x : (1.31)

Thus �1 is nothing but the generally 
oordinate invariant volume element. Note that owing

to the tiresome, but unavoidable, (�1)

t

fa
tor in (1.28), we have

dx

�

1

^ � � � ^ dx

�

D

= (�1)

t

"

�

1

����

D

d

D

x = (�1)

t

�

�

1

����

D

q

jgj d

D

x : (1.32)

From the above de�nitions, the following results follow straightforwardly. If A and B

are any two p-forms, then

�A ^B = �B ^A =

1

p!

jA � Bj � =

1

p!

jA:Bj �1 ; (1.33)

where

jA �Bj � A

�

1

����

p

B

�

1

����

p

; (1.34)

is the inner produ
t of A and B. Also, applying � twi
e, we have that if A is any p-form,

then

� �A = (�1)

pq+t

A ; (1.35)

where as usual we de�ne q � D � p.

A Lagrangian density L is something whi
h is to be multiplied by d

D

x and then inte-

grated over the spa
etime manifold to get the a
tion. For example, the Einstein-Hilbert La-

grangian density is

p

�g R, and this is integrated to give

R

R

p

�g d

D

x. From a di�erential-

geometri
 point of view, it is really not 0-forms, but rather D-forms, that 
an be integrated

over a D-dimensional manifold. Thus we 
an really think of the Einstein-Hilbert a
tion as

being obtained by integrating the D-form R �1 over the manifold. This is a 
onvenient way

to think of things, and so typi
ally, from now on, when we speak of a Lagrangian we will

mean the D-form whose integral gives the a
tion.

It is now easily seen from the previous de�nitions that the D-form Lagrangian 
orre-

sponding to the 
ir
le redu
tion of the Einstein-Hilbert Lagrangian, whi
h we obtained in

the \traditional" language in (1.15), is given by

L = R �1�

1

2

�d� ^ d��

1

2

e

�2(D�1)��

�F

(2)

^ F

(2)

; (1.36)

where we have put a (2) subs
ript on the Maxwell �eld strength to remind us that it is a

2-form. Similarly, we see that the Lagrangian (1.24) be
omes, when written as a D-form,

L = �

1

2

e

�2(n�1)��

�F

(n)

^ F

(n)

�

1

2

e

2(D�n)��

�F

(n�1)

^ F

(n�1)

: (1.37)
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Note that the previous n! 
ombinatori
 denominator, asso
iated with the kineti
 term for an

n-form �eld strength, is ni
ely eliminated in the Lagrangians written as di�erential forms.

It is now a 
ompletely straightforward matter to vary the Lagrangian for any gauge

�eld, and to get the 
ombinatori
s and signs 
orre
t without heada
hes. The only rule

one ever needs, apart from the usual ones for 
arrying di�erential forms over ea
h other, is

that the variation of an expression of the form X

(p)

^ dA

(q)

with respe
t to A

(q)

gives, after

integration by parts, �(�1)

p

dX

(p)

^ ÆA

(q)

, when X

(p)

is a p-form. This is just the usual

minus sign 
oming from integration by parts, a

ompanied by an additional (�1)

p

fa
tor


oming from the fa
t that the exterior derivative has to be taken over a p-form.

For example, if we look at the equations of motion 
oming from varying the Lagrangian

(1.37) with respe
t to the potential A

(n�1)

we get

ÆL = �e

�2(n�1)��

�F

(n)

^ dÆA

(n�1)

�! (�1)

D�n

d

�

e

�2(n�1)��

�F

(n)

�

^ ÆA

(n�1)

; (1.38)

where the arrow indi
ates that the result is obtained after integration by parts. Varying

instead with respe
t to A

(n�2)

gives

ÆL = �e

2(D�n)��

�F

(n�1)

^ dÆA

(n�2)

+ e

�2(n�1)��

�F

(n)

^ dÆA

(n�2)

^A

(1)

; (1.39)

�! (�1)

D�n+1

d

�

e

2(D�n)��

�F

(n�1)

�

^ ÆA

(n�2)

�(�1)

D

d

�

e

�2(n�1)��

�F

(n)

^A

(1)

�

ÆA

(n�2)

:

The �rst lesson to note from this example is that when varying an expression su
h as

�

1

2

�F

(n)

^ F

(n)

that is quadrati
 in F

(n)

, the terms 
oming from varying the potentials in

ea
h F

(n)

always simply add up, ni
ely removing the

1

2

prefa
tor. The se
ond lesson is that

the 
hief remaining subtleties in varying Lagrangians are asso
iated with the o

urren
e

of the transgression terms in the various �eld strengths, as we have here in the de�nition

of F

(n)

in (1.21). Having now got the variation expressed as ÆL = X ^ ÆA for some X,

one simply reads o� the �eld equation as X = 0. In our example here, note that the �eld

equation for F

(n)


an be used to simplify the �eld equation for F

(n�1)

, leading simply to

d

�

e

�2(n�1)��

�F

(n)

�

= 0 ;

d

�

e

2(D�n)��

�F

(n�1)

�

+ (�1)

D

e

�2(n�1)��

�F

(n)

^ F

(2)

= 0 : (1.40)

1.2 Lower-dimensional symmetries from the S

1

redu
tion

In the 
ase where we started just from pure Einstein gravity in (D+1) dimensions, we ended

up with an Einstein-Maxwell-S
alar system in D dimensions. Thus the higher-dimensional

12



theory had general 
oordinate 
ovarian
e, while the lower-dimensional one has general 
o-

ordinate 
ovarian
e and the lo
al U(1) gauge invarian
e of the Maxwell �eld. In fa
t, as 
an

be seen from (1.15), it also has another symmetry, namely a 
onstant shift of the dilaton

�eld �, a

ompanied by an appropriate 
onstant s
aling of the Maxwell potential:

� �! �+ 
 ; A

�

�! e


(D�1)�

A

�

: (1.41)

At �rst sight, therefore, one might think that the lower-dimensional theory had more sym-

metry than the higher-dimensional one. Of 
ourse this is not really the 
ase; the point

is that the lo
al general 
oordinate symmetry in the higher dimension involves 
oordinate

reparameterisations by arbitrary fun
tions of (D + 1) 
oordinates, while the lo
al general


oordinate and U(1) gauge transformations in the lower dimension involve arbitrary fun
-

tions of only D 
oordinates. Thus in e�e
t the symmetries of the D-dimensional theory

really 
onstitute only an in�nitesimal residue of the (D + 1)-dimensional general 
oordi-

nate symmetries. We 
an understand this better by looking in detail at the Kaluza-Klein

redu
tion ansatz (1.7) for the (D + 1)-dimensional metri
.

The original (D + 1)-dimensional Einstein theory is invariant under general 
oordinate

transformations, whi
h 
an be written (see se
tion 5.1) in in�nitesimal form as

Æx̂

M

= �

^

�

M

; Æĝ

MN

=

^

�

P

�

P

ĝ

MN

+ ĝ

PN

�

M

^

�

P

+ ĝ

MP

�

N

^

�

P

: (1.42)

As yet, the parameters

^

�

M

are arbitrary fun
tions of all (D+1) 
oordinates. Now, the form

of the Kaluza-Klein ansatz (1.7) will not in general be preserved by su
h transformations.

In fa
t, it is rather easy to see that the most general allowed form for transformations that

preserve (1.7) will be

^

�

�

= �

�

(x) ;

^

�

z

= 
 z + �(x) ; (1.43)

where the (D + 1)-dimensional index on

^

�

M

is split as

^

�

�

and

^

�

z

, with � a D-dimensional

index. The 
oordinates x̂

M

are split as (x

�

; z), and the x arguments on �

�

(x) and �(x) indi-


ate that these fun
tions depend only on the D-dimensional 
oordinates x

�

. The parameter


 is a 
onstant. Note that from (1.7) we have that the 
omponents of the (D+1)-dimensional

metri
 ĝ

MN

are given in terms of the D-dimensional metri
 g

��

, gauge potential A

�

and

dilaton � by

ĝ

��

= e

2��

g

��

+ e

2��

A

�

A

�

; ĝ

�z

= ĝ

z�

= e

2��

A

�

; ĝ

zz

= e

2��

; (1.44)

where � = �(D � 2)�.
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Let us look �rst at the lo
al transformations, namely those parameterised by �

�

(x) and

�(x) (so we take the 
onstant 
 = 0 for now). We shall see that these are the parame-

ters of D-dimensional general 
oordinate transformations, and U(1) gauge transformations,

respe
tively. Under these transformations, we see �rst from (1.42) that

Æĝ

zz

= �

�

�

�

ĝ

zz

; (1.45)

where we have dropped those terms that give zero by virtue either of the form of the metri


ansatz (1.7), or by our assumption for now that 
 is zero. From (1.44), we thus dedu
e that

Æ� = �

�

�

�

� ; (1.46)

implying that � is indeed transforming as a s
alar under the D-dimensional general 
oor-

dinate transformations parameterised by �

�

, and that is it inert (as it should be) under the

U(1) gauge transformations parameterised by �.

Next, looking at the (�z) 
omponents in (1.42), we see that

Æĝ

�z

= �

�

�

�

ĝ

�z

+ ĝ

�z

�

�

�

�

: (1.47)

Substituting from (1.44), and what we already learned about the transformations of �, we

dedu
e that A

�

transforms as

ÆA

�

= �

�

�

�

A

�

+A

�

�

�

�

�

+ �

�

� : (1.48)

This shows that A

�

transforms properly as a 
ove
tor under general 
oordinate transfor-

mations �

�

, and that it has the usual gauge transformation of a U(1) gauge �eld, under the

parameter �.

Finally, looking at the (��) 
omponents in (1.42), we have

Æĝ

��

= �

�

�

�

ĝ

��

+ ĝ

��

�

�

�

�

+ ĝ

��

�

�

�

�

+ ĝ

z�

�

�

�

z

+ ĝ

�z

�

�

�

z

: (1.49)

Using what we have now learned about the transformation rules for � and A

�

, we �nd,

after substituting from (1.44) that

Æg

��

= �

�

�

�

g

��

+ g

��

�

�

�

�

+ g

��

�

�

�

�

; (1.50)

showing that the D-dimensional metri
 indeed has the proper transformation properties

under general 
oordinate transformations �

�

, and that it is inert, as it should be, under the

U(1) gauge transformations �.
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We have now taken 
are of the lo
al parameters in (1.43). We have seen that the subset

of the original (D+1)-dimensional general 
oordinate transformations

^

�

M

that preserve the

form of the Kaluza-Klein metri
 ansatz (1.7) in
lude the D-dimensional general 
oordinate

transformations �

�

, and the D-dimensional U(1) lo
al gauge transformations of the Kaluza-

Klein ve
tor potential A

�

. The remaining parameter to 
onsider is the 
onstant 
 in (1.43).

This is asso
iated with the 
onstant shift symmetry of the dilaton �, given in (1.41). To

see how this symmetry 
omes out of (1.43), we have to introdu
e one further ingredient in

the dis
ussion.

The higher-dimensional equations of motion, namely the Einstein equations

^

R

MN

�

1

2

^

R ĝ

MN

= 0, a
tually have an additional global symmetry in addition to the lo
al general


oordinate transformations. This is a symmetry under whi
h the metri
 is s
aled by a


onstant fa
tor, ĝ

MN

�! k

2

ĝ

MN

. It is easily seen that the various 
urvature tensors

transform under this 
onstant s
aling as

^

R

M

NPQ

�!

^

R

M

NPQ

;

^

R

MN

�!

^

R

MN

;

^

R �! k

�2

^

R : (1.51)

In other words, the Riemann tensor with its 
oordinate indi
es in their \natural" positions

is inert. No metri
 is needed in order then to 
onstru
t the Ri

i tensor,

^

R

MN

=

^

R

P

MPN

,

and so it too is inert. However, the 
onstru
tion of the Ri

i s
alar then requires the use

of the inverse metri
,

^

R = ĝ

MN

^

R

MN

, and so it a
quires the s
aling given above in (1.51).

The upshot is that the Einstein equation is a
tually invariant under the s
aling.

The reason for dis
ussing this s
aling symmetry in terms of the equations of motion is

that, as is easily seen, it is not a symmetry of the Lagrangian itself. Clearly, we will have

p

�ĝ �! k

D+1

p

�ĝ in (D+1) dimensions, and hen
e the Einstein-Hilbert Lagrangian will

s
ale as

p

�ĝ

^

R �! k

D�1

p

�ĝ

^

R. The 
ru
ial point is, however, that this is a uniform


onstant s
aling of the Lagrangian. Now, the equations of motion that follow from two

Lagrangians that are related by a 
onstant s
ale fa
tor are the same, and hen
e we 
an

understand the invarian
e of the equations of motion from this viewpoint too. In 
ertain

less trivial examples, notably eleven-dimensional supergravity, on also �nds that there is

su
h a uniform s
aling symmetry of the Lagrangian, and hen
e a s
ale-invarian
e of the

equations of motion. It is less trivial in this example, be
ause the various terms in the

Lagrangian (1.1) must all 
onspire to s
ale the same way.

Returning now to our dis
ussion of the symmetries of the Kaluza-Klein redu
tion of

(D+1)-dimensional Einstein theory, we have learned that there is the additional symmetry

ĝ

MN

�! k

2

ĝ

MN

in the original (D + 1)-dimensional theory, where k is a 
onstant. In

in�nitesimal form, this translates into the statement that Æĝ

MN

= 2a ĝ

MN

, where a is
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an in�nitesimal 
onstant parameter. Thus if we write out the residual general-
oordinate

transformations (1.43), spe
ialised to in
lude just the 
onstant parameter 
, and in
lude

also the s
aling symmetry, we will have the following in�nitesimal global symmetry:

Æĝ

MN

= 
 Æ

z

M

ĝ

zN

+ 
 Æ

z

N

ĝ

Mz

+ 2a ĝ

MN

: (1.52)

Note that the Æ symbols on the right-hand side are Krone
ker deltas, non-vanishing only

when the m or N index takes the (D + 1)'th value z.

Plugging in the form of the metri
 ansatz (1.44), and taking (MN) to be (zz), (z�) and

��) su

essively, we 
an read o� the transformation rules for �, A

�

and g

��

, �nding

� Æ� = a+ 
 ; ÆA

�

= �
A

�

; Æg

��

= 2a g

��

� 2� g

��

Æ� : (1.53)

It is now evident that we 
an use the s
aling transformation a as a 
ompensator for the

dilaton-shift transformation 
, in su
h a way that under the appropriate 
ombined trans-

formation the metri
 g

��

is inert, i.e. Æg

��

= 0. Clearly to to this, we should 
hoose

a = �




D � 1

; (1.54)

bearing in mind that the 
onstants � and � in the Kaluza-Klein ansatz (1.7) were 
hosen

so that � = �(D � 2)�. Thus we arrive at the global transformation

Æ� = �




� (D � 1)

; ÆA

�

= �
A

�

; Æg

��

= 0 : (1.55)

After a 
onstant s
aling rede�nition of the parameter 
, this 
an be seen to be pre
isely the

dilaton shift symmetry given in (1.41).

Of 
ourse sin
e we have just made use of a parti
ular linear 
ombination of the origi-

nal two global symmetries, with parameters a and 
 related by (1.54), it follows that the

\orthogonal" 
ombination is still also a symmetry of the D-dimensional theory. This other


ombination is nothing but a uniform s
aling symmetry of the entire D dimensional theory.

What we have done by taking 
ombinations of the a and 
 transformations is to diago-

nalise the two symmetries, one of whi
h, given by (1.55), is a purely internal symmetry

that leaves the lower-dimensional metri
 invariant and a
ts only on the other �elds. The

other 
ombination is a s
aling symmetry that a
ts on all �elds that 
arry indi
es; in this


ase, on g

��

and A

�

. In fa
t the general rule for the s
aling symmetries, if they are present

in a parti
ular theory, is that ea
h fundamental �eld is s
aled a

ording to the number of

indi
es it 
arries:

g

��

�! k

2

g

��

; A

�

1

����

n

�! k

n

A

�

1

����

n

: (1.56)
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Thus in our example of the D-dimensional Lagrangian (1.15), one 
an easily verify that it

is invariant under

g

��

�! k

2

g

��

; A

�

�! kA

�

: (1.57)

Furthermore, it is easily established from the 
ombined transformations (1.53) that we


an indeed �nd a 
ombination of the parameters, namely a = �
, that gives (1.57) in

its in�nitesimal form. This is pre
isely the 
ombination that leaves � invariant, whi
h

is 
onsistent with the general rule (1.56) sin
e � has no indi
es. These kinds of s
aling

transformations have been referred to as \trombone" symmetries.

To 
omplete the story of S

1

redu
tions, let us 
onsider the dimensional redu
tion of D =

11 supergravity down to D = 10. In our new, improved notation, the eleven-dimensional

Lagrangian 
an be written as the 11-form

L

11

= R �1�

1

2

�F

(4)

^ F

(4)

+

1

6

dA

(3)

^ dA

(3)

^A

(3)

: (1.58)

Substituting all the previous results, we �nd that we 
an write L

11

= L

10

^ dz, with the

ten-dimensional Lagrangian given by

L

10

= R �1�

1

2

�d� ^ d��

1

2

e

3

2

�

�F

(2)

^ F

(2)

�

1

2

e

1

2

�

�F

(4)

^ F

(4)

�

1

2

e

��

�F

(3)

^ F

(3)

+

1

2

dA

(3)

^ dA

(3)

^A

(2)

; (1.59)

with F

(2)

= dA

(1)

being the Kaluza-Klein Maxwell �eld, and F

(3)

= dA

(2)

and F

(4)

=

dA

(3)

� dA

(2)

^ A

(1)

being the two �eld strengths 
oming from the 4-form F

(4)

in D = 11.

Note that the �nal term in the ten-dimensional Lagrangian 
omes from the 
ubi
 term

dA

(3)

^ dA

(3)

^ A

(3)

in D = 11, and that this requires no metri
 in its 
onstru
tion. This

ten-dimensional theory is the bosoni
 se
tor of the type IIA supergravity theory, whi
h is

the low-energy limit of the type IIA string.

Note that the eleven-dimensional theory has the \trombone" symmetry des
ribed above,

namely a symmetry under the 
onstant res
aling g

��

�! k

2

g

��

and A

���

�! k

3

A

���

.

Consequently, the ten-dimensional theory has the global internal symmetry � �! � + 
,

together with

A

(1)

�! e

�

3

4




A

(1)

; A

(3)

�! e

�

1

4




A

(3)

; A

(2)

�! e

1

2




A

(2)

: (1.60)

1.3 Kaluza-Klein Redu
tion of D = 11 supergravity on T

n

It is 
lear that having established the pro
edure for performing a Kaluza-Klein redu
tion

from D + 1 dimensions to D dimensions on the 
ir
le S

1

, the pro
ess 
an be repeated for
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a su

ession of 
ir
les. Thus we may 
onsider a redu
tion from D + n dimensions to D

dimensions on the n-torus T

n

= S

1

� � � � � S

1

. At ea
h su

essive step, for example the

i'th redu
tion step, one generates a Kaluza-Klein ve
tor potential A

i

(1)

, and a dilaton �

i

from the redu
tion of the metri
. In addition, p-form potential already present in D + i

dimensions will des
end to give a p-form and a (p � 1)-form potential, by the me
hanism

that we have already studied. As a result, one obtains a rapidly-proliferating number of

�elds as one des
ends through the dimensions.

Let us 
onsider an example where we again begin with D = 11 supergravity, and now

redu
e it to D dimensions on the n = (11 �D) torus, with 
oordinates z

i

. As well as the

set of Kaluza-Klein ve
tors A

i

(1)

and dilatons �

i

, we will have 0-form potentials or \axions"

A

i

(0)j


oming from the further redu
tion of the Kaluza-Klein ve
tors. Sin
e su
h an axion


annot be generated until the Kaluza-Klein ve
tor A

i

(1)

has �rst been generated at a previous

redu
tion step, we see that the axions A

i

(0)j

will ne
essarily have i < j. In addition, the

potential A

(3)

A

(3)

in D = 11 will give, upon redu
tion, the potentials A

(3)

, A

(2)i

, A

(1)ij

and

A

(0)ijk

. Here, the i; j; : : : indi
es are essentially internal 
oordinate indi
es 
orresponding to

the torus dire
tions. Thus these indi
es are antisymmetrised.

We will not labour too mu
h over the details of the 
al
ulation of the torus redu
tion.

It is 
lear that one just has to apply the previously-derived formulae for the single-step

redu
tion of the Einstein-Hilbert and gauge-�eld a
tions repeatedly, until the required lower

dimension D = 11� n is rea
hed. If one does this, one obtains the following Lagrangian in

D dimensions (see [1, 2℄)

L = R �1l�

1

2

�d

~

� ^ d

~

��

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

2

X

i

e

~a

i

�

~

�

�F

(3)i

^ F

(3)i

�

1

2

X

i<j

e

~a

ij

�

~

�

�F

(2)ij

^ F

(2)ij

�

1

2

X

i

e

~

b

i

�

~

�

�F

i

(2)

^ F

i

(2)

�

1

2

X

i<j<k

e

~a

ijk

�

~

�

�F

(1)ijk

^ F

(1)ijk

�

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

+ L

FFA

: (1.61)

where the \dilaton ve
tors" ~a, ~a

i

, ~a

ij

, ~a

ijk

,

~

b

i

,

~

b

ij

are 
onstants that 
hara
terise the 
ou-

plings of the dilatoni
 s
alars

~

� to the various gauge �elds. They are given by

F

MNPQ

vielbein

4� form : ~a = �~g ;

3� forms : ~a

i

=

~

f

i

� ~g ;

2� forms : ~a

ij

=

~

f

i

+

~

f

j

� ~g ;

~

b

i

= �

~

f

i

; (1.62)

1� forms : ~a

ijk

=

~

f

i

+

~

f

j

+

~

f

k

� ~g ;

~

b

ij

= �

~

f

i

+

~

f

j

;
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where the ve
tors ~g and

~

f

i

have (11�D) 
omponents in D dimensions, and are given by

~g = 3(s

1

; s

2

; : : : ; s

11�D

) ;

~

f

i

=

�

0; 0; : : : ; 0

| {z }

i�1

; (10 � i)s

i

; s

i+1

; s

i+2

; : : : ; s

11�D

�

; (1.63)

where s

i

=

p

2=((10 � i)(9 � i)). It is easy to see that they satisfy

~g � ~g =

2(11�D)

D�2

; ~g �

~

f

i

=

6

D�2

;

~

f

i

�

~

f

j

= 2Æ

ij

+

2

D�2

: (1.64)

Note also that

X

i

~

f

i

= 3~g : (1.65)

Note that the D-dimensional metri
 is related to the eleven-dimensional one by

ds

2

11

= e

1

3

~g�

~

�

ds

2

D

+

X

i

e

2~


i

�

~

�

(h

i

)

2

; (1.66)

where ~


i

=

1

6

~g �

1

2

~

f

i

, and

h

i

= dz

i

+A

i

1

+A

i

0

j

dz

j

: (1.67)

There are, of 
ourse, a number of subtleties that have been sneaked into the formulae

presented above. First of all, as we already saw from the single-step redu
tion from D+1 to

D dimensions, one a
quires transgression terms that modify the leading-order expressions

F

(n)

= dA

(n�1)

+ � � � for the lower-dimensional �eld strengths. This 
an all be handled in a

fairly me
hani
al, although somewhat involved, manner. After a 
ertain amount of algebra,

one 
an show that the various �eld strengths are given by

F

(4)

=

~

F

(4)

� 


i

j

~

F

(3)i

^A

j

(1)

+

1

2




i

k




j

`

~

F

(2)ij

^A

k

(1)

^A

`

(1)

�

1

6




i

`




j

m




k

n

~

F

(1)ijk

^A

`

(1)

^A

m

(1)

^A

n

(1)

;

F

(3)i

= 


j

i

~

F

(3)j

+ 


j

i




k

`

~

F

(2)jk

^A

`

(1)

+

1

2




j

i




k

m




`

n

~

F

(1)jk`

^A

m

(1)

^A

n

(1)

;

F

(2)ij

= 


k

i




`

j

~

F

(2)k`

� 


k

i




`

j




m

n

~

F

(1)k`m

^A

n

(1)

; (1.68)

F

(1)ijk

= 


`

i




m

j




n

k

~

F

(1)`mn

;

F

i

(2)

=

~

F

i

(2)

� 


j

k

~

F

i

(1)

j

^A

k

(1)

;

F

i

(1)

j

= 


k

j

~

F

i

(1)

k

;

where the tilded quantities represent the unmodi�ed pure exterior derivatives of the 
orre-

sponding potentials,

~

F

(n)

� dA

(n�1)

, and 


i

j

is de�ned by




i

j

= [(1 +A

0

)

�1

℄

i

j

= Æ

i

j

�A

i

(0)

j

+A

i

(0)

k

A

k

(0)

j

+ � � � : (1.69)
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Re
alling that A

i

(0)

j

is de�ned only for j > i (and vanishes if j � i), we see that the series

terminates after a �nite number of terms. We also de�ne here the inverse of 


i

j

, namely

~


i

j

given by

~


i

j

= Æ

i

j

+A

i

(0)

j

: (1.70)

Another point still requiring explanation is the term denoted by L

FFA

in (1.61). This

is the D-dimensional des
endant of the term

1

6

dA

(3)

^ dA

(3)

^A

(3)

. Again, the 
al
ulations

are purely me
hani
al, and we 
an just present the results:

D = 10 :

1

2

~

F

(4)

^

~

F

(4)

^A

(2)

;

D = 9 :

�

1

4

~

F

(4)

^

~

F

(4)

^A

(1)ij

�

1

2

~

F

(3)i

^

~

F

(3)j

^A

(3)

�

�

ij

;

D = 8 :

�

1

12

~

F

(4)

^

~

F

(4)

A

(0)ijk

�

1

6

~

F

(3)i

^

~

F

(3)j

^A

(2)k

�

1

2

~

F

(4)

^

~

F

(3)i

^A

(1)jk

�

�

ijk

;

D = 7 :

�

1

6

~

F

(4)

^

~

F

(3)i

A

(0)jkl

�

1

4

~

F

(3)i

^

~

F

(3)j

^A

(1)kl

+

1

8

~

F

(2)ij

^

~

F

(2)kl

^A

(3)

�

�

ijkl

;

D = 6 :

�

1

12

~

F

(4)

^

~

F

(2)ij

A

(0)klm

�

1

12

~

F

(3)i

^

~

F

(3)j

A

(0)klm

+

1

8

~

F

(2)ij

^

~

F

(2)kl

^A

(2)m

�

�

ijklm

;

D = 5 :

�

1

12

~

F

(3)i

^

~

F

(2)jk

A

(0)lmn

+

1

48

~

F

(2)ij

^

~

F

(2)kl

^A

(1)mn

(1.71)

�

1

72

~

F

(1)ijk

^

~

F

(1)lmn

^A

(3)

�

�

ijklmn

;

D = 4 :

�

1

48

~

F

(2)ij

^

~

F

(2)kl

A

(0)mnp

�

1

72

~

F

(1)ijk

^

~

F

(1)lmn

^A

(2)p

�

�

ijklmnp

;

D = 3 : �

1

144

~

F

(1)ijk

^

~

F

(1)lmn

^A

(1)pq

�

ijklmnpq

;

D = 2 : �

1

1296

~

F

(1)ijk

^

~

F

(1)lmn

A

(0)pqr

�

ijklmnpqr

:

We may now ask the analogous question to the one we 
onsidered in the single-step S

1

redu
tion, namely what are the symmetries of the dimensionally-redu
ed theory, and how do

they arise from the original higher-dimensional symmetries. Although the dis
ussion above

was aimed at the spe
i�
 example of the T

n

redu
tion of D = 11 supergravity, it is obvious

that mu
h of the general stru
ture, for example in the redu
tion of the Einstein-Hilbert

term, is appli
able to any starting dimension.

Let us 
onsider the higher-dimensional general 
oordinate transformations, whi
h, in in-

�nitesimal form, are paramameterised in terms of the ve
tor

^

�

M

as before: Æx̂

M

= �

^

�

M

(x̂).

The di�eren
e now is that we have n redu
tion 
oordinates z

i

, and so the higher-dimensional


oordinates x̂

M

are split as x̂

M

= (x

�

; z

i

). As in the S

1

redu
tion, we must �rst identify

the subset of these higher-dimensional general 
oordinate transformations that leaves the

stru
ture of the dimensional-redu
tion ansatz (1.66) invariant. (In other words, we need

to �nd the transformations whi
h allow the metri
 still to be written in the same form

(1.66), but with, in general, transformed lower-dimensional �elds g

��

, A

i

(1)

, A

i

(0)j

and

~

�.
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The 
ru
ial point is that only those higher-dimensional general 
oordinate transformations

that preserve the z

i

-independen
e of the lower-dimensional �elds are allowed.)

It is not hard to see, using the expression (1.42) for the in�nitesimal general 
oordinate

transformations of ĝ

MN

, that the subset that preserves the stru
ture of (1.66) is

^

�

�

(x; z) = �

�

(x) ;

^

�

i

(x; z) = �

i

j

z

j

+ �

i

(x) ; (1.72)

where the quantities �

i

j

are 
onstants. This generalises the expression (1.43) that we

obtained in the 
ase of the S

1

redu
tion. Clearly, we 
an expe
t that �

�

(x) will again

des
ribe the general 
oordinate transformations of the lower-dimensional theory. The n

lo
al parameters �

i

(x), whi
h generalise the single lo
al parameter �(x) of the S

1

-redu
tion


ase, will now des
ribe the lo
al U(1) gauge invarian
es of the n Kaluza-Klein ve
tor �elds

A

i

�

.

This leaves only the global transformations, parameterised by the 
onstants �

i

j

to inter-

pret. These generalise the single 
onstant 
 of the S

1

redu
tion example. In that 
ase, we

saw that after taking into a

ount the additional s
aling symmetry of the higher-dimensional

equations of motion, whi
h 
ould be used as a 
ompensating transformation, we 
ould ex-

tra
t a symmetry in the lower dimension that left the metri
 invariant, and des
ribed a


onstant shift of the dilaton, 
ombined with appropriate 
onstant res
alings of the gauge

�elds. In group-theoreti
 terms, that was an IR transformation; the group parameter 
 took

values anywhere on the real line.

In our present 
ase with a redu
tion on the torus T

n

, we have n

2


onstant parameters �

i

j

appearing in (1.72). They a
t by matrix multipli
ation on the \
olumn ve
tor" 
omposed

of the internal 
oordinates z

i

on the torus,

Æz

i

= ��

i

j

z

j

: (1.73)

The matrix �

i

j

is unrestri
ted; it just has n

2

real 
omponents. This is the general linear

group of real n � n matri
es, denoted by GL(n; IR). There is, of 
ourse, again also the

uniform s
aling symmetry of the higher-dimensional equations of motion. One 
an use

this as a \
ompensator," to allow all of the �

i

j

transformations to be
ome purely internal

symmetries, whi
h a
t on the various lower-dimensional potentials and dilatons, but whi
h

leave the lower-dimensional metri
 invariant. This 
an be seen by 
al
ulations that are

pre
isely analogous to the ones for the S

1

redu
tion in the previous se
tion.

The 
on
lusion, therefore, from the above dis
ussion is that when the Einstein-Hilbert

a
tion is dimensionally redu
ed on the n-dimensional torus T

n

, it gives rise to a theory in
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the lower dimension that has a GL(n; IR) global symmetry, in addition to the lo
al general


oordinate and gauge symmetries generated by �

�

(x) and �

i

(x). In fa
t, the GL(n; IR)

transformations are also symmetries of the theory that we get when we in
lude the other

terms in the eleven-dimensional supergravity Lagrangian. This is a rather general feature;

any theory with gravity 
oupled to other matter �elds will, upon dimensional redu
tion

on T

n

, give rise to a theory with a GL(n; IR) global symmetry. (Stri
tly speaking, one


an only be sure of SL(n; IR) as an internal symmetry that leaves the metri
 invariant;

getting the full GL(n; IR) depends on having the extra homogeneous s
aling symmetry of

the higher-dimensional equations of motion; note that GL(n; IR) � SL(n; IR)� IR.)

A
tually, as we shall see later, the redu
tion of eleven-dimensional supergravity on T

n

a
tually typi
ally gives a bigger global symmetry than GL(n; IR). The reason for this is that

there is a
tually a \
onspira
y" between the metri
 and the 3-form potential of D = 11, and

between them they 
reate a lower-dimensional system that has an enlarged global symmetry.

The phenomenon �rst sets in when one des
ends down to eight dimensions on the 3-torus,

for whi
h the global symmetry is SL(2; IR) � SL(3; IR), rather than the naively-expe
ted

GL(3; IR). By the time one 
onsiders a redu
tion from D = 11 to D = 3 on the 8-torus,

the naively-expe
ted GL(8; IR) is enlarged to an impressive E

8

. We won't study all the

details of how these enlargements o

ur, but we will look at some of the elements in the

me
hanism. First, let us 
onsider the simplest non-trivial example of a global symmetry,

whi
h arises in a redu
tion of pure gravity on a 2-torus.

1.4 SL(2; IR) and the 2-torus

Let us 
onsider pure gravity in D + 2 dimensions, redu
ed to D dimensions on T

2

. From

the earlier dis
ussions it is 
lear that we will get the following �elds in the dimensionally-

redu
ed theory: (g

��

;A

i

(1)

;A

1

(0)2

;

~

�). The notation is a little ugly-looking here, so let us

just review what we have. There are two Kaluza-Klein gauge potentials A

i

(1)

, and then

there is the 0-form potential, or axion, A

1

(0)2

. This is what 
omes from the dimensional

redu
tion of the �rst of the two Kaluza-Klein ve
tors, A

1

(1)

, whi
h, at the se
ond redu
tion

step gives not only a ve
tor, but also the axion. We 
an make things look ni
er by using

the symbol � to represent A

1

(0)2

. From the previous results, it is not hard to see that the

dimensionally-redu
ed Lagrangian is

L = R �1�

1

2

�d

~

� ^ d

~

��

1

2

X

i

e

~


i

�

~

�

�F

(2)i

^ F

(2)i

�

1

2

e

~
�

~

�

�d� ^ d� ; (1.74)
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where the dilaton ve
tors are given by

~


1

=

�

�

q

2D

D�1

;�

q

2

(D�1)(D�2)

�

; ~


2

=

�

0;�

q

2(D�1)

D�2

�

;

~
 =

�

�

q

2D

D�1

;

q

2(D�2)

D�1

�

: (1.75)

The �eld strengths are given by

F

1

(2)

= dA

1

(1)

� d� ^A

2

(1)

; F

2

(2)

= dA

2

(1)

: (1.76)

Things simplify a lot if we rotate the basis for the two dilatons

~

� = (�

1

; �

2

). Make the

orthogonal transformation to two new dilaton 
ombinations, whi
h we may 
all � and ':

� = �

1

2

q

2D

D�1

�

1

+

1

2

q

2(D�2)

D�1

�

2

; ' = �

1

2

q

2(D�2)

D�1

�

1

�

1

2

q

2D

D�1

�

2

: (1.77)

After a little algebra, the Lagrangian (1.74) 
an be seen to be
ome

L = R �1�

1

2

�d'^d'�

1

2

�d�^d��

1

2

e

�+q'

�F

1

(2)

^F

1

(2)

�

1

2

e

��+q'

�F

2

(2)

^F

2

(2)

�

1

2

e

2�

�d�^d� ;

(1.78)

where q =

p

D=(D � 2).

Note also that from the expression (1.66) for the dimensionally-redu
ed metri
, we have

ds

2

D+2

= e

�

2

p

D(D�2)

'

ds

2

D

+e

p

(D�2)=D '

�

e

�

(dz

1

+A

1

(1)

+�dz

2

)

2

+e

��

(dz

2

+A

2

(2)

)

2

�

: (1.79)

This shows that the s
alar ' has the interpretation of parameterising the volume of the 2-

torus, sin
e it o

urs in an overall multipli
ative fa
tor of the internal 
ompa
tifying metri
,

while � parameterises a shape-
hanging mode of the torus, sin
e it s
ales the lengths of the

two 
ir
les of the torus in opposite dire
tions. In fa
t � and � 
ompletely 
hara
terise the

moduli of the torus. The moduli are parameters that 
hange the shape of the torus, at �xed

volume, while keeping it 
at. One 
an see that as � varies, the relative radii of the two


ir
les 
hange, while as � varies, the angle between the two 
ir
les 
hanges.

Let us now look at the s
alars in the Lagrangian (1.78), namely �, ' and �, des
ribed

by the s
alar Lagrangian

L

s
al

= �

1

2

(�')

2

�

1

2

(��)

2

�

1

2

e

2�

(��)

2

: (1.80)

It is evident that ' is de
oupled from the others. It has a global shift symmetry, ' �! '+k.

This gives an IR fa
tor in the global symmetry group. Now look at the dilaton-axion system

(�; �). This is best analysed by de�ning a 
omplex �eld � = �+ i e

��

. The Lagrangian for

� and � 
an then be written as

L

(�;�)

� �

1

2

(��)

2

�

1

2

e

2�

(��)

2

= �

�� � ���

2 �

2

2

; (1.81)
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where �

2

means the imaginary part of � ; one 
ommonly writes � = �

1

+ i �

2

. Now, it is not

hard to see that if � is subje
ted to the following fra
tional linear transformation,

� �!

a � + b


 � + d

; (1.82)

where a, b, 
 and d are 
onstants that satisfy

a d� b 
 = 1 ; (1.83)

then the Lagrangian (1.81) is left invariant. But we 
an write the 
onstants in a 2 � 2

matrix,

� =

 

a b


 d

!

; (1.84)

with the 
ondition (1.83) now restated as det� = 1. What we have here is real 2 � 2

matri
es of unit determinant. They therefore form the group SL(2; IR). This SL(2; IR) is a

symmetry that a
ts non-linearly on the 
omplex s
alar �eld � , as in (1.82).

Thus we have seen that the s
alar Lagrangian (1.80) has in total an IR�SL(2; IR) global

symmetry. This makes the GL(2; IR) symmetry that was promised in the previous se
tion.

Note that the SL(2; IR) transformation (1.82) 
an be expressed dire
tly on the dilaton and

axion, where it be
omes

e

�

�! e

�

0

= (
 �+ d)

2

e

�

+ 


2

e

��

;

� e

�

�! �

0

e

�

0

= (a�+ b)(
 �+ d) e

�

+ a 
 e

��

: (1.85)

To 
omplete the story, we should go ba
k to analyse the full Lagrangian (1.78) that

in
ludes the gauge �elds F

i

(2)

. First of all, it is helpful to make a �eld rede�nition A

1

(1)

�!

A

1

(1)

+ �A

2

(1)

, whi
h has the e�e
t of 
hanging the expression for the �eld strength F

1

(2)

, so

that instead of (1.76) we have

F

1

(2)

= dA

1

(1)

+ �dA

2

(1)

; F

(2)

= dA

2

(1)

: (1.86)

In other words, the derivative has bee shifted o� �, and onto A

2

(1)

instead. The statement

of how the SL(2; IR) transformations a
t on the gauge �elds now be
omes very simple; it is

 

A

2

(1)

A

1

(1)

!

�! (�

T

)

�1

 

A

2

(1)

A

1

(1)

!

; (1.87)

where � was de�ned in (1.84). This transformation on the potentials is to be performed at

the same time as the transformation (1.85) is performed on the s
alars. (If one spots the

right way to do this 
al
ulation, the proof is not too diÆ
ult.) Note that while the s
alars

transform non-linearly under SL(2; IR), the two gauge potentials transform linearly, as a

doublet. In other words, they just transform by matrix multipli
ation of (�

T

)

�1

on the


olumn ve
tor formed from the two potentials.
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1.5 S
alar 
oset Lagrangians

Many of the features of the 2-torus redu
tion that we saw in the previous se
tion are rather

general in all the toroidal dimensional redu
tions. In parti
ular, one thing that we en-


ountered was that the global symmetry of the lower-dimensional Lagrangian was already

established by looking just at the s
alar �elds, and their symmetry transformations. Show-

ing that the full Lagrangian had the symmetry was then a matter of showing that the terms

in the full lower-dimensional Lagrangian that involve the higher-rank potentials (the two

1-form gauge potentials, in our 2-torus redu
tion example) also share the same symmetry.

It is in fa
t essentially true in general that the extension of the global symmetry to the

entire Lagrangian is \guaranteed," on
e it is established as a symmetry of the s
alar se
tor.

Furthermore, the higher-rank potentials always transform in linear representations of the

global symmetry group, while the s
alars transform non-linearly. One 
an, for example,

show without too mu
h further trouble that if one redu
es D = 11 supergravity on the

2-torus, so that now the 3-form gauge potential is in
luded also, the resulting additional

gauge potentials in D = 9 will again transform linearly under the GL(2; IR) global symme-

try. These additional gauge potentials will 
omprise A

(3)

, transforming as a singlet under

the SL(2; IR) subgroup, two 2-forms A

(2)i

, transforming as a doublet, and one 1-form, A

(1)12

,

transforming as a singlet. Under the IR fa
tor of GL(2; IR), whi
h 
orresponds to the 
on-

stant shift symmetry of the other dilaton ', all the potentials will transform by appropriate


onstant s
aling fa
tors.

To understand the stru
ture of the global symmetries better, we need to study the nature

of the s
alar Lagrangians that arise from the dimensional redu
tion. This is instru
tive not

only in its own right, but also be
ause it leads us into the subje
t of non-linear sigma

models, and 
oset spa
es, whi
h are of importan
e in many other areas of physi
s too. Let

us begin by 
onsidering the SL(2; IR) example from the previous se
tion. It exhibits many

of the general features that one en
ounters in non-linear sigma models, while having the

merit of being rather simple and easy to 
al
ulate expli
itly.

The group SL(2; IR) is the non-
ompa
t version of SU(2), and 
onsequently, its asso
i-

ated Lie algebra (the elements in�nitesimally 
lose to the identity) is essentially the same

as that of SU(2). Thus we have the generators (H;E

+

; E

�

), satisfying the Lie algebra

[H;E

�

℄ = �2E

�

; [E

+

; E

�

℄ = H : (1.88)

H is the Cartan subalgebra generator, while E

�

are the raising and lowering operators. A
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onvenient representation for the generators is in terms of 2� 2 matri
es:

H =

 

1 0

0 �1

!

; E

+

=

 

0 1

0 0

!

; E

�

=

 

0 0

1 0

!

: (1.89)

(So H = �

3

, E

�

= 1=2(�

1

� i �

2

), where �

i

are the Pauli matri
es.)

Consider now the exponentiation of the H and E

+

, and de�ne

V = e

1

2

�H

e

�E

+

; (1.90)

where � and � are thought of as �elds depending on the 
oordinates of a D-dimensional

spa
etime. A simple 
al
ulation shows that

V =

 

e

1

2

�

� e

1

2

�

0 e

�

1

2

�

!

: (1.91)

We now 
ompute the exterior derivative, to �nd

dV V

�1

=

 

1

2

d� e

�

d�

0 �

1

2

d�

!

=

1

2

d�H + e

�

d�E

+

: (1.92)

Let us de�ne also the matrixM = V

T

V. It is easy to see from (1.91) that we have

M =

 

e

�

� e

�

� e

�

e

��

+ e

�

�

2

!

; M

�1

=

 

e

��

+ e

�

�

2

�� e

�

�� e

�

e

�

!

: (1.93)

Thus we see that we may write a s
alar Lagrangian as

L =

1

4

tr

�

�M

�1

�M

�

= �

1

2

(��)

2

�

1

2

e

2�

(��)

2

: (1.94)

This is nothing but the SL(2; IR)-invariant s
alar Lagrangian that we en
ountered in the

previous se
tion. The advantage now is that we have a very ni
e way to see why it is

SL(2; IR) invariant.

To do this, observe that if we introdu
e an arbitrary 
onstant SL(2; IR) matrix �, given

by

� =

 

a b


 d

!

; a d� b 
 = 1 ; (1.95)

then if we send V �! V

00

= V �, we get M �! (V

00

)

T

V

00

= �

T

V

T

V � = �

T

M�, whi
h

manifestly leaves L invariant:

L �!

1

4

tr

�

�

�1

�M

�1

(�

T

)

�1

�

T

�M�

�

=

1

4

tr

�

�M

�1

�M

�

: (1.96)

The only trouble with this transformation is that when we sent V �! V

00

= V � we a
tually

did something improper, be
ause in general the transformed matrix V

00

is not of the upper-

triangular form that the original matrix V given in (1.91 is. Thus by a
ting with �, we
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have done something that 
annot, as it stands, be expressed as a transformation on the

�elds � and �. Happily, there is a simple remedy for this. What we must do is make a


ompensating lo
al transformation O that a
ts on V from the left, at the same time as we

multiply by the 
onstant SL(2; IR) matrix from the right. Thus we de�ne a transformed

matrix V

0

by

V

0

= OV � ; (1.97)

where, by de�nition, O is the matrix that does the job of restoring V

0

to the upper-triangular

gauge. There is a unique orthogonal matrix that does the job, and after a little algebra,

one �nds that it is

O = (


2

+ e

2�

(
 �+ a)

2

)

�1=2

 

e

�

(
 �+ a) 


�
 e

�

(
 �+ a)

!

: (1.98)

The matrix O that we have just 
onstru
ted does the job of restoring the SL(2; IR)-

transformed matrix V to the upper-triangular gauge of (1.91), whi
h means that we 
an

now interpret the a
tion of SL(2; IR) in terms of transformations on � and �. But does

it give us an invarian
e of the Lagrangian (1.94)? The answer is yes, and this is easily

seen. The matrix O is the spe
i�
 one that does the job of 
ompensating for the SL(2; IR)

transformation with 
onstant parameters a, b, 
 and d. It is itself lo
al, sin
e it depends

not only on the 
onstant SL(2; IR) parameters but also on the �elds � and � themselves.

This does not 
ause trouble, however, be
ause, 
ru
ially, O is an orthogonal matrix. This

means that when we 
al
ulate how M = V

T

V transforms, we �nd

M�!M

0

= (V

0

)

T

V

0

= �

T

V

T

O

T

OV � = �

T

V

T

V � = �

T

M� : (1.99)

Thus the lo
al 
ompensating transformation 
an
els out when the transformed M matrix

is 
al
ulated, and hen
e the previous 
al
ulation (1.96) demonstrating the invarian
e of the

Lagrangian goes through without modi�
ation.

After a little algebra, it is not hard to see that the transformed �elds �

0

and �

0

, de�ned

by (1.97), are pre
isely the ones that we obtained in the previous se
tion, given in (1.85).

It is not hard to see that at a given spa
etime point (i.e. for �xed values of � and �), we


an use the SL(2; IR) transformation to get from any pair of values for � and � to any other

pair of values. This means that SL(2; IR) a
ts transitively on the s
alar manifold, whi
h is

the manifold where the �elds � and � take their values.

Let us take sto
k of what we have found. We have parameterised points in the s
alar

manifold in terms of the matrix V in (1.91). We have seen that a
ting from the right with

an SL(2; IR) matrix �, we 
an get to any other point in the s
alar manifold. But we must,
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in general, make a 
ompensating O(2) transformation as we do so, to make sure that we

stay within our original parameterisation s
heme in terms of the upper-triangular matri
es

V. Thus we may spe
ify points in the s
alar by the 
oset SL(2; IR)=O(2), 
onsisting of

SL(2; IR) motions modulo the appropriate O(2) 
ompensators. Thus we may say that the

s
alar manifold for the (�; �) dilaton/axion system is the 
oset spa
e SL(2; IR)=O(2), and

that it has SL(2; IR) as its global symmetry group.

In this example, the points in the SL(2; IR)=O(2) 
oset were parameterised by the 
oset

representative V, given in (1.91). We obtained this by exponentiating just two of the

SL(2; IR) generators, namely the Cartan generator H and the raising operator E

+

. Things

don't always go quite so smoothly and easily as this, but in the 
ase of the various s
alar 
oset

manifolds that arise in the toroidal 
ompa
ti�
ations of eleven-dimensional supergravity

they do. Let us, therefore, pursue these examples a bit further.

Our dis
ussion above was for the redu
tion of the Einstein-Hilbert a
tion on T

2

, starting

in any dimension D+2 and ending up in D dimensions. We 
ould generalise this to in
lude

some additional antisymmetri
 tensors in D + 2 dimensions, and we would �nd in general

that they give rise to sets of �elds in D dimensions that transform linearly under SL(2; IR).

In the 
ase where we start with supergravity in D = 11, we would have an additional 3-

form potential, therefore. After redu
tion to D = 9 on T

2

, we would get the �elds dis
ussed

above in from the gravity se
tor, together with �elds A

(3)

, A

(2)i

and A

(1)12

that des
end

from A

(3)

. One �nds that A

(3)

is a singlet under SL(2; IR), the two A

(2)i

form a doublet,

and A

(1)12

is again a singlet.

The situation 
hanges if we des
end from D = 11 on a higher-dimensional torus. The

reason is that we now start to get additional axioni
 s
alar �elds from the des
endants of

A

(3)

, over and above the s
alars that 
ome from the eleven-dimensional metri
. For example,

if we des
end on T

3

to D = 8, we now have not only the three dilatons

~

�, and three axions

A

i

(0)j

, but also one additional axion A

(0)123

. Now the s
alars

~

� and A

i

(0)j

have a Lagrangian

with the \expe
ted" GL(3; IR) global symmetry. In fa
t, they parameterise points in the

six-dimensional 
oset manifold GL(3; IR)=O(3). But what happens with the symmetry is

the following. We saw in D = 9, in the T

2

redu
tion, that the IR fa
tor in the GL(2; IR)

symmetry \fa
tored o�" from the rest of the SL(2; IR). The same thing happens here, and

there is one dilaton whi
h 
ontributes the IR fa
tor in GL(3; IR), and whi
h is de
oupled

from the remaining �ve s
alars that form the SL(3; IR)=O(3) 
oset. It does, however, 
ouple

to the the additional axion, A

(0)123

, 
oming from the redu
tion of A

(3)

. In fa
t they form

a dilaton/axion system with an SL(2; IR) global symmetry, working just like the SL(2; IR)
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that we saw in the T

2

redu
tion. Thus the �nal 
on
lusion is that the redu
tion of D = 11

supergravity on T

3

to D = 8 gives a theory whose s
alars parameterise the 
oset

SL(3; IR)

O(3)

�

SL(2; IR)

O(2)

; (1.100)

and so there is an SL(3; IR)� SL(2; IR) global symmetry.

To see the details in this eight-dimensional example, let us 
onsider just the s
alar se
tor

of the dimensionally-redu
ed theory. From (1.61), we will have

L

8

= �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

�

1

2

e

~a

123

�

~

�

�F

(1)123

^ F

(1)123

; (1.101)

where

F

1

(1)2

= dA

1

(0)2

; F

2

(1)3

= dA

2

(0)3

; F

1

(1)3

= dA

1

(0)3

�A

2

(0)3

dA

1

(0)2

; F

(1)123

= dA

(0)123

:

(1.102)

From the general results for the dilaton ve
tors, it is not hard to see that after performing

an orthogonal transformation to make things look ni
er, we 
an make the dilaton ve
tors

be
ome

~

b

12

= (0; 1;

p

3) ;

~

b

23

= (0; 1;�

p

3) ;

~

b

13

= (0; 2; 0) ;

~a

123

= (2; 0; 0) : (1.103)

We see that indeed the axion A

(0)123

and the dilaton �

1

form an independent SL(2; IR)=O(2)

s
alar 
oset, whi
h is de
oupled from the rest of the s
alar se
tor.

This leaves the SL(3; IR) part of the s
alar 
oset still to understand. Perhaps the easiest

way to see what's happening here is to re
all a 
ouple of fa
ts about group theory. The

generators of a Lie algebra G 
an be organised into Cartan generators,

~

H, whi
h mutually


ommute with ea
h other, and raising and lowering operators E

~�

. If the rank of the algebra

is n, then there are n Cartan generators,

~

H = (H

1

; : : : ;H

n

). The raising and lowering

operators have the 
ommutation relations

[

~

H;E

~�

℄ = ~�E

~�

(1.104)

with the Cartan generators, where ~� are 
alled the root ve
tors asso
iated with the gener-

ators E

~�

. One sets up a s
heme for de�ning root ve
tors to be positive or negative. The

standard way to do this is to look at the 
omponents of the root ve
tor ~� = (�

1

; : : : ; �

n

),

working from the left to the right. The sign of the root ve
tor is de�ned to be the sign

of the �rst non-zero 
omponent that is en
ountered. Generators with positive root ve
tors
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are 
alled raising operators, and those with negative roots are 
alled lowering operators. It

is easily seen from (1.104) that if the 
ommutator of two non-zero-root generators E

~�

and

E

~

�

is non-vanishing, then it will be a generator with root ve
tor ~�+

~

�. Thus in general we

have

[E

~�

; E

~

�

℄ = N(�; �)E

~�+

~

�

; (1.105)

for some 
onstant (possibly zero) N(�; �).

The 
lassi�
ation of all the possible Lie algebras is quite straightforward, but it is a

lengthy business, and we shall not stray into it here. SuÆ
e it to say that it turns out that

the Lie algebras 
an be 
lassi�ed by 
lassifying all the possible root systems, whi
h means

determining all the possible sets of roots that satisfy 
ertain 
onsisten
y requirements. In

turn, these root systems 
an be 
hara
terised in terms of the simple roots. These are de�ned

to be the subset of the positive roots that allow one to express any positive root in the system

as a linear 
ombination of the simple roots with non-negative integer 
oeÆ
ients. One 
an

show that the number of simple roots is equal to the rank of the algebra. In other words,

there are as many simple roots as there are 
omponents to the root ve
tors.

In the example of SL(2; IR), whi
h has rank 1, we had the single Cartan generator H,

and the single positive-root generator E

+

, with the single-
omponent \root ve
tor" 2, as in

(1.88). In general, SL(n+ 1; IR) has rank n, and so for SL(3; IR) we have rank 2. Thus we

expe
t two Cartan generators

~

H, and 2-
omponent root ve
tors. In fa
t this is just what we

are seeing in our eight-dimensional s
alar Lagrangian. Forgetting now about the SL(2; IR)

part, whi
h, as we have seen, fa
tors o� from the rest, we have two dilatons

~

� = (�

2

; �

3

),

and 2-
omponent dilaton ve
tors

~

b

12

= (1;

p

3) ;

~

b

23

= (1;�

p

3) ;

~

b

13

= (2; 0) : (1.106)

(These follow from (1.103) by dropping the �rst 
omponent of ea
h dilaton ve
tor; i.e. the


omponent asso
iated with the de
oupled SL(2; IR) part.) We 
an re
ognise the

~

b

ij

dilaton

ve
tors as the positive roots of SL(3; IR), with

~

b

12

and

~

b

23

as the two simple roots, and

~

b

13

=

~

b

12

+

~

b

23

. We may introdu
e positive-root generators E

i

j

, de�ned for i < j, asso
iated

with the root-ve
tors

~

b

ij

, and Cartan generators

~

H, with the 
ommutation relations

[

~

H;E

i

j

℄ =

~

b

ij

E

i

j

; [E

i

j

; E

k

`

℄ = Æ

j

k

E

i

`

� Æ

`

i

E

k

j

: (1.107)

Observe that the only non-zero 
ommutator among the positive-root generators here is

[E

1

2

; E

2

3

℄ = E

1

3

.
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One 
an represent the various generators here in terms of 3 � 3 matri
es. For E

i

j

, we

de�ne it to be the matrix with zeroes everywhere ex
ept for a 1 at the position of row i and


olumn j, and so

E

1

2

=

0

B

B

�

0 1 0

0 0 0

0 0 0

1

C

C

A

; E

2

3

=

0

B

B

�

0 0 0

0 0 1

0 0 0

1

C

C

A

; E

1

3

=

0

B

B

�

0 0 1

0 0 0

0 0 0

1

C

C

A

: (1.108)

The two Cartan generators

~

H = (H

1

;H

2

) are then diagonal, with

H

1

= diag (1; 0;�1) ; H

2

=

1

p

3

diag (1;�2; 1) : (1.109)

The strategy for 
onstru
ting the SL(3; IR)=O(3) 
oset Lagrangian is now to follow

the same path that we used for SL(2; IR). We write down a 
oset representative V, by

exponentiating the Cartan and positive-root generators of SL(3; IR), with the dilatons and

axions as 
oeÆ
ients. We do this in the following way:

V = e

1

2

~

��

~

H

e

A

2

(0)3

E

2

3

e

A

1

(0)3

E

1

3

e

A

1

(0)2

E

1

2

: (1.110)

Note that there are obviously many di�erent ways that one 
ould organise this exponen-

tiation; here, we exponentiate ea
h generator separately, and then multiply the results

together. An alternative would be to exponentiate the sum of generators times �elds. This

would, in general, give a slightly di�erent expression for V, sin
e if A and B are two matri
es

that do not 
ommute, then e

A

e

B

6= e

A+B

. (One 
an use the Baker-Campbell-Hausdorf for-

mula to relate them.) The di�erent possibilities 
orrespond to making di�erent 
hoi
es for

exa
tly how to parameterise points in the 
oset spa
e, and eventually one 
hoi
e is related

to any other by making rede�nitions of the �elds. Thus any 
hoi
e is equally as \good" as

any other. The 
hoi
e we are making here happens to be 
onvenient, be
ause it happens to


orrespond exa
tly to the 
hoi
e of �eld variables in our eight-dimensional Lagrangian.

It is not hard to establish that with the 
oset representative V de�ned as in (1.110)

above, one has

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

; (1.111)

where the 1-form �eld strengths F

i

(1)j

are given in (1.102). In parti
ular, the transgression

term in F

1

(1)3


omes from the fa
t that the 
ommutator of E

1

2

and E

2

3

is non-zero, as given

in (1.107). (One needs to use the following matrix relations in order to derive the result:

de

X

e

�X

= dX +

1

2

[X; dX℄ +

1

6

[X; [X; dX℄℄ + � � � ;

e

X

Y e

�X

= Y + [X;Y ℄ +

1

2

[X; [X;Y ℄℄ + � � � : (1.112)
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Only the �rst 
ouple of terms in these expansions are ever needed, sin
e the multiple 
om-

mutators of positive-root generators rapidly expire.)

It is also straightforward to 
al
ulate M = V

T

V, and hen
e the Lagrangian

L =

1

4

tr

�

�M

�1

�M

�

: (1.113)

(In pra
ti
e, Mathemati
a is handy for this sort of 
al
ulation.) After a little algebra, one

�nds that it is given by

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

: (1.114)

In other words, we have su

eeded in writing the part of the eight-dimensional s
alar La-

grangian (1.101) in a manifestly SL(3; IR)-invariant fashion.

To make the SL(3; IR) symmetry fully expli
it, we should really repeat the steps that we

followed in the 
ase of the SL(2; IR) example. Namely, we should 
onsider a general global

SL(3; IR) transformation � a
ting via right-multipli
ation on the 
oset representative V.

This will in general take us out of the upper-triangular gauge of (1.110), and so we should

then show that there exists a lo
al, �eld-dependent, 
ompensating O(3) transformation O,

su
h that

V

0

= OV � (1.115)

is ba
k in the upper-triangular gauge. This means that one 
an then interpret V

0

, via the

de�nition (1.110), as the 
oset representative for a di�erent point in the 
oset manifold,


orresponding to the transformed �elds with primes on them. The matrix M = V

T

V

that is used to 
onstru
t the s
alar Lagrangian (1.113) then transforms ni
ely as M �!

M

0

= �

T

M�, hen
e implying the invarian
e of the Lagrangian under global SL(3; IR)

transformations.

In this parti
ular 
ase, it is perfe
tly possible to do this 
al
ulation expli
itly, and to

exhibit the required O(3) 
ompensator (again, Mathemati
a 
an be handy here). However,

it is 
lear that in more 
ompli
ated examples it would be
ome in
reasingly burdensome to


onstru
t the 
ompensator O. Furthermore, we don't a
tually really need to know what it

is; all we really need is to know that it exists. Lu
kily, there is a general theorem in the

theory of Lie algebras, whi
h does the job for us. It is known as the Iwasawa De
omposition,

and it goes as follows. The 
laim is that every element g in the Lie group G obtained by

exponentiating the Lie algebra G 
an be uniquely expressed as the following produ
t:

g = g

K

g

H

g

N

: (1.116)
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Here g

K

is in the maximal 
ompa
t subgroup K of G, g

H

is in the Cartan subalgebra of G,

and g

N

is in the exponentiation of the positive-root part of the algebra G.

2

This is pre
isely what is needed for the dis
ussion of the 
osets that arise in these

supergravity redu
tions. Our 
oset representative V is 
onstru
ted by exponentiating the

Cartan generators, and the full set of positive-root generators (see (1.90) for SL(2; IR), and

(1.110) for SL(3; IR)). Thus our 
oset representative is written as V = g

H

g

N

. Now, we a
t

by right-multipli
ation with a general group element � in G. This means that V � is some

element of the group G. Now, we invoke the Iwasawa de
omposition (1.116), whi
h tells

us that we must be able to write the group element V � in the form g

K

V

0

, where V

0

itself

is of the form g

0

H

g

0

N

. This does what we wanted; it assures us that there exists a way of

pulling out an element O of the maximal 
ompa
t subgroup K of G on the left-hand side,

su
h that we 
an write V � as OV

0

.

We are now in a position to pro
eed to the lower-dimensional theories obtained by


ompa
tifying eleven-dimensional supergravity on torii of higher dimensions. We 
an bene�t

from the lessons of the previous examples, and home in dire
tly on the key points. Let us

�rst, for reasons that will be
ome 
lear later, 
onsider the 
ases where the n-torus has n � 5,

meaning that we end up in dimensions = 11� n � 6. The full set of axioni
 s
alars will be

A

i

(0)j

and A

(0)ijk

in ea
h dimension. From our T

2

and T

3

examples, we have seen that the

dilaton ve
tors

~

b

ij

and ~a

ijk

for these axions form the positive roots of a Lie algebra, and that

by exponentiating the asso
iated positive-root generators, with the axions as 
oeÆ
ients,

and exponentiating the Cartan generators, with the dilatons as 
oeÆ
ients, we 
onstru
ted

a 
oset representative V for G=K, where G is the Lie group asso
iated with the Lie algebra,

and K is its maximal 
ompa
t subgroup.

How do we identify what the group G is in ea
h dimension? If we 
an identify the subset

of the dilaton ve
tors that 
orresponds to the simple roots of the Lie algebra then we will

have solved the problem. But this is easy; we just need to �nd what subset of the dilaton

ve
tors

~

b

ij

and ~a

ijk

allows us to express all of the dilaton ve
tors as linear 
ombinations of

the simple roots, with non-negative integer 
oeÆ
ients. The answer is very straightforward;

the simple roots are given by

~

b

i;i+1

; for 1 � i � n� 1 ; and ~a

123

: (1.117)

To 
he
k that this is 
orre
t, it is only ne
essary to look at the results in (1.63)-(1.65). It

2

A
tually, as we shall see later, this statement of the Iwasawa de
omposition is appropriate only in the

rather spe
ial 
ir
umstan
e we have here, where G is maximally non-
ompa
t. We shall give a more general

statement later.
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is manifest from the fa
t that

~

b

ij

= �

~

f

i

+

~

f

j

that any

~

b

ij


an be expressed as multiples of

the

~

b

i;i+1

, with non-negative integer 
oeÆ
ients. It is also 
lear that by adding appropriate

integer multiples of the

~

b

i;i+1

to ~a

123

, all of the ~a

ijk


an be 
onstru
ted.

Having found the simple roots, it is easy to determine what the Lie algebra is. All the

Lie algebras are 
lassi�ed in terms of their Dynkin diagrams, whi
h en
ode the information

about the lengths of the simple roots, and the angles between them. The notation is as

follows. The angle between any two simple roots 
an be only one out of four possibilities,

namely 90, 120, 135 or 150 degrees. The simple roots are denoted by dots in the Dynkin

diagram, and the angle between two roots is indi
ated by the number of lines joining the


orresponding dots. The rule is no line, 1 line, 2 lines or 3 lines, 
orresponding to 90, 120,

135 or 150 degrees. The lengths of the simple roots are either all equal (su
h groups are


alled simply la
ed), or they have exa
tly two di�erent lengths, in groups that are 
alled,

unimaginatively, non-simply-la
ed. In this latter 
ase, the dots in the Dynkin diagram are

�lled-in to denote the shorter roots, and un�lled for the longer roots. In our 
ase, it turns

out that the roots are all of the same length. From the expressions in (1.64), it is easily

seen that our simple roots are 
hara
terised by the Dynkin diagram

~

b

12

~

b

23

~

b

34

~

b

45

~

b

56

~

b

67

~

b

78

o | o | o | o | o | o | o

j

o

~a

123

This diagram is telling us that all the angles that are not 90 degrees are 120 degrees,

and that all the simple roots have equal lengths. The understanding is that in a given

dimension D = 11 � n, only those dilaton ve
tors whi
h are de�ned for i � n arise. Those

familiar with group theory and Dynkin diagrams will be able to re
ognise the diagrams for

the various n values as follows. For n = 2, we have just

~

b

12

, and the algebra is SL(2; IR).

For n = 3, we have (

~

b

12

;

~

b

23

;~a

123

), and the algebra is SL(3; IR) � SL(2; IR). These are the

two 
ases that we have already studied in detail. For n = 4, we have (

~

b

12

;

~

b

23

;

~

b

34

;~a

123

), and

the Dynkin diagram is that of SL(5; IR). For n = 5, we have (

~

b

12

;

~

b

23

;

~

b

34

;

~

b

45

;~a

123

), and the

Dynkin diagram is that of D

5

, or O(5; 5). We shall postpone the dis
ussion of n � 6 for a

while.
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From our previous dis
ussion of the T

2

and T

3

redu
tions, we expe
t now that we

should introdu
e the appropriate positive-root generators asso
iated with ea
h of the dilaton

ve
tors

~

b

ij

and ~a

ijk

. For the

~

b

ij

, we just use the same notation as before, with generators

E

i

j

, ex
ept that now the range of the i and j indi
es is extended to 1 � i < j � n. For the

~a

ijk

, we introdu
e generators E

ijk

. The 
ommutation relations for these, and the Cartan

generators

~

H, will be

[

~

H;E

i

j

℄ =

~

b

ij

E

i

j

; [

~

H;E

ijk

℄ = ~a

ijk

E

ijk

no sum (1.118)

[E

i

j

; E

k

`

℄ = Æ

j

k

E

i

`

� Æ

`

i

E

k

j

; (1.119)

[E

`

m

; E

ijk

; ℄ = �3Æ

[i

`

E

jmjjk℄

; (1.120)

[E

ijk

; E

`mn

℄ = 0 ; (1.121)

We 
an re
ognise the 
ommutation relations for the

~

H and the E

i

j

as being pre
isely those

of the Lie algebra SL(n; IR). This is reasonable on two 
ounts. Firstly, sin
e these are the

generators asso
iated with the �elds 
oming from the redu
tion of pure gravity, namely

~

� and A

i

(0)j

, we already expe
ted to �nd a GL(n; IR) symmetry after redu
tion on the n-

torus. (One never really sees the extra IR fa
tor of GL(n; IR) � IR�SL(n; IR) in the Dynkin

diagrams; it is asso
iated with the fa
t that there is one extra Cartan generator over and

above the (n� 1) that are needed for SL(n; IR).) Another way of seeing why this SL(n; IR)

subgroup is reasonable is by looking at the Dynkin diagram above; if we delete the simple

root ~a

123

, then the remaining simple roots

~

b

i;i+1

do indeed pre
isely give us the Dynkin

diagram of SL(n; IR).

The extra 
ommutation relations involving E

ijk

extend the algebras from SL(n; IR) to

the larger ones dis
ussed above. Thus in addition to the D = 9 and D = 8 
ases dis
ussed

previously, in D = 7 we will have the s
alar 
oset SL(5; IR)=O(5), and in D = 6 we will

have O(5; 5)=(O(5)�O(5)). In ea
h 
ase, in a

ordan
e with our dis
ussion of the Iwasawa

de
omposition, the denominator group in the 
oset is the maximal 
ompa
t subgroup of

the numerator. The 
oset representatives in all 
ases n � 5 are 
onstru
ted as follows:

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

exp

�

X

i<j<k

A

(0)ijk

E

ijk

�

; (1.122)

where the ordering of terms is anti-lexigraphi
al, i.e. � � � (24)(23) � � � (14)(13)(12), in the

produ
t. With this spe
i�
 way of organising the exponentiation, it turns out that, with

the 
ommutation relations given above, one has

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

+

X

i<j<k

e

1

2

~a

ijk

�

~

�

F

(1)ijk

E

ijk

; (1.123)
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where the various 1-form �eld strengths, with all their transgression terms, are pre
isely

as given in equation (1.68). (It is quite an involved 
al
ulation to show this!) In all the


ases with n � 5, one 
an de�ne the matrix M = V

T

V, and it will follow that the s
alar

Lagrangian 
an be written as L =

1

4

tr (�M

�1

�M).

1.6 S
alar 
osets in D = 5, 4 and 3

A�
ionados of group theory will easily re
ognise that if we 
onsider the 
ases n = 6, 7

and 8, 
orresponding to redu
tions to D = 5, 4 and 3 dimensions, the Dynkin diagrams

above will be those of the ex
eptional groups E

6

, E

7

and E

8

. One does not need to be

mu
h of an a�
ionado, however, to see that as things stand, there is something wrong

with the 
ounting of �elds. After redu
tion on an n torus there will be

1

2

n(n � 1) axions

A

i

(0)j

, and

1

6

n(n � 1)(n � 2) axions A

(0)ijk

. For n = (2; 3; 4; 5; 6; 7; 8), we therefore have

(1; 4; 10; 20; 35; 56; 84) axions in total. On the other hand, the numbers of positive roots for

the groups indi
ated by the Dynkin diagrams above are (1; 4; 10; 20; 36; 63; 120). Thus the

dis
repan
ies set in at n = 6 and above. We appear to be missing some axioni
 s
alar �elds.

Consider �rst the situation where this arises, when n = 6, implying that we have dimen-

sionally redu
ed the D = 11 theory to D = 5. From the 
ounting above, we are missing one

axion. The explanation for where it 
omes from is in fa
t quite simple. Re
all that among

the �elds in the redu
ed theory is the 3-form potential A

(3)

, with its 4-form �eld strength

F

(4)

. Now, in D = 5, if we take the Hodge dual of a 4-form �eld strength, we get a 1-form,

and this 
an be interpreted as the �eld strength for a 0-form potential, or axion. This is

the sour
e of our missing axion.

Before looking at this in more detail, let's just 
he
k the 
ounting for remaining two


ases. When n = 7, we have redu
ed the theory to D = 4, and in this 
ase it is 2-form

potentials that dualise into axions. The 2-form potentials are A

(2)i

, and so when n = 7

there are seven of them. This is pre
isely the dis
repan
y that we noted in the previous

paragraph. Finally, when n = 8 we have a redu
tion to D = 3, and in this 
ase it is 1-form

potentials that are dual to axions. The relevant potentials are A

(1)ij

and A

i

(1)

, of whi
h

there are 28+8 = 36 when n = 8. Again, this exa
tly resolves the dis
repan
y noted in the

previous paragraph.

Now, ba
k to D = 5. As usual, we shall 
on
entrate just on the s
alar se
tor, sin
e

this governs the global symmetry of the entire theory. Now, of 
ourse, we must in
lude

the 3-form potential too, sin
e we are about to dualise it to obtain the \missing" axion.

In fa
t, to start with, we may 
onsider just those terms in the �ve-dimensional Lagrangian

36



that involve the 3-form potential. From the general results in (1.61) and the asso
iated

formulae, we 
an see that the relevant terms are

L(F

(4)

) = �

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

72

A

(0)ijk

dA

(0)`mn

^ F

(4)

�

ijk`mn

; (1.124)

where F

(4)

= dA

(3)

. In the pro
ess of dualisation, the rôle of the Bian
hi identity, whi
h

is dF

(4)

= 0 here, is inter
hanged with the role of the �eld equation. The easiest way to

a
hieve this is to treat F

(4)

as a fundamental �eld in its own right, and impose its Bian
hi

identity by adding the term ��dF

(4)

to the Lagrangian, where we have introdu
ed the �eld

� as a Lagrange multiplier. Thus we 
onsider

L(F

(4)

)

0

= �

1

2

e

~a�

~

�

�F

(4)

^ F

(4)

�

1

72

A

(0)ijk

dA

(0)`mn

^ F

(4)

�

ijk`mn

� �dF

(4)

: (1.125)

Clearly, the variation of this with respe
t to � gives the required Bian
hi identity. We note

that F

(4)

, whi
h is now treated as a fundamental �eld, has a purely algebrai
 equation of

motion. Varying L(F

(4)

)

0

with respe
t to F

(4)

, we get the equation of motion

e

~a�

~

�

�F

(4)

= d��

1

72

A

(0)ijk

dA

(0)`mn

�

ijk`mn

: (1.126)

We may de�ne this right-hand side as our new 1-form �eld strength,; let us 
all it G

(1)

:

G

(1)

� d��

1

72

A

(0)ijk

dA

(0)`mn

�

ijk`mn

: (1.127)

Thus we have F

(4)

= e

�~a�

~

�

�G

(1)

. Substituting this ba
k into the Lagrangian (whi
h is

allowed, sin
e it is a purely algebrai
, non-di�erential equation), we �nd that L(F

(4)

)

0

has

be
ome

L(F

(4)

)

0

= �

1

2

e

�~a�

~

�

�G

(1)

^G

(1)

: (1.128)

In other words, we have su

essfully dualised the potential A

(3)

, with �eld strength F

(4)

=

dA

(3)

, and repla
ed it with the axion �, whose �eld strength G

(1)

is given in (1.127). Note

that its dilaton ve
tor, �~a, is the negative of the dilaton ve
tor ~a of the �eld prior to

dualisation. This sign reversal always o

urs in any dualisation. Noti
e that one e�e
t of

the dualisation is that the FFA term in the Lagrangian (1.124) has migrated to be
ome

a transgression term in the de�nition of the new dualised �eld strength G

(1)

in (1.127).

This inter
hange between FFA terms and transgression terms is a general feature in any

dualisation.

Having found the missing axion, we must now 
onsider the algebra, and the 
onstru
tion

of the 
oset representative V. We need one more generator, over and above the usual Cartan

generators

~

H and positive-root generators E

i

j

and E

ijk

. In fa
t we are missing one further
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positive-root generator, in this D = 5 example; let us 
all it J . It satis�es the following


ommutation relations, whi
h extend the set given already in equations (1.118)-(1.121):

[

~

H; J ℄ = �~a J ; [E

i

j

; J ℄ = 0 ; [E

ijk

; J ℄ = 0 ;

[E

ijk

; E

`mn

℄ = ��

ijk`mn

J : (1.129)

The last 
ommutator here is a re
e
tion of the fa
t that inD = 5, the sum of dilaton ve
tors

~a

ijk

+ ~a

`mn

, when i; j; k; `;m; n are all di�erent, is equal to �~a, as 
an be seen from (1.62)

and (1.65). Note that this depends 
ru
ially on a spe
i�
 feature of redu
tion on a torus of

dimension 6, sin
e then we have that ~a

ijk

+ ~a

`mn

=

P

i

~

f

i

� 2~g sin
e all of i; j; k; `;m; n are

di�erent, and hen
e this equals ~g.

The 
oset representative is now 
onstru
ted as follows:

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

exp

�

X

i<j<k

A

(0)ijk

E

ijk

�

e

�J

: (1.130)

After some algebra, one 
an show that now we have

dV V

�1

=

1

2

d

~

� �

~

H +

X

i<j

e

1

2

~

b

ij

�

~

�

F

i

(1)j

E

i

j

+

X

i<j<k

e

1

2

~a

ijk

�

~

�

F

(1)ijk

E

ijk

+ e

�~a�

~

�

G

(1)

J ; (1.131)

where the 1-form �eld strengths F

i

(1)j

and F

(1)ijk

are given in (1.68), and G

(1)

is given in

(1.127). As in the previous examples, the transgression terms in all the �eld strengths 
ome

out to be pre
isely 
orre
t, and arise from the various non-vanishing 
ommutators among

the positive-root generators.

From the previous general dis
ussion, we 
an expe
t that the 
oset representative V 
an

be used to 
onstru
t an E

6

-invariant s
alar Lagrangian, and that this will be the Lagrangian

of the s
alar se
tor of D = 11 supergravity redu
ed on T

6

. In parti
ular, we 
an a
t on V

from the right with a global E

6

transformation � , and then the Iwasawa de
omposition

theorem assures us that we 
an �nd a 
ompensating �eld-dependent transformation O that

a
ts on the left, su
h that V

0

= OV � is ba
k in the \upper-triangular" gauge. In this 
ase,

the maximal 
ompa
t subgroup of E

6

is USp(8), and so O is a USp(8) matrix. A
tually,

a better name for the gauge is really the Borel gauge. The Borel subgroup of any Lie

group is the subgroup generated by the positive-root generators and the Cartan generators.

Obviously this is a subgroup, sin
e negative roots 
annot be generated by 
ommutation of

non-negative ones. Sometimes, it is useful also to be able to talk of the stri
t Borel subgroup,

de�ned to be the subgroup generated by the stri
tly-positive-root generators. In our 
ases,

we obtain our 
oset representatives by exponentiating the entire Borel subalgebra, in
luding

the Cartan subalgebra.
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Be
ause the maximal 
ompa
t subgroup in this E

6


ase is no longer orthogonal, the way

in whi
h the Lagrangian is 
onstru
ted from the 
oset representative V is slightly di�erent.

In general, the 
onstru
tion is the following. One de�nes the so-
alled Cartan involution

� , whi
h has the e�e
t of reversing the sign of every non-
ompa
t generator in the algebra

G, while leaving the sign of every 
ompa
t generator un
hanged. If we denote the positive-

root generators, negative-root generators and Cartan generators by (E

~�

; fE

�~�

;

~

H), where

~� ranges over all the positive roots, then for our algebras � e�e
ts the mapping

� : (E

~�

; E

�~�

;

~

H) �! (�E

�~�

;�E

~�

;�

~

H) : (1.132)

It should perhaps be remarked at this point that the groups that we are en
ountering in

the toroidal 
ompa
ti�
ations of eleven-dimensional supergravity are somewhat spe
ial, in

that they are always maximally non-
ompa
t. It is always the 
ase, in any real group, that

the generator 
ombinations (E

�

� E

��

) are 
ompa
t while the 
ombinations (E

�

+ E

��

)

are non-
ompa
t.

3

(Thus if there are N positive roots, then there are N 
ompa
t and N

non-
ompa
t generators formed from the non-zero roots.) But in our 
ase, we also have that

all the Cartan generators are non-
ompa
t. Thus the group E

n

that we en
ounter upon


ompa
ti�
ation on an n-torus is a
tually E

n

in its maximally non-
ompa
t form, denoted

by E

n(+n)

. It has the n \extra" non-
ompa
t Cartan generators, in addition to the 50/50

split of 
ompa
t/non-
ompa
t generators 
oming from the non-zero-root generators. We

shall normally not bother with the extra annotation of the (+n) in the subs
ript, but its

presen
e will be impli
it.

Getting ba
k to the Cartan involution, we may use this to 
onstru
t the required gener-

alisation of the M = V

T

V 
onstru
tion that worked when the maximal 
ompa
t subgroup

was orthogonal. Thus we may de�ne a \generalised transpose" X

#

of a matrix X, by

X

#

� �(X

�1

) : (1.133)

From the de�nition of � , and its a
tion on the various generators, it is evident that X

#

is

nothing but X

T

in 
ases where the 
ompa
t generators give rise to an orthogonal group.

If the 
ompa
t generators form a unitary group, then X

#

will be X

y

. In the 
ase of E

6

,

the maximal 
ompa
t subgroup is USp(8), whi
h is the interse
tion of SU(8) and Sp(8).

A detailed dis
ussion of the generalised transpose in this 
ase would take us o� into a

3

By the real form of a group, we mean that the Hermitean generators are all formed by taking real


ombinations of the raising and lowering operators, not 
omplex ones. For example, SL(2; IR) is the real

form of A

1

, sin
e E

+

� E

�

and H are Hermitean, whereas SU(2) is the 
omplex form of A

1

, sin
e its

Hermitean generators are the 
omplex 
ombinations �

1

= E

+

+E

�

, �

2

= i E

+

� i E

�

and �

3

= H.
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digression about symple
ti
 invariants, and is probably inappropriate here. Some further

details 
an be found in [2℄.

SuÆ
e it to say that with the generalised transpose de�ned as above, the s
alar La-

grangian in D = 5 
an now be written as

L =

1

4

tr

�

�M

�1

�M

�

; (1.134)

where M = V

#

V. The proof of the invarian
e under global E

6

transformations is then

essentially identi
al to that in the previous examples that we dis
ussed. Note that another

way of writing the Lagrangian, whi
h follows dire
tly by substitution of M = V

#

V into

(1.134), is

L = �

1

2

tr

�

�V V

�1

(�V V

�1

)

#

+ �V V

�1

(�V V

�1

)

�

: (1.135)

The stories for the 
ompa
ti�
ations of D = 11 supergravity on T

7

and T

8

to D = 4

and D = 3 pro
eed in a very similar manner. Full details 
an be found in [2℄. As we already

mentioned, in order to a
hieve the full E

7

or E

8

global symmetries one must dualise the

seven 2-form potentials A

(2)i

to 0-forms �

i

in D = 4, whilst in D = 3, one must dualise the

28+8 1-form potentials A

�ij

and A

i

(1)

to 0-forms �

ij

and �

i

inD = 3. Thus inD = 4 we must

introdu
e seven extra generators J

i

for the duals of the A

(2)i

. They will have asso
iated root

ve
tors �~a

i

(remember that dualisation reverses the signs of the dilaton ve
tors), and sure

enough, these are pre
isely the addition positive roots that 
an be 
onstru
ted by taking

non-negative-integer linear 
ombinations of the simple roots

~

b

i;i+1

and ~a

123

in this 
ase.

In addition to the standard dimension-independent 
ommutation relations (1.118)-(1.121),

there will now be the further 
ommutators involving J

i

:

[

~

H; J

i

℄ = �~a

i

J

i

; [E

i

j

; J

j

℄ = Æ

k

i

J

j

; [E

ijk

; J

`

℄ = 0 ;

[E

ijk

; E

`mn

℄ = �

ijk`mnp

J

p

: (1.136)

We then form a 
oset representative by exponentiation, appending an additional fa
tor

V

extra

= e

�

i

J

i

(1.137)

to the right of the standard dimension-independent expression given in (1.122). One then

�nds, after extensive algebra, that the s
alar Lagrangian for the four-dimensional redu
tion

from D = 11 
an be written in the form (1.134) or (1.135), and that it has an E

7

global

symmetry. The 
oset is E

7

=SU(8) in this 
ase.

Finally, in D = 3, one introdu
es extra generators J

ij

and J

i

for the axions �

ij

and �

i


oming from dualising A

(1)ij

and A

i

(1)

. In addition to the dimension-independent 
ommuta-
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tors (1.118)-(1.121), there will now in addition be

[

~

H; J

ij

℄ = �~a

ij

J

ij

; [

~

H; J

i

℄ = �

~

b

i

J

i

; [E

i

j

; J

k`

℄ = �2Æ

j

[k

J

`℄i

; [E

i

j

; J

k

℄ = �Æ

k

i

J

j

;

[E

ijk

; J

`m

℄ = �6Æ

[i

[`

Æ

j

m℄

J

k℄

; [E

ijk

; J

`

℄ = 0 ; (1.138)

[E

ijk

; E

`mn

℄ = �

1

2

�

ijk`mnpq

J

pq

:

In this 
ase, the 
oset representative V is 
onstru
ted by appending

V

extra

= e

�

i

J

i

e

1

2

�

ij

J

ij

(1.139)

to the right of the usual dimension-independent terms given in (1.122). The s
alar La-

grangian 
an then be shown to be given by (1.134) or (1.135), and its global symmetry is

E

8

. The 
oset in this 
ase is E

8

=SO(16).

To summarise this dis
ussion of the s
alar 
osets 
oming from the toroidal redu
tions

of eleven-dimensional supergravity, we may present a table listing the 
oset spa
es in ea
h

dimension. The numerator group G, and the maximal 
ompa
t denominator subgroup K,

are listed in ea
h 
ase.

G K

D = 10 O(1; 1) -

D = 9 GL(2; IR) O(2)

D = 8 SL(3; IR)� SL(2; IR) SO(3) � SO(2)

D = 7 SL(5; IR) SO(5)

D = 6 O(5; 5) O(5) �O(5)

D = 5 E

6(+6)

USp(8)

D = 4 E

7(+7)

SU(8)

D = 3 E

8(+8)

SO(16)

Table 1: S
alar 
osets for maximal supergravities in D dimensions

1.7 Fermions

So far in our dis
ussion of the maximal supergravities, we have said almost nothing about

fermions. We shall not go into great detail about them, be
ause it would be
ome a major

topi
 and there would not be time to 
over it properly. Eleven-dimensional supergravity

has a single Majorana spin-

3

2

gravitino �eld

^

 

M

, whi
h appears both quadrati
ally and

quarti
ally in the eleven-dimensional Lagrangian. For details, see [3℄.
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1.7.1 Dimensional redu
tion of fermions

We have seen that for ve
tors and tensors, the essential idea in dimensional redu
tion is to

split the higher-dimensional index M into two ranges, M = (�;m), where � denotes index

values in the lower-dimensional theory and m denotes the remainder, namely the index

values ranging over the internal 
ir
le or torus dire
tions. For spinors, the de
omposition

goes a little di�erently. Suppose, for example, we want to redu
e the gravitino from D = 11

to D = 4 on the 7-torus. For a moment, let's forget about the ve
tor index on

^

 

M

, and

just think about a spin-

1

2

fermion

^

 . In eleven dimensions spinors have 32 
omponents,

whereas in four dimensions they have 4 
omponents. Thus to get the 
ounting right in

the redu
tion, we 
an expe
t that a single spin-

1

2

fermion in D = 11 should give 32=4 = 8

spin-

1

2

fermions in D = 4. How does this work? The answer is that in the internal spa
e,

being seven dimensional, has fermions that are 8-
omponent obje
ts, and this supplies us

with the fa
tor of 8 we were looking for. Thus the way to de
ompose a spin-

1

2

fermion is

by means of a tensor produ
t:

^

 (x; y) =

X

i

 

(i)

(x)
 �

(i)

(y) ; (1.140)

where x denotes the 
oordinates of the lower-dimensional spa
etime, and y denotes the


oordinates on the internal spa
e. In pra
ti
e, in the trun
ation to the zero-mode (massless)

se
tor that we will make, the only 8-
omponent spinors �

(i)

(y) on T

7

that we would keep

would be the 
onstant ones (assuming we use the obvious Cartesian 
oordinate system on

the torus). There are 8 of these (for example, the i'th 
ould be taken to be the 8-
omponent


oulmn ve
tor with zeros everywhere ex
pet for a \1" in the i'th row.) Thus in the zero-

mode se
tor, we would end up with a sum over 8 terms in (1.140), giving 8 spin-

1

2

�elds

 

(i)

in four dimensions.

To make a dimensional redu
tion of the gavitino

^

 

M

we just have to 
ombine the method

for spin-

1

2

redu
tion des
ribed above with the familiar way we previously handled the re-

du
tion of ve
tors. Thus we shall have

^

 

�

(x; y) =

X

i

 

(i)

�


 �

(i)

(y) ;

^

 

m

(x; y) =

X

�

�

(�)

(x)
 �

(�)

m

(y) : (1.141)

Noti
e how the ve
tor index resides either on the lower-dimensional spinor, or the internal

spinor, as appropriate. The quantities �

(�)

m

(y) denote a set of spin-

3

2

fermions in the internal

spa
e. Again, of 
ourse, in the trun
ation to the zero-mode se
tor we would end up keeping
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only those with 
onstant 
omponents. There would be 8 � 7 = 56 of these. Thus the

redu
tion of the gravitino from D = 11 to D = 4 gives 8 massless gravitini  

(i)

�

(x) and

56 massless spin-

1

2

fermions �

(�)

(x). This is exa
tly 
orre
t for N = 8 supergravity in

four dimensions. The dis
ussion in all other dimensions pro
eeds in an entirely analogous

fashion.

Another thing one needs to know is how to de
ompose the Dira
 matri
es in the dimen-

sional redu
tion. Clearly the dimensions of these matri
es are the same as the dimensions of

the spin-

1

2

fermions in the various dimensions. This means that the Dira
 matri
es will also

be de
omposed as tensor-produ
ts of the lower-dimensional and internal ones. There are

slightly di�erent rules here depending on whether the higher, lower and internal dimensions

are even or odd. Let us �rst state the rule for the 
ase of D = 11 redu
ed to D = 4. The

higher-dimensional Dira
 matri
es

^

�

M

will then be de
omposed as

^

�

�

= 


�


 1l ;

^

�

m

= 


5


 �

m

: (1.142)

Here 


�

are the 4 � 4 Dira
 matri
es of the four-dimensional spa
etime, and �

m

are the

8 � 8 Dira
 matri
es of the internal 7-spa
e. The symbol 1l denotes the 8� 8 unit matrix,

and 


5

is the usual 
hirality matrix of four dimensions, 


5

= i 


0123

. (We are thinking of

M , � and m here as being lo
al-Lorentz, or tangent-spa
e, indi
es. There are not really

enough alphabets to go round, so we use the same labels as we sometimes use for 
oordinate

indi
es.) Noti
e that the use of the 


5

in the de�nition of

^

�

m

in (1.142) is 
ru
ial here. If we

tried repla
ing it by 1l, meaning the 4� 4 unit matrix, we wouldn't get the 
orre
t Cli�ord

algebra relations. In D = 11, D = 4 and the internal spa
e, these are

f

^

�

M

;

^

�

N

g = 2�

MN

; f


�

; 


�

g = 2�

��

; f�

m

;�

n

g = 2Æ

mn

: (1.143)

We would fail to get f

^

�

�

;

^

�

m

g = 0 if we didn't use 


5

in (1.142).

It should be 
lear that if we were redu
ing from D = 11 to an even dimension instead,

we would play the same kind of game, but now the 
hirality operator would be on the

internal side. Suppose we were redu
ing to D = 5, for example. We would then have

^

�

�

= 


�


 �

7

;

^

�

m

= 1l
 �

m

; (1.144)

where �

7

= i�

123456

is the 
hirality matrix in the six-dimensional internal spa
e.

For 
ompleteness, there are two further 
ases for redu
tions that might arise. Suppose

we are starting from an even higher dimension. Then either the lower dimension and the

internal dimension will both be even, or they will both be odd. In the former 
ase, we are
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spoilt for 
hoi
e, and we 
an use either of the s
hemes given in (1.142) and (1.144). In the

end, the two will give equivalent results. In the latter 
ase, when both the lower dimension

and the internal dimension are odd, we seem at �rst sight to be stu
k. The answer now is

that we must introdu
e a third fa
tor into the tensor produ
t, whi
h is a fa
tor involving

2� 2 matri
es. This is perfe
tly understandable, if one looks at the 
ounting. Suppose, for

example, we were redu
ing from D = 10 to D = 5. In D = 10 spinors have 32 
omponents,

while in D = 5 and in the 
orresponding interal 5-spa
e, the spinors all have 4 
omponents.

Sin
e 4� 4 = 16 we see there is a shortfall of a fa
tor of 2, and so that is why we need the

extra 2� 2 matrix fa
tors.

We 
an summarise the Dira
-matrix de
ompositions as follows:

(even,odd) :

^

�

�

= 


�


 1l ;

^

�

m

= 
 
 �

m

;

(odd,even) :

^

�

�

= 


�


 � ;

^

�

m

= 1l
 �

m

;

(even,even) :

^

�

�

= 


�


 1l ;

^

�

m

= 
 
 �

m

;

or

^

�

�

= 


�


 � ;

^

�

m

= 1l
 �

m

;

(odd,odd) :

^

�

�

= �

1


 


�


 1l ;

^

�

m

= �

2


 1l
 �

m

; (1.145)

where 
 denotes the 
hirality matrix in an (even) lower-dimensional spa
etime, and � de-

notes the 
hirality matrix in an (even) internal spa
e. The 2 � 2 matri
es �

1

and �

2

are

just two of the standard Pauli matri
es.

1.7.2 Supersymmetry transformation rules

To do a 
omplete job of dis
ussing the fermions, and the supersymmetry transformation

rules, would be a very 
ompli
ated task. In pra
ti
e, we 
an make a number of simpli�
a-

tions. First of all, it is 
ustomary to draw a veil over the higher-order terms{the quarti


fermion terms{in the Lagrangian, and fo
us only on the quadrati
 terms. The quarti
 terms

do matter, of 
ourse; the theory would not be supersymmetri
 without them, but they do

make life enormously more 
ompli
ated, and for many purposes one 
an suppress them, with

the expe
tation that in a more 
areful and 
orre
t treatment they will work out properly

too.

A

ordingly, we shall suppress the higher-order fermion terms in what follows. In the

eleven-dimensional theory itself, the supersymmetry transformation laws are then given by

Æê

M

A

= i

�

�̂

^

�

A

^

 

M

;

Æ

^

A

MNP

=

3

2

�

�̂

^

�

[MN

^

 

P ℄

; (1.146)
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Æ

^

 

M

=

e

D

M

�̂ �

^

D

M

�̂�

1

288

^

F

N

1

���N

4

^

�

M

N

1

���N

4

�̂+

1

36

^

F

MN

1

���N

3

^

�

N

1

���N

4

�̂ ;

where �̂ is the lo
al supersymmetry parameter. The derivative

^

D

M

is the fully Lorentz-


ovariant derivative, de�ned by

^

D

M

� �

M

+

1

4

!̂

AB

M

^

�

AB

�̂ ; (1.147)

where !̂

AB

= !̂

AB

M

dX

M

is the spin 
onne
tion. The \super
ovariant derivative"

e

D

M

de�ned

in (1.146) is a useful quantity be
ause in terms of this the eleven-dimensional gravitino

equation of motion takes the simple form

^

�

MNP

e

D

N

^

 

N

= 0 : (1.148)

All the above formulae 
an be obtained from the 
omplete expressions given in [3℄.

It should be evident that it is now just a me
hani
al exer
ise to implement all the

dimensional redu
tion pro
edures for the bosoni
 and fermioni
 �elds that we have dis
ussed

previously, in order to derive the equations of motion and supersymmetry transformation

rules in all the toroidally-redu
ed theories. Of 
ourse saying that it is a me
hani
al exer
ise

does not at all mean that it is a simple pro
ess! But there are no parti
ularly diÆ
ult


on
eptual issues involved in implementing the redu
tions. Te
hni
ally, one of the most


ompli
ated points is 
on
erned with pre
isely how to make �eld rede�nitions so that the

fermions one ends up with the lower dimension all have 
anoni
al kineti
 terms, and to

ensure that they are de�ned so as to be ni
ely diagonalised with respe
t to their kineti


terms.

In pra
ti
e, we are often interested in looking at solutions of the supergravity equations,

and 99 times out of 100 these solutions will themselves be purely bosoni
. Consequently, if

we want to look at supersymmetry variations of the solutions, we will 
ommonly only need

to worry about the transformation law that gives how the bosons vary into the fermions.

This would be the 
ase, for example, if we wanted to test whether a given bosoni
 solution

preserved any of the supersymmetries. Thus we are typi
ally only interested in the last

of the three transformation rules given in (1.146), for Æ

^

 

M

, and its toroidal dimensional

redu
tion.

1.8 General remarks about 
oset Lagrangians

As we have already remarked, the s
alar 
osets that we en
ountered in the toroidal 
om-

pa
ti�
ations of eleven-dimensional supergravity are somewhat spe
ial, in the sense that
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the numerator groups (i.e. the global symmetry groups themselves) are all maximally non-


ompa
t. In addition, our way of parameterising the 
osets involved making a spe
i�


\gauge 
hoi
e," whi
h in our 
ase was a
hieved by 
hoosing the 
oset representative V to

be in the Borel gauge. One 
an perfe
tly well, in prin
iple, make some other gauge 
hoi
e.

Alternatively, one is not obliged to make any 
hoi
e of gauge at all. One 
ould simply

exponentiate the entire Lie algebra of the global symmetry group G. This would give too

many �elds, of 
ourse, sin
e the dimension of the 
oset G=K is dim(G) � dim(K), and so

there should be this number of s
alar �elds, rather than the dim(G) �elds that one would

get if no gauge 
hoi
e were made. The resolution is a simple one, and it is essentially

something that we have already seen: two points V

1

and V

2

on the 
oset manifold G=K

that are related by left-multipli
ation by an element of K, i.e. V

1

= OV

2

, are a
tually the

same point. Thus if one 
onstru
ts V by exponentiating the entire algebra, then there will

be lo
al \gauge" symmetries asso
iated with the entire group K that remove the surplus

degrees of freedom. Our way of 
onstru
ting the s
alar 
osets in the supergravity theories

exploited the fa
t that in those 
ases it was a
tually very simple to use these lo
al gauge

symmetries expli
itly, to �x a gauge in whi
h the redundant �elds were simply set to zero.

We shall not delve here into the details of how one handles the 
onstru
tion of 
oset

Lagrangians in general, for example in 
ases where the lo
al K invarian
e is left un�xed.

We shall, however, make some general remarks about how to handle a wider 
lass of 
osets

in the gauge-�xed formalism, namely in those 
ases where the numerator group G is not

maximally non-
ompa
t. To illustrate the point, let us 
onsider the family of examples of


osets

M

p;q

=

O(p; q)

O(p)�O(q)

; (1.149)

where O(p; q) is the group of pseudo-orthogonal matri
es that leaves invariant the inde�nite-

signature diagonal matrix � = diag (1; 1; : : : ; 1;�1;�1; : : : ;�1), where there are p plus signs

and q minus signs. Thus O(p; q) matri
es � satisfy

�

T

� � = � : (1.150)

For a given value of n = p+ q, the algebras O(p; q) are all just di�erent forms of the same

underlying algebra, whi
h would be D

n=2

in the Dynkin 
lassi�
ation if n were even, and

B

(n�1)=2

if n were odd. However, the partition into 
ompa
t and non-
ompa
t generators is

di�erent for di�erent partitions of n = p+q. In fa
t, the denominator groups O(p)�O(q) are

the maximal 
ompa
t subgroups in ea
h 
ase, telling us that of the total of

1

2

(p+q)(p+q�1)

generators of O(p; q), there are

1

2

p(p�1)+

1

2

q(q�1) 
ompa
t generators, with the rest being
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non-
ompa
t. Evidently, then, the dimensions of the 
osets are di�erent depending on the

partition of n = p+ q; simple subtra
tion gives us

dim (M

p;q

) =

1

2

(p+ q)(p+ q � 1)�

1

2

p(p� 1)�

1

2

q(q � 1) = p q : (1.151)

When n = p+ q is even, the rank of O(p; q) is

1

2

n, and ones �nds that the dimension p q

of the 
oset spa
e is equal to the dimension of the Borel subalgebra, whi
h is

1

2

n+

1

2

(

1

2

n(n�

1) � n=2) =

1

4

n

2

, only if p = q. Thus when n = p + q is even, only the 
osets of the form

O(p; p)=(O(p)�O(p)) are maximally non-
ompa
t. (We en
ountered su
h a 
oset in D = 6,

where the s
alar Lagrangian was O(5; 5)=(O(5) � O(5)).) A similar analysis for the 
ase

n = p + q odd shows that only the 
ase O(p; p + 1)=(O(p) � O(p + 1)) (or, equivalently,

O(p + 1; p)=(O(p + 1) � O(p))) is maximally non-
ompa
t. These are the 
ases where, for

a given n, the dimension of M

p;q

is largest.

Clearly, if we 
onsider a 
oset of the form (1.149) that is not maximally non-
ompa
t,

then if we are to 
onstru
t a 
oset representative V in a gauge-�xed form, we must expo-

nentiate only an appropriate subset of the Borel generators of O(p; q). The general theory

of how to do this was worked out by Alekseevski, in the 1970's. It again makes use of the

Iwasawa de
omposition, but this is now a little more 
ompli
ated when the group G is not

maximally non-
ompa
t. The de
omposition asserts that there is a unique fa
torisation of

a group element g as

g = g

K

g

A

g

N

; (1.152)

where g

K

is in the maximal 
ompa
t subgroup K of G and g

A

is in the maximal non-


ompa
t Abelian subgroup of G. The fa
tor g

N

is in a nilpotent subgroup of G, whi
h

is de�ned as follows. It is generated by that subset of the positive-root generators that

are stri
tly positive with respe
t to the maximal non-
ompa
t Abelian subalgebra (whose

exponentiation gives g

A

).

Now, if the group G were maximally non-
ompa
t, then all the Cartan subalgebra

generators would be non-
ompa
t, and hen
e all the positive-root generators would be

in
luded in the nilpotent subalgebra. We would then be ba
k to the previous statement

of the Iwasawa de
omposition for maximally non-
ompa
t groups, where we exponentiated

the entire Borel subalgebra.

Here, however, we are by 
ontrast 
onsidering a 
ase where only a subset of the Cartan

generators are non-
ompa
t. A

ordingly, only a subset of the positive-root generators

pass the test of having stri
tly positive weights with respe
t to this subset of the Cartan

generators. In this more general situation, the subalgebra of the Borel algebra, 
omprising
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the non-
ompa
t Cartan generators A and the positive-root generators N that have positive

weights under A, is known as the Solvable Lie Algebra of the group G. A lot of work has

been done on this topi
 re
ently; see, for example, [4, 5℄.

We 
an now build a 
oset representative V by exponentiating the non-
ompa
t Cartan

generators, and the nilpotent subalgebra generators. By the modi�ed Iwasawa de
omposi-

tion (1.152), it follows that a global transformation 
onsisting of a right-multipli
ation by

an element of G 
an be 
ompensated by a lo
al �eld-dependent left-multipli
ation by an

appropriate element of the maximal 
ompa
t subgroup, thereby giving a V

0

in the same

\nilpotent" gauge, 
orresponding to a G-transformed point in the 
oset G=K. Thus we

again have a pro
edure for 
onstru
ting the s
alar Lagrangian for the 
oset, in this more

general situation where G is not maximally non-
ompa
t.

Let us 
lose this dis
ussion with an illustrative example. There is string theory in D =

10, known as the heteroti
 string, whose low-energy e�e
tive Lagrangian is di�erent from the

ten-dimensional theory that 
omes by S

1

redu
tion from eleven-dimensional supergravity.

For our present purposes, it suÆ
es to say that the Lagrangian in D = 10 
an be taken to

have the general form

L

10

= R �1�

1

2

�d�

1

^ d�

1

�

1

2

e

�

1

�F

(3)

^ F

(3)

�

1

2

e

1

2

�

1

N

X

I=1

�G

I

(2)

^G

I

(2)

; (1.153)

where G

i

(2)

= dB

i

(1)

are a set of N 2-form �eld strengths, and

F

(3)

= dA

(2)

+

1

2

B

I

(1)

^ dB

I

(1)

: (1.154)

(A
tually, in the heteroti
 string itself N = 16, and the 16 gauge �elds B

I

(1)

are just in the

U(1)

16

Cartan subgroup of a 496-dimensional Yang-Mills group, whi
h 
an be E

8

� E

8

or

SO(32). But for our purposes it suÆ
es to 
onsider the Abelian subgroup �elds, and also

we 
an generalise the dis
ussion by allowing N to be arbitrary.)

Clearly there is a global O(N) symmetry in D = 10, under whi
h the N gauge �elds are

rotated amongst ea
h other. If one performs a Kaluza-Klein dimensional redu
tion of the

theory on T

n

, then it turns out that the resulting theory in D = 10�n has an O(n; n+N)

global symmetry, and that the s
alar manifold is the 
oset

O(n; n+N)

O(n)�O(n+N)

: (1.155)

These 
osets are of pre
isely the type that we dis
ussed above, whi
h 
an be parameterised

by means of an exponentiation of their solvable Lie algebras. To keep things simple, let

us 
onsider the 
ase n = 1. Thus we shall redu
e (1.153) on a 
ir
le, and show that the
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s
alar se
tor in D = 9 has an O(1; N + 1)=O(N + 1) 
oset stru
ture. (A
tually, there will

be another IR fa
tor too, asso
iated with an extra s
alar that de
ouples from the rest.)

Let us denote the dilaton of the d = 10 to D = 9 redu
tion by �

2

. After performing the

redu
tion, using the standard rules that we established previously, we �nd, after making a


onvenient rotation of the dilatons, that the nine-dimensional Lagrangian is

L

9

= R �1 �

1

2

�d� ^ d��

1

2

�d' ^ d'�

1

2

e

p

2'

X

I

�dB

I

(0)

^ dB

I

(0)

�

1

2

e

�

p

8

7

�

�F

(3)

^ F

(3)

�

1

2

e

�

p

2

7

�

�

e

p

2'

�F

(2)

^ F

(2)

+ e

�

p

2'

�F

(2)

^ F

(2)

+

X

I

�G

I

(2)

^G

I

(2)

�

; (1.156)

where F

(2)

is the Kaluza-Klein gauge �eld, and F

(2)

and G

i

(1)

= dB

I

(0)

are the dimensional

redu
tions of F

(3)

and G

i

(2)

respe
tively. The various �eld strengths are given in terms of

potentials by

F

(3)

= dA

(2)

+

1

2

B

I

(1)

dB

I

(1)

�

1

2

A

(1)

dA

(1)

�

1

2

A

(1)

dA

(1)

;

F

(2)

= dA

(1)

; G

I

(2)

= mdB

I

(1)

+ dB

I

(0)

A

(1)

; (1.157)

F

(2)

= dA

(1)

+B

I

(0)

dB

I

(1)

+

1

2

B

I

(0)

B

I

(0)

dA

(1)

:

(A �eld rede�nition has been made here, to move the derivative o� the axioni
 s
alars

B

I

(0)

; this is analogous to the one we did in the nine-dimensional theory 
oming from the

T

2

redu
tion of eleven-dimensional supergravity.) Note that we are omitting the wedge

symbols here, to avoid some 
lumsiness in the appearan
e of the equations.

Let us just fo
us on the s
alar part of the Lagrangian, namely

L = �

1

2

�d� ^ d��

1

2

�d' ^ d'�

1

2

e

p

2'

X

I

�dB

I

(0)

^ dB

I

(0)

: (1.158)

We may �rst observe that the dilaton � is de
oupled from the rest of the s
alar Lagrangian;

it just 
ontributes a global IR symmetry of 
onstant shift transformations � �! �+ 
. We

shall ignore � from now on. The rest of the s
alar manifold 
an be des
ribed as follows. First,

introdu
e a Cartan generator H, and positive-root generators E

I

, with the 
ommutation

relations

[H;H℄ = 0 ; [H;E

I

℄ =

p

2E

I

; [E

I

; E

J

℄ = 0 : (1.159)

We de�ne the 
oset representative V as

V = e

1

2

'H

e

B

I

(0)

E

I

: (1.160)

It is easily seen that

dV V

�1

=

1

2

d'H + dB

I

(0)

E

I

: (1.161)
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Now, we wish to argue that H and E

I

generate a subalgebra of O(1; N +1). In, fa
t, we

want to argue that they generate the solvable Lie algebra of O(1; N + 1). The orthogonal

algebras O(p; q) divide into two 
ases, namely the D

n

series when p+ q = 2n, and the B

n

series when p+ q = 2n+ 1. The positive roots are given in terms of an orthonormal basis

e

i

as follows:

D

n

: e

i

� e

j

; i < j � n ;

B

n

: e

i

� e

j

; i < j � n ; and e

i

; (1.162)

where e

i

� e

j

= Æ

ij

. It is sometimes 
onvenient to take e

i

to be the n-
omponent ve
tor

e

i

= (0; 0; : : : ; 0; 1; 0; : : : ; 0), where the \1" 
omponent o

urs at the i'th position. The

Cartan subalgebra generators, spe
i�ed in a basis-independent fashion, are h

e

i

, whi
h sat-

isfy [h

e

i

; E

e

j

�e

k

℄ = (Æ

ij

� Æ

ik

)E

e

j

�e

k

, et
. Of these, min(p; q) are non-
ompa
t, with the

remainder being 
ompa
t. It is 
onvenient to take the non-
ompa
t ones to be h

e

i

with

1 � i �min(p; q).

Returning now to our algebra (1.159), we �nd that the generators H and E

I


an be

expressed in terms of the O(1; N + 1) basis as follows:

H =

p

2 h

e

1

;

E

2k�1

= E

e

1

�e

2k

; E

2k

= E

e

1

+e

2k

1 � k � [

1

2

+

1

4

N ℄ ; (1.163)

E

1+

1

2

N

= E

e

1

; if N is even :

It is easily seen that h

e

1

and E

e

1

�e

i

, together with E

e

1

in the 
ase of N even, are pre
isely

the generators of the solvable Lie algebra of O(1; N + 1). In other words, h

e

1

is the non-


ompa
t Cartan generator of O(1; N+1), while the other generators in (1.163) are pre
isely

the subset of positive-root O(1; N + 1) generators that have stri
tly positive weights under

h

e

1

. Thus it follows from the general dis
ussion at the beginning of this se
tion that the

s
alar Lagrangian for theD = 9 theory is des
ribed by the 
oset

4

(O(1; N+1)=O(N+1))�IR.

(Re
all that there is the additional de
oupled s
alar �eld � with an IR shift symmetry.)

4

It should be emphasised that the mere fa
t that one 
an embed the algebra (1.159) into the Lie algebra

of a larger Lie group G does not, of itself, mean that the group G a
ts e�e
tively on the s
alar manifold.

Only when (1.159) is the solvable Lie algebra of the group G 
an one dedu
e that G has an e�e
tive group

a
tion on the s
alar manifold.
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2 Kaluza-Klein Redu
tion on Spheres and Other Compa
t

Manifolds

2.1 Introdu
tion

Up to this point, we have 
onsidered Kaluza-Klein redu
tions on the 
ir
le S

1

, and on

the n-torus T

n

, whi
h 
an be viewed as a sequen
e of S

1

redu
tions. As dis
ussed in the

previous 
hapter, the redu
tions in these 
ases, with the asso
iated setting to zero of all

the massive Kaluza-Klein modes, are guaranteed to be 
onsistent, sin
e we are retaining all

the singlets under the U(1)

n

isometry group of the n-torus, and setting all the non-singlets

to zero. This guarantees 
onsisten
y, sin
e produ
ts of singlets under a group a
tion 
an

never generate non-singlets. Thus we 
an be assured that no matter how non-linear the

higher-dimensional theory, the Kaluza-Klein redu
tion will be a 
onsistent one.

One 
an extend the idea of Kaluza-Klein redu
tion in a number of ways. One possibility

is to perform a redu
tion on an internal spa
e that is a group manifold G. An example

would be G = SU(2), whi
h is a
tually isomorphi
 to the 3-sphere. Higher examples, like

G = SU(3), typi
ally don't have any isomorphisms to other more \well-known" manifolds.

The group manifold G admits a metri
 that has G�G as its isometry group (assuming that

G is non-abelian), sin
e it admits a transitive a
tion of the group G by left multipli
ation,

and independently by right multipli
ation. Thus if U denotes an element of G, i.e. a point

in the group manifold, then we 
an a
t with 
onstant elements A and B of the group G to

give

U �! U

0

= AU B ; (2.1)

whi
h leave invariant the so-
alled bi-invariant metri


ds

2

= tr(dU U

�1

)

2

: (2.2)

The group manifold G is homogeneous, sin
e the left (or the right) a
tion of G is transitive.

Another type of internal manifold that one might 
onsider is a 
oset spa
e, G=H. An

example is the n-dimensional sphere S

n

, whi
h is the 
oset spa
e SO(n+1)=SO(n). Another

example would be the 
omplex proje
tive spa
e CP

n

, whi
h is the 
oset SU(n+ 1)=U(n).

This is a 
omplex manifold, with 
omplex dimension n (meaning that is has real dimension

2n). In a 
oset spa
e points in the group manifold G are identi�ed under the a
tion of the

subgroup H. Thus we view two points U

1

and U

2

as being equivalent if there exists an

element h in H su
h that

U

1

= U

2

h : (2.3)
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One 
an see that now we shall have transitively-a
ting isometries given by the left-a
tion

of G on the 
oset, but we no longer have isometries 
orresponding to the right a
tion of G.

Thus the 
oset spa
e G=H 
an be equipped with a metri
 that is invariant under G. Sin
e

the isometries a
t transitively, this means that the 
oset spa
e is homogeneous.

Another possibility for an internal spa
e would be 
ompa
t a manifold that is not a


oset spa
e. Its metri
 may still have isometries, but these will no longer a
t transitively,

and so the spa
e will be inhomogeneous. Finally, of 
ourse, one may 
onsider a spa
e for

whi
h the metri
 has no isometries at all.

What do we expe
t to get out of a Kaluza-Klein redu
tion on some general 
ompa
t

manifold M? In parti
ular, let us suppose that M has an isometry group G. We need

not yet 
on
ern ourselves with the question of whether M is a group manifold, a 
oset

spa
e or an inhomogeneous spa
e. One 
an show, by 
arrying out a linearised analysis of

small 
u
tuations around a ba
kground of the form N �M , where N denotes the lower-

dimensional spa
etime manifold, that the massless �elds in the lower dimensional spa
etime

will 
ertainly in
lude the Yang-Mills gauge bosons of the group G, and, of 
ourse, the lower-

dimensional metri
. There may also be further massless �elds, su
h as s
alars. The whole

issue of identifying what is massless requires a lot of 
are now, sin
e the spa
etime N

may well not be Minkowski spa
etime. For example, in the 
ase of sphere redu
tions in

supergravities, one 
ommonly �nds that there is a \va
uum solution" whi
h is a produ
t

of anti-de Sitter spa
etime and a sphere. In su
h a 
ase, the notion of mass has to be

de�ned with respe
t to the anti-de Sitter ba
kground, and this is quite an involved business.

However, for gravity itself, and for gauge �elds, we have a rather 
lear pi
ture of what it

means to be massless, sin
e for these �elds we have the guide of gauge invarian
e. So we


an pro
eed for now without getting too involved in the de�nition of mass, at least for a

dis
ussion of the Yang-Mills gauge bosons.

Having noted that one will always �nd the Yang-Mills gauge bosons of the group G of

isometries of the internal manifold, it is evident why one might in prin
iple like to use a


oset spa
e G=H rather than a group manifold G for the Kaluza-Klein redu
tion. The 
oset

spa
e would be mu
h more \e
onomi
al," in the sense that the number of extra dimensions

needed in order to obtain a given gauge group would be less. For example, to get the gauge

bosons of SO(8) one 
ould use the group manifold SO8) itself, whi
h would require 28 extra

dimensions. But by using the 
oset SO(8)=SO(7), whi
h is the seven-sphere, one would

need only 7 extra dimensions.

In addition to the massless modes, one will also of 
ourse obtain in�nite towers of Kaluza-
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Klein massive modes, in mu
h the same way as one does in a 
ir
le or torus redu
tion. In

other words, at the linearised level we 
an imagine expanding all the higher-dimensional

�elds in terms of 
omplete sets of eigenfun
tions on the internal spa
e. For example, the

lower-dimensional 
omponents of the higher-dimensional metri
 would be expanded as

ĝ

��

= �g

��

(x) +

1

X

i=0

h

(i)

��

(x)P

(i)

(y) ; (2.4)

where �g

��

denotes the \ground-state" lower-dimensional metri
 around whi
h the expansion

is being performed, h

(i)

��

(x) denotes the 
u
tuations, and P

(i)

(y) denotes the eigenfun
tions

of the s
alar Lapla
ian on the internal spa
e, starting with the 
onstant zero-eigenvalue

fun
tion, P

(0)

= 1. Similarly, the mixed 
omponents of the higher-dimensional metri


would be expanded in terms of a 
omplete set of ve
tor eigenfun
tions on the internal

spa
e:

ĝ

�m

=

1

X

i=0

A

(i)

�

(x)P

(i)

m

(y) : (2.5)

The zero-mode eigenfun
tions P

(0)

m

here will be the Killing ve
tors K

m

on the internal spa
e.

In an analogous fashion, all the other 
omponents of the higher-dimensional �elds 
an be

expanded in terms of 
omplete sets of eigenfun
tions on the internal spa
e.

Although we have dis
ussed a linearised analysis here, there is no reason in prin
iple why

we shouldn't apply the idea to the full theory, by just substituting all the expansions into

the higher-dimensional equations of motion, or, even, the higher-dimensional Lagrangian.

As long as we 
ontinue to keep all the in�nite Kaluza-Klein towers nothing 
an possibly go

wrong. After all, e�e
tively what we would be doing is just performing a generalised Fourier

expansion of the higher-dimensional theory. The general formalism for performing 
oset-

spa
e Kaluza-Klein redu
tion was elegantly des
ribed in a paper by Salam and Strathdee

[6℄.

5

Usually, however, in Kaluza-Klein redu
tions we would like to do something more,

namely to set all the massive �elds to zero. Unless we do this, we are really just de-

s
ribing the higher-dimensional theory in a rather 
lumsy way, in terms of in�nite sums

over generalised Fourier modes. And it is at this point that we will typi
ally run into trou-

ble. Nothing 
an go wrong if we restri
t attention to the linearised level, but if we try to

set the massive modes to zero and keep only the massless modes, the attempt will in fa
t

almost always fail, if we go to the full non-linear theory. We should not give up, however,

5

Of 
ourse if one kept all the massive and massless modes in the full theory with all its non-linearities,

the result would be a dog's breakfast, and would 
ertainly look anything but elegant!
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be
ause it turns out that the very few ex
eptions where it works are pre
isely the 
ases of

greatest interest in string theory and M-theory!

The reason why redu
tion 
ombined with trun
ation to the massless se
tor usually runs

into problems for a general internal manifold is the following. Imagine �rst keeping all

the massive �elds too, so that we have a giganti
ally 
ompli
ated, but perfe
tly 
onsistent,

redu
tion. The resulting lower-dimensional theory will involve all kinds of 
ompli
ated in-

tera
tions between the various �elds. In parti
ular, it will typi
ally involve 
ubi
 intera
tion

terms in the Lagrangian of the form H L

2

, where H represents a heavy �eld that we want

to set to zero, and L represents a light (i.e. massless) �eld that we want to keep. But this

means that the �eld equation for the heavy �eld will be of the form

H +m

2

H = L

2

; (2.6)

where m is the mass of H. Clearly, then, it would be in
onsistent to set H = 0, sin
e this

would then for
e the light �eld L to vanish too.

The reason why su
h dangerous intera
tions are present is be
ause in a redu
tion on some

general internal manifoldM su
h as a 
oset spa
e, the produ
t of zero-mode eigenfun
tions

on M will generate non-zero-mode eigenfun
tions. Re
all that this 
ould not happen on

the 
ir
le or torus, sin
e the zero-modes were all independent of the torus 
oordinates,

while the non-zero-modes were 
oordinate-dependent. Or, put more elegantly, the zero-

mode eigenfun
tions were singlets under the U(1)

n

isometry group of the n-torus, while the

non-zero-mode eigenfun
tions were all 
harged (like e

in y

).

In fa
t by studying pre
isely the 
ubi
 intera
tions of the form H L

2

, we 
an produ
e

a rather simple expli
it demonstration of why the Kaluza-Klein redu
tion 
ombined with

trun
ation to the massless se
tor will normally fail, for some generi
 internal manifold M

su
h as a 
oset spa
e.

6

Our strategy will be the following. First, we shall determine what the Kaluza-Klein

metri
 redu
tion ansatz giving the gauge bosons would have to be, if a redu
tion were

possible. Having established this, we shall then show that in general the attempt to make

su
h a redu
tion will fail, on
e we look beyond the linearised level.

7

Having seen why it fails

6

Salam and Strathdee never made a trun
ation to the massless se
tor in their paper [6℄, and so their

analysis was 
ompletely valid. Mu
h 
onfusion resulted later when others made the false assumption that

one 
ould make the trun
ation in general. On the other hand, it was partly be
ause of overlooking this point

that people stumbled upon the ex
eptional 
ases that do work.

7

To be pre
ise, what in general fails is the attempt to keep all the Yang-Mills gauge bosons of the isometry

group of the internal manifold M , while setting the massive Kaluza-Klein �elds to zero.
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in general, we shall then be in a position to look for ex
eptional 
ases where a 
onsistent

redu
tion is in fa
t possible. These ex
eptional 
ases in fa
t depend on �rst of all having

a very spe
ial starting point for the higher-dimensional theory, and then 
hoosing a very

parti
ular internal spa
e M .

To dis
uss the gauge bosons, it is 
onvenient to suppress for now the s
alar se
tor of the

redu
tion. This, of 
ourse, is potentially a re
ipe for trouble; we already saw in the previous


hapter that even the Kaluza-Klein redu
tion on S

1

will be in
onsistent if the s
alar dilaton

�eld is omitted. However, the in
onsisten
ies resulting from negle
ting s
alars o

ur in

rather easily-identi�able se
tors, and provided we pro
eed with appropriate 
aution, we 
an

still learn many useful things about the stru
ture of the Kaluza-Klein redu
tion, and why,

in general, it will fail.

2.2 The Yang-Mills gauge bosons

We saw in the previous 
hapter that the U(1) gauge invarian
e of the Kaluza-Klein ve
tor


oming from the S

1

redu
tion of the metri
 tensor had its origin in a spe
i�
 subset of

general 
oordinate transformations. Namely, it 
ame from making a transformation of the


oordinate on the 
ir
le, of the form Æz = ��(x). For a Kaluza-Klein redu
tion on a

manifold M with isometry group G, we 
an similarly write down the general stru
ture for

the metri
 redu
tion ansatz, and then we 
an see how the gauge transformations of the

gauge bosons emerge from 
ertain general 
oordinate transformations.

Pro
eeding, as dis
ussed above, by suppressing s
alar �elds, the metri
 redu
tion ansatz

will be

dŝ

2

= ds

2

+ g

mn

(dy

m

+K

mI

A

I

(1)

)(dy

n

+K

nJ

A

J

(1)

) ; (2.7)

where K

mI

are the Killing ve
tors of the metri
 g

mn

on M , with I being the adjoint index

for the isometry group G. The 
oordinates x̂

M

of the higher-dimensional theory are split as

x̂

M

= (x

�

; y

m

). From (2.7) we 
an read o� the 
omponents ĝ

MN

of the higher-dimensional

metri
, giving

ĝ

��

= g

��

+K

mI

K

m

J

A

I

�

A

J

�

; ĝ

�m

= K

m

I

A

I

�

; ĝ

mn

= g

mn

: (2.8)

We emphasise that here g

mn

is the undistorted metri
 on the internal manifoldM (and thus

it depends on y

m

, but not on x

�

). The Killing ve
tors K

mI

depend only on the y

m

also, and

K

m

I

� g

mn

K

nI

. The gauge bosons A

I

�

depend, of 
ourse, only on the lower-dimensional


oordinates x

�

, as does the metri
 g

��

.
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To see why (2.7) is the appropriate ansatz, let us �rst study the gauge transforma-

tions. These 
orrespond to making general 
oordinate transformations Æx̂

M

= �

^

�

M

of the

following type:

^

�

�

= 0 ;

^

�

m

= K

mI

�

I

(x) : (2.9)

We 
an now pro
eed as in se
tion 1.2, where we derived the gauge transformation for the

U(1) gauge potential in the S

1

redu
tion. Looking �rst at the internal 
omponents of the

metri
, we get

Æĝ

mn

=

^

�

p

�

p

ĝ

mn

+ ĝ

pn

�

m

^

�

p

+ ĝ

mp

�

n

^

�

p

;

= �

I

K

pI

�

p

g

mn

+ g

pn

�

m

K

pI

�

I

+ g

mp

�

n

K

pI

�

I

;

= �

I

L

K

I

(g)

mn

= 0 : (2.10)

To rea
h the �nal line, we re
ognised that the three terms in the se
ond line assemble into

the Lie derivative of the metri
 with respe
t to K

I

, and then we �nally used the fa
t that

sin
e K

I

is a Killing ve
tor, by de�nition we will get zero when we use it to take the Lie

derivative of the metri
. Getting zero is reasonable, sin
e the internal 
omponents of ĝ

MN

are just g

mn

, whi
h is un
hanged under variation of the lower-dimensional �elds that we

have in
luded in the ansatz.

Next, we look at the variation of the mixed 
omponents ĝ

�m

of the higher-dimensional

metri
. For these we shall have

Æĝ

�m

=

^

�

p

�

p

ĝ

�m

+ ĝ

pm

�

�

^

�

p

+ ĝ

�p

�

m

^

�

p

;

= K

pI

�

I

�

p

K

m

J

A

J

�

+ g

pm

�

�

�

I

K

pI

+K

p

J

A

J

�

�

m

K

pI

�

I

;

= L

K

I

(K

J

)

m

�

I

A

J

�

+K

m

I

�

�

�

I

;

= K

I

m

(�

�

�

I

+ f

JK

I

�

J

A

K

�

) : (2.11)

Again, we re
ognised that two of the terms in the se
ond line assemble to make the Lie

derivative. Then, we used the fa
t that the Killing ve
tors satisfy the Lie algebra of the

isometry group G, with stru
ture 
onstants f

JK

I

:

[K

I

;K

J

℄ = f

IJ

K

K

K

; (2.12)

and [K

I

;K

J

℄

m

= L

K

I

(K

J

)

m

. On the other hand, we see from (2.8) that if the lower-

dimensional �elds are varied we shall have

Æĝ

�m

= K

m

I

ÆA

I

�

: (2.13)
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Comparing with (2.11), we learn that

ÆA

�

= �

�

�

I

+ f

JK

I

�

J

A

K

�

; (2.14)

whi
h is pre
isely the 
orre
t result for in�nitesimal Yang-Mills gauge transformations.

Finally, we learn nothing new by 
onsidering the variation of ĝ

��

under the 
oordinate

transformation (2.9).

By showing that we obtain the 
orre
t Yang-Mills gauge transformations for A

I

�

from the

general 
oordinate transformations (2.9), we 
an be sure that the metri
 redu
tion ansatz

(2.7) is the right one.

8

It is instru
tive now to 
al
ulate the 
urvature for higher-dimensional

metri
. To do this, we �rst note that the following is a 
onvenient 
hoi
e for a vielbein for

(2.7):

ê

�

= e

�

; ê

a

= e

a

+K

aI

A

I

(1)

; (2.15)

where e

�

is a vielbein for the lower-dimensional metri
 ds

2

, and e

a

is a vielbein for the

undistorted metri
 g

mn

on the internal manifold M , so g

mn

= e

a

m

e

a

n

. Of 
ourse K

aI

just means e

a

m

K

mI

. It is now a straightforward, if laborious, task to 
al
ulate the spin


onne
tion and 
urvature. The spin 
onne
tion turns out to be

!̂

�

= !

��

�

1

2

K

aI

F

I

��

ê

a

;

!̂

�a

= �

1

2

K

aI

F

I

��

ê

�

;

!̂

ab

= !

ab

+r

a

K

I

b

A

I

�

ê

�

; (2.16)

where all 
omponents here refer to vielbein indi
es. Note that !

��

is the spin 
onne
tion

for the lower-dimensional vielbein e

�

, and !

ab

is the spin 
onne
tion for the vielbein e

a

on

the undistorted internal manifold M .

We shall not present the full expressions for the 
urvature 2-forms here, sin
e they are

a little 
ompli
ated. After reading o� the Riemann tensor, and then 
ontra
ting to get the

Ri

i tensor, one �nds that the vielbein 
omponents are given by

^

R

��

= R

��

�

1

2

K

aI

K

a

J

F

I

��

F

J �

�

;

^

R

�a

=

1

2

K

I

a

D

�

F

I �

�

;

^

R

ab

= R

ab

+

1

4

K

I

a

K

J

b

F

I

��

F

J ��

; (2.17)

where D

�

is the Yang-Mills 
ovariant derivative. The Ri

i tensors R

��

and R

ab

are those

for the lower-dimensional metri
 g

��

and the undistorted internal metri
 g

mn

respe
tively.

8

Again, with the 
aveat that we have suppressed the s
alar �elds that should possibly be in
luded here!
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Now, let us 
onsider what happens if we try using this proposed Kaluza-Klein ansatz

to redu
e a generi
 higher-dimensional theory. We shall take pure Einstein gravity as our

example of a generi
 theory, so the higher-dimensional equations of motion are simply

^

R

AB

= 0. Looking at (2.17), the middle equation is very ni
e, be
ause it gives us the

lower-dimensional Yang-Mills equations,

D

�

F

I �

�

= 0 ; (2.18)

as we would have hoped. The last equation in (2.17) is a bit of a disaster, sin
e it gives

R

ab

+

1

4

K

I

a

K

J

b

F

I

��

F

J ��

= 0 : (2.19)

But we should not be too alarmed by this; it is exa
tly the kind of problem that we should

have been expe
ting from the moment we de
ided to omit s
alar �elds from our ansatz.

It is exa
tly analogous to the trouble one would en
ounter in the

^

R
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omponent of the

Ri

i-
at 
ondition in the S

1

redu
tion that we dis
ussed in the previous 
hapter, had we

negle
ted to in
lude the dilatoni
 s
alar �. The point is that in the present 
ase we are

about to en
ounter a quite di�erent kind of in
onsisten
y, whi
h would not be resolved by

in
luding the s
alars. Sin
e the Titani
 is sinking anyway, we need not 
on
ern ourselves

too mu
h with trying to rearrange the de
k
hairs ni
ely!

The new in
onsisten
y o

urs in the se
tor where we would have hoped to obtain the

lower-dimensional Einstein equation, with the Yang-Mills �elds a
ting as a sour
e. This

would 
ome from the 
ombination

^

R

��

�

1

2

^

R�

��

= 0 (re
all that we are using vielbein


omponents here, hen
e the �

��

!), and so from (2.17) we see that this gives

R

��

�

1

2

R�

��

=

1

2

K

aI

K

J

a

[F

I

��

F

J �

�

�

1

4

F

I

��

F

J ��

�

��

℄ : (2.20)

The problem now is 
lear; everything would be �ne if it were the 
ase that

K

aI

K

J

a

= 
 Æ

IJ

(2.21)

for some 
onstant 
. Then, the right-hand side in (2.20) would give pre
isely the energy-

momentum tensor for the Yang-Mills �elds. However, in general if we de�ne a matrix Y

IJ

by

Y

IJ

= K

aI

K

J

a

; (2.22)

then there are two things that go wrong. First of all, we note that Y

IJ

is written as a sum

over n ve
tors, where n is the dimension of the internal spa
e M . But the I and J indi
es

range over dim(G) values, the dimension of the isometry group. It is perfe
tly possible that
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dim(G) is greater than n, as, for example, in the 
ase of a 
oset spa
e, M = G=H, for whi
h

n =dim(G)�dim(H). Clearly, in su
h a 
ase, the matrix Y

IJ

must be degenerate, with

(dim(G)� n) zero eigenvalues. So it 
annot possibly be of the form (2.21).

The se
ond problem is that Y

IJ

is in general a fun
tion of the 
oordinates y

m

on

the internal spa
e M . Thus we have a mis-mat
h between the left-hand side of (2.20),

whi
h depends only on the x

�


oordinates, and the right-hand side, whi
h will have y

m

dependen
e be
ause of the y

m

dependen
e of Y

IJ

. This problem is at the leading order of

post-linearised terms, namely it is a problem at the trilinear order in the putative lower-

dimensional Lagrangian. This means that it 
annot possibly be resolved by putting ba
k

those s
alar �elds that we previously wilfully suppressed. This is a new in
onsisten
y

problem, and nothing in general 
an res
ue it.

How, then, might we avoid this problem, and obtain a Kaluza-Klein sphere redu
tion

that is 
onsistent at the full non-linear level? We shall dis
uss an example in the next

subse
tion.

2.3 SO(5)-gauged N = 4 supergravity in D = 7 from D = 11

2.3.1 The seven-dimensional SO(5)-gauged theory

The redu
tion of eleven-dimensional supergravity on the 4-torus gives rise to the maximal

ungauged supergravity in D = 7. In its bosoni
 se
tor this 
omprises

g

��

;

~

� ; A

i

(1)

; A

i

(0)j

; A

(3)

; A

(2)i

; A

(1)ij

; A

(0)ijk

; (2.23)

where the index i runs over the 4 dire
tions of T

4

. Thus we see that in total there are 14

�elds in the spin-0 se
tor, 
omprising the 4 dilatoni
 s
alars

~

�, the 6 axions A

i

(0)j

and the

4 axions A

(0)ijk

. As we saw in 
hapter 1, these s
alars parameterise the non-linear sigma

model 
oset SL(5; IR)=SO(5). There are in total ten ve
tors, 
omprising four A

i

(1)

and six

A

(1)ij

.

The global symmetry SL(5; IR), whi
h we studied just in the s
alar se
tor, in fa
t extends

to the entire seven-dimensional theory. It turns out that one 
an gauge the SO(5) maximal


ompa
t subgroup, thereby ending up with a theory with a lo
al SO(5) symmetry. This is

a
hieved by using the ten abelian ve
tor �elds that we 
ounted in the previous paragraph,

and whi
h now be
ome the non-abelian Yang-Mills potentials of the gauge group SO(5).

It will be noted that by happy 
han
e, there are exa
tly the right number of ve
tor �elds

available to do the job!

59



All the �elds of the seven-dimensional gauged supergravity fall into representations of

the SO(5) gauge group. Of 
ourse the metri
 is a singlet, and the ten Yang-Mills gauge

potentials are in the adjoint representation of SO(5). It is 
onvenient to represent them

now by A

ij

(1)

, antisymmetri
 in i and j, where i ranges over 5 values 
orresponding to the

fundamental 5-dimensional representation of SO(5). The 14 s
alars form the irredu
ible

symmetri
 2-index representation, and in fa
t it is 
onvenient to parameterise the s
alars as

the symmetri
 unimodular SO(5) tensor T

ij

. Finally, in the ungauged theory we saw that

there were four 2-form potentials and a 3-form potential. Sin
e a 4-form �eld strength is

dual to a 3-form �eld strength in D = 7, we 
ould have dualised from the 3-form potential

to a 2-form, giving �ve in total. In fa
t these form an irredu
ible 5 of SL(5; IR) in the

ungauged theory. In the gauged theory, we have �ve 3-form �elds that form the irredu
ible

5-dimensional representation of SO(5). They will be represented by S

i

(3)

now.

Without further ado, we 
an now present the bosoni
 Lagrangian for seven-dimensional

SO(5)-gauged maximal supergravity, whi
h was derived in [7℄. It is

L

7

= R �1l�

1

4

T

�1

ij

�DT

jk

^ T

�1

k`

DT

`i

�

1

4

T

�1

ik

T

�1

j`

�F

ij

(2)

^ F

k`

(2)

�

1

2

T

ij

�S

i

(3)

^ S

j

(3)

+

1

2g

S

i

(3)

^H

i

(4)

�

1

8g

�

ij

1

���j

4

S

i

(3)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

+

1

g




(7)

� V �1l ; (2.24)

where

H

i

(4)

� DS

i

(3)

= dS

i

(3)

+ g A

ij

(1)

^ S

j

(3)

: (2.25)

V is a potential for the s
alar �elds, given by

V =

1

2

g

2

�

2T

ij

T

ij

� (T

ii

)

2

�

; (2.26)

and 


(7)

is a Chern-Simons type of term built from the Yang-Mills �elds, whi
h has the

property that its variation with respe
t to A

ij

(1)

gives

Æ


(7)

=

3

4

Æ

j

1

j

2

j

3

j

4

i

1

i

2

k`

F

i

1

i

2

(2)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

^ ÆA

k`

(1)

: (2.27)

It is given expli
itly in [7℄. The rest of the notation is as follows. The Yang-Mills �eld

strengths F

ij

(2)

are given by

F

ij

(2)

� dA

ij

(1)

+ g A

ik

(1)

^A

kj

(1)

; (2.28)

and the symbol D denotes the Yang-Mills 
ovariant exterior derivative:

DT

ij

� dT

ij

+ gA

ik

(1)

T

kj

+ gA

jk

(1)

T

ik

: (2.29)
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Note that the S

i

(3)

are viewed as fundamental �elds in the Lagrangian. The equations

of motion following from (2.24) 
an straightforwardly be shown to be

D

�

T

�1

ik

T

�1

j`

�F

ij

(2)

�

= �2g T

�1

i[k

�DT

`℄i

�

1

2g

�

i

1

i

2

i

3

k`

F

i

1

i

2

2

H

i

3

(4)

+

3

2g

Æ

j

1

j

2

j

3

j

4

i

1

i

2

k`

F

i

1

i

2

(2)

^ F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

� S

k

(3)

^ S

`

(3)

: (2.30)

D

�

T

�1

ik

�D(T

kj

)

�

= 2g

2

(2T

ik

T

kj

� T

kk

T

ij

)�

(7)

+ T

�1

im

T

�1

k`

�F

m`

(2)

^ F

kj

(2)

+T

jk

�S

k

(3)

^ S

i

(3)

�

1

5

Æ

ij

h

2g

2

�

2T

ik

T

ik

� 2(T

ii

)

2

�

�

(7)

+T

�1

nm

T

�1

k`

�F

m`

(2)

^ F

kn

(2)

+ T

k`

�S

k

(3)

^ S

`

(3)

i

; (2.31)

D(T

ij

�S

j

(3)

) = F

ij

(2)

^ S

j

(3)

; (2.32)

H

i

(4)

= gT

ij

�S

j

(3)

+

1

8

�

ij

1

���j

4

F

j

1

j

2

(2)

^ F

j

3

j

4

(2)

; (2.33)

It is worth pausing at this point to make an important observation about the gauging.

One 
annot take the limit g ! 0 in the Lagrangian (2.24), on a

ount of the terms propor-

tional to g

�1

in the se
ond line. We know, on the other hand, that it must be possible to

re
over the ungauged D = 7 theory by turning o� the gauge 
oupling 
onstant. In fa
t the

problem is asso
iated with a pathology in taking the limit at the level of the Lagrangian,

rather than in the equations of motion. This 
an be seen by looking instead at the seven-

dimensional equations of motion, whi
h were given earlier. The only apparent obsta
le to

taking the limit g ! 0 is in the Yang-Mills equations (2.30), but in fa
t this illusory. If we

substitute the �rst-order equation (2.33) into (2.30) it gives

D

�

T

�1

ik

T

�1

j`

�F

ij

(2)

�

= �2gT

�1

i[k

�DT

`℄i

�

1

2

�

i

1

i

2

i

3

k`

F

i

1

i

2

2

^ T

ij

�S

j

(3)

� S

k

(3)

^ S

`

(3)

; (2.34)

whi
h has a perfe
tly smooth g ! 0 limit. It is 
lear that equations of motion (2.33) and

(2.31) and the Einstein equations of motion also have a smooth limit. (The reason why

the Einstein equations have the smooth limit is be
ause the 1=g terms in the Lagrangian

(2.24) do not involve the metri
, and thus they give no 
ontribution.) One sometimes

hears the statement made that \the seven-dimensional gauged supergravity does not have

a 
ontinuous limit to the ungauged theory." This statement, as we 
an see from this

dis
ussion, is therefore in
orre
t.

We may remark that the theory admits a simple solution in whi
h the Yang-Mills and 3-

form �elds vanish, the s
alars are trivial (i.e. T

ij

= Æ

ij

), and the metri
 is seven-dimensional

anti-de Sitter spa
etime, AdS

7

. In this ba
kground the s
alar potential V = �

15

2

g

2

, and

behaves just like a 
osmologi
al 
onstant. Thus the Einstein equation implies that

R

��

�

1

2

Rg

��

= �

15

4

g

2

g

��

; (2.35)
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or in other words,

R

��

= �

3

2

g

2

g

��

: (2.36)

2.3.2 A �rst look at the S

4

redu
tion of D = 11 supergravity

The SO(5)-gauged theory des
ribed above was �rst obtained in [7℄, by 
arrying out the

pro
ess of gauging the original ungauged seven-dimensional supergravity. Had it not been

for all the obje
tions raised in the previous subse
tion, it might have seemed natural to

expe
t that it should be obtainable instead by a dire
t pro
ess of redu
tion from eleven-

dimensional supergravity on S

4

. After all, the isometry group of the 4-sphere is SO(5),

whi
h is exa
tly what we would want.

It turns out that this is one of the 
ases where the dis
ussion of the previous subse
tion,

whi
h was 
onsidering the situation for the possible 
oset-spa
e Kaluza-Klein redu
tion of

a generi
 theory, 
an be evaded. We shall �rst give a 
onsiderably simpli�ed dis
ussion, to

indi
ate how the prin
iple obsta
le to performing a 
onsistent redu
tion 
an be over
ome.

Later on, we shall present the 
omplete result. This was �rst derived, in
identally, in [8℄.

Re
alling that the bosoni
 Lagrangian for eleven-dimensional supergravity is

L

11

=

^

R

^

�1l�

1

2

^

�

^

F

(4)

^

^

F

(4)

+

1

6

^

F

(4)

^

^

F

(4)

^

^

A

(3)

; (2.37)

it follows that the equations of motion are

^

R

MN

=

1

12

(

^

F

2

MN

�

1

12

^

F

2

(4)

ĝ

MN

) ;

d

^

�F

(4)

=

1

2

^

F

(4)

^

^

F

(4)

; (2.38)

where

^

F

2

MN

means

^

F

MPQR

^

F

N

PQR

and

^

F

2

(4)

means

^

F

PQRS

^

F

PQRS

. It is easy to see that

this admits the solution AdS

7

� S

4

, where we split the index M = (�;m), with � running

over 7-dimensional spa
etime and m running over the remaining four internal dire
tions,

and we set

^

F

mnpq

= 3 g �

mnpq

: (2.39)

This 
learly satis�es the equation of motion for

^

F

(4)

in (2.38), sin
e the right-hand side

vanishes, and the left-hand side is 
onstru
ted from the divergen
e of �

mnpq

, whi
h is zero

too. Thus we have

^

F

2

��

= 0 ;

^

F

2

mn

= 54g

2

g

mn

;

^

F

2

(4)

= 216g

2

; (2.40)

and so from (2.38) we get

^

R

��

= �

3

2

g

2

g

��

;

^

R

mn

= 3g

2

g

mn

: (2.41)
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A solution is 
learly then obtained by taking the seven-dimensional metri
 g

��

to be AdS

7

,

and the 4-dimensional metri
 to be S

4

. A unit 4-sphere has R

mn

= 3g

mn

, so the 4-sphere

here is one of radius g

�1

. Note that by 
hoosing the radius like this, we have ensured that

the AdS

7

has pre
isely the 
osmologi
al 
onstant that we found for the AdS

7

solution of the

seven-dimensional gauged supergravity, in (2.36). Thus if the 4-sphere redu
tion does give

the seven-dimensional gauged supergravity, then the radius of the 
ompa
tifying 4-sphere

will be the inverse of the seven-dimensional Yang-Mills 
oupling 
onstant g.

The \va
uum" solution of eleven-dimensional supergravity that we have just found may

be written as

dŝ

2

11

= ds

2

7

+ g

�2

d


2

4

;

^

F

(4)

= 3g

�4




(4)

; (2.42)

where d


2

4

is the metri
 on the unit 4-sphere, 


(4)

is the volume form of the unit 4-sphere,

and ds

2

7

is the AdS

7

metri
. If we let e

a

denote the vielbein for the unit 4-sphere, then the

Kaluza-Klein metri
 redu
tion ansatz (2.7) that we dis
ussed previously would be

dŝ

2

11

= ds

2

7

+ g

�2

(e

a

� g K

aI

A

I

(1)

) (e

a

� g K

aJ

A

J

(1)

) ; (2.43)

where K

I

are the 10 Killing ve
tors of the isometry group SO(5) of the 4-sphere. As

before, we are ignoring s
alars for now; we shall fo
us on looking at the lower 7-dimensional


omponents of the Einstein equation (2.20), whi
h previously gave us trouble. The new

feature in our present dis
ussion is that we have another �eld in the higher-dimensional

theory, namely

^

F

(4)

. It is this �eld that saves the day.

One 
an show already from an analysis of small 
u
tuations around the AdS

7

� S

4

\va
uum" that in order to get a proper diagonalisation of the kineti
 terms for the seven-

dimensional �elds, it is ne
essary to in
lude terms involving the Yang-Mills �elds in the

ansatz for the 4-form

^

F

(4)

, as well having them appear in their standard way in (2.43). We

shall not derive this here, sin
e it is now superseded by the full non-linear result that we

shall present later. It 
an be found, for example, in [9℄. Quoting the result, it turns out

that at the linearised level the ansatz for the 4-form �eld strength should be augmented by

terms involving the SO(5) Yang-Mills �eld strengths F

I

(2)

, as follows:

^

F

(4)

= 3g

�3




(4)

+

1

4

g

�1

F

I

(2)

^ L(2)

I

: (2.44)

Here, L

I

(2)

denotes the 2-forms on the 4-sphere that are obtained by taking the antisymmetri


derivative of the Killing ve
tors. Of 
ourse pre
isely be
ause they are Killing ve
tors, the
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derivatives r

a

K

I

b

are already automati
ally antisymmetri
, so we have

L

I

ab

� r

a

K

I

b

; and so L

I

(2)

= dK

I

; (2.45)

where K

I

� K

I

a

e

a

are the Killing ve
tors written as 1-forms. This means that we have

^

F

ab
d

= 3g �

ab
d

;

^

F

��ab

= g

�1

F

I

��

L

I

ab

: (2.46)

Now plug everything into the 7-dimensional 
omponents of the eleven-dimensional Ein-

stein equation

^

R

MN

�

1

2

^

R ĝ

MN

=

1

12

(

^

F

2

MN

�

1

8

^

F

2

(4)

ĝ

MN

) : (2.47)

Using (2.17) and (2.46), we therefore �nd that vielbein 
omponents in the lower 7 dimensions

give

R

��

�

1

2

R�

��

=

1

2

Y

IJ

[F

I

��

F

J �

�

�

1

4

F

I

��

F

J ��

�

��

℄�

15

4

g

2

�

��

; (2.48)

where the quantities Y

IJ

are given by

Y

IJ

= K

aI

K

J

a

+

1

2

g

�2

L

abI

L

J

ab

: (2.49)

A remarkable thing has happened here. First of all, re
all our dis
ussion of the dimen-

sional redu
tion of a generi
 theory, for whi
h only the �rst term in (2.49) was present.

Expressed in the spe
i�
 
ontext of a 4-sphere redu
tion, the index a runs over 4 values,

while the Yang-Mills index I runs over 10 values. Thus, we would have argued, in (2.22)

the matrix Y

IJ

must have 10 � 4 = 6 zero eigenvalues, and so it 
ould not possibly give

us the Æ

IJ

that we would have hoped for. However, in our new expression (2.49) we have

pre
isely 6 more quantities being summed over, in the se
ond term, sin
e L

I

ab

� r

a

K

I

b

is

antisymmetri
 in a and b. So (2.49) is the sum over 10 quantities, and we are in with a


han
e!

So far, this is just numerology. The even more remarkable fa
t is that one 
an easily

show that the Killing ve
tors on the 4-sphere pre
isely do satisfy the relation

K

aI

K

J

a

+

1

2

g

�2

L

abI

L

J

ab

= Æ

IJ

: (2.50)

(Of 
ourse there is an issue of 
onstant normalisation fa
tors here. More pre
isely, what

one 
an show is that by normalising the Killing ve
tors appropriately, (2.50) is satis�ed.)

The key points to note here are that not only is Y

IJ

de�ned in (2.49) non-degenerate on

S

4

, but it is 
ompletely independent of the 
oordinates of S

4

! This 
an be proven quite
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easily by writing S

4

as the unit sphere in IR

5

, with 
oordinates �

i

that satisfy �

i

�

i

= 1,

and then expressing the Killing ve
tors in terms of these 
oordinates:

K

ij

= �

i

�

��

j

� �

j

�

��

i

: (2.51)

Another signi�
ant fa
t is that if one 
onsiders any other 
ompa
t 4-dimensional Einstein

spa
e, whi
h might a priori be viewed as an equally good 
andidate for giving a Kaluza-

Klein redu
tion to D = 7, its Killing ve
tors 
annot, in general, satisfy (2.50). For example,

if one 
onsiders the 8 Killing ve
tors of the SU(3) isometry group of the 
omplex proje
tive

spa
e CP

2

, then one �nds that Y

IJ

de�ned in (2.49) depends on the 
oordinates of CP

2

,

and so (2.48) would not make sense in that 
ase.

What we are �nding here 
an be expressed group theoreti
ally as follows. A priori,

the quantity Y

IJ

de�ned in (2.49) is in the redu
ible representation that one obtains by

taking the symmetri
 produ
t of two adjoint representations of the isometry group G of

the 4-dimensional internal spa
e. This redu
ible representation will 
ertainly in
lude the

singlet, but it 
ould have other terms too. For example, for the 4-sphere with G = SO(5),

we have

(10� 10)

sym

= 1 + 5 + 14 + 35 : (2.52)

Now in this 
ase Y

IJ

turns out to be 
onstant, whi
h means that all terms ex
ept the singlet

in this de
omposition have 
an
elled. In parti
ular, had we looked at just the �rst term in

(2.49) in isolation, or at just the se
ond term, we would have obtained a non-
onstant result,


onsisting of a 
ombination of the singlet and at least one of the other representations in

(2.52). So there is a \
onspira
y" between the two terms that leads to a 
an
ellation of the

non-singlet representations. By 
ontrast, in the analogous dis
ussion for the SU(3) Killing

ve
tors of CP

2

, it turns out that there is no 
onspira
y, and so non-singlet terms from the

symmetri
 produ
t of 8� 8 in SU(3) survive.

Note that if non-singlets survive in Y

IJ

, then (2.48) is telling us that we should really

have in
luded massive spin-2 �elds as well as the massless graviton (the metri
 ds

2

7

) in

the Kaluza-Klein redu
tion. Roughly speaking, at the linearised level, it is saying that we

should have expanded the 7-dimensional 
omponents of the eleven dimension metri
 not

just as ĝ

��

(x; y) = �g

��

(x) + h

��

(x), where x denotes the 7-dimensional 
oordinates and y

denotes the 4-dimensional internal 
oordinates, but rather as

ĝ

��

(x; y) = �g

��

(x) +

1

X

i=0

h

(i)

��

(x)P

(i)

(y) ; (2.53)

where P

(i)

(y) denotes a 
omplete set of s
alar harmoni
s on the internal spa
e, with

P

(0)

(y) = 1 
orresponding to the massless graviton h

(0)

��

(x). The non-singlet part on the
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right-hand side of (2.48) would then mat
h against non-singlet terms from the expansion

(2.53), whi
h in this linearised dis
ussion would be appearing in linearised \Einstein ten-

sors" for the higher gravity modes h

(i)

��(x)

. Of 
ourse on
e one has even a single massive

spin-2 �eld, it is inevitable that one needs an entire in�nite tower of them, sin
e a �nite

number of massive spin-2 �elds 
annot 
ouple 
onsistently to gravity. The fa
t that Y

IJ

in

(2.48) is turning out to be purely an SO(5) singlet for the S

4

redu
tion means that we are

able to get away with never introdu
ing the massive gravitons in the �rst pla
e.

To summarise, we have looked at a ne
essary 
ondition for the 
onsisten
y of a Kaluza-

Klein redu
tion ansatz, namely that the quantity Y

IJ

appearing in the lower-dimensional

Einstein equation (2.48) must be independent of the 
oordinates of the internal 
ompa
t-

ifying spa
e. We saw previously that this is not satis�ed for a 
oset-spa
e redu
tion of

a generi
 theory. However, what we have now seen is that in the redu
tion of eleven-

dimensional supergravity on a 4-dimensional internal spa
e, the form of the matrix Y

IJ

,

given in (2.49), is su
h that this ne
essary 
ondition for 
onsisten
y is satis�ed in one ex-


eptional 
ase, namely when the internal spa
e is the 4-sphere. There is a 
onspira
y going

on here, between eleven-dimensional supergravity and the 4-sphere!

We should emphasise that the above dis
ussion has 
ertainly not, of itself, proved that

the 4-sphere redu
tion of eleven-dimensional supergravity is 
onsistent. Rather, it has shown

that it 
ir
umvents an obstru
tion that would have been enough to prevent a 
onsistent

redu
tion from being possible for any randomly-
hosen theory and internal manifold. In

fa
t, as we shall see later, the S

4

redu
tion of eleven-dimensional supergravity is one of only

a very few examples where 
oset-spa
e Kaluza-Klein redu
tion 
an work. Before dis
ussing

that further, let us 
omplete the job for the S

4

redu
tion, and give the 
omplete result.

2.3.3 Complete redu
tion of D = 11 supergravity on S

4

The 
omplete result for the the Kaluza-Klein redu
tion of eleven-dimensional supergravity

on S

4

was obtained in [8℄. The strategy there involved looking at the fermioni
 se
tor of

the theory, and in parti
ular the supersymmetry transformation rules. By imposing the re-

quirement that the eleven-dimensional transformation rules should 
onsistently yield seven-

dimensional transformation rules, the form of the Kaluza-Klein ansatz for all the �elds,

bosoni
 as well as fermioni
, was derived. Having obtained 
onsisten
y in the supersym-

metry transformation rules, it was argued [8℄ that this implied that the eleven-dimensional

�eld equations would ne
essarily 
onsistently redu
e to seven-dimensional ones.

We shall pro
eed rather di�erently, and fo
us instead just on the bosoni
 se
tor. Our
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riterion for the 
onsisten
y of the redu
tion will be the dire
t one, of insisting that the

eleven-dimensional equations of motion 
onsistently yield seven-dimensional ones, with all

on the 4-sphere 
oordinates mat
hing in all the equations, so that it fa
tors out and gives

sensible purely seven-dimensional equations. This was done in [10℄. We saw one example

of this 
onsistent mat
hing already, in (2.48), where it was essential that Y

IJ

had to be

independent of the 4-sphere 
oordinates.

There are pros and 
ons to the two approa
hes to proving the 
onsisten
y of the Kaluza-

Klein redu
tion ansatz. In fa
t, if the truth be told, from a rigorously mathemati
al point of

view the 
onsisten
y of S

4

redu
tion has not yet been 
ompletely proven by either method.

In the supersymmetry transformation rule approa
h of [8℄, only the fermioni
 terms of

quadrati
 order were retained in the Lagrangian; the infamous quarti
-fermion terms were

dropped. Of 
ourse without them the theory is not supersymmetri
, so by omitting them

one is de�nitely not doing a 
omplete job of proving the 
onsisten
y of the redu
tion. On

the other hand, all the experien
e over the de
ades has been that if one takes 
are of the

quadrati
 terms, the quarti
 terms will \take 
are of themselves," and one would have to

be a maso
hist if one were to in
lude them. But still, the logi
al point remains that the

proof is not quite a 
omplete one if these terms are omitted. On the other hand, even by

omitting them one learns what the 
omplete and exa
t ansatz for the bosoni
 �elds would

have to be, if the redu
tion were indeed a 
onsistent one. What is la
king is that �nal pie
e

of absolute 
ertainty that the redu
tion is a
tually 
onsistent. One other residual question


on
erns the issue of whether a proof that the supersymmetry transformation rules redu
e


onsistently also 
onstitutes a proof that the equations of motion must redu
e 
onsistently

too. (The latter is, by de�nition, what one means by a 
onsistent Kaluza-Klein redu
tion.)

It probably does, and it 
ertainly seems highly plausible. As far as I am aware, however, the

link between the two 
on
epts has never been spelt out in 
omplete and unequivo
al detail.

Having said all this, it should also be emphasised that these are really high-order \quibbles,"

and in ordinary parlan
e one 
an e�e
tively view the dis
ussion in [8℄ as de�nitive.

The advantage of the dire
t approa
h of 
he
king the 
onsisten
y of the redu
tion of the

equations of motion is that if this is done, then by de�nition one has proved the 
onsisten
y,

period. In pra
ti
e, there may be limits to what one 
an expli
itly 
al
ulate, just be
ause

the 
al
ulations be
ome too involved. In the present 
ontext of the S

4

redu
tion from

D = 11, the 
onsisten
y of the redu
tion of the bosoni
 equations of motion was almost


ompletely 
he
ked in [10℄, but 
ertain simpli�
ations and spe
ialisations were made when


he
king the eleven-dimensional Einstein equation. With what was 
he
ked there is really
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no room for any doubt that it works fully, but again, stri
tly speaking, there remains a

slight la
una from a stri
tly rigorous point of view.

After all the quibbles and 
autions, let us now present the result. The unit 4-sphere 
an

be des
ribed by introdu
ing �ve 
oordinates �

i

on 
at Eu
lidean IR

5

, that are subje
t to

the 
onstraint

�

i

�

i

= 1 : (2.54)

The metri
 on the unit 4-sphere is then given by

d


2

4

= d�

i

d�

i

: (2.55)

These �

i


oordinates, subje
t to the 
onstraint (2.54), are used extensively in the Kaluza-

Klein redu
tion ansatz. It is given by

dŝ

2

11

= �

1=3

ds

2

7

+

1

g

2

�

�2=3

T

�1

ij

D�

i

D�

j

; (2.56)
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=
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^ � � � ^D�

i

5

+

4
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3

�

�2

T

i

1

m

DT

i

2

n

�

m

�

n

D�

i

3

^ � � � ^D�

i

5

+

6

g

2

�

�1

F

i

1

i

2

(2)

^D�

i

3

^D�

i

4

T

i

5

j

�

j

i

� T

ij

�S

i

(3)

�

j

+

1

g

S

i

(3)

^D�

i

; (2.57)

where

U � 2T

ij

T

jk

�

i

�

k

��T

ii

; � � T

ij

�

i

�

j

;

D�

i

� d�

i

+ gA

ij

(1)

�

j

: (2.58)

The 7-dimensional �elds ds

2

7

, A

ij

(1)

, T

ij

and S

i

(3)

were all des
ribed in the earlier se
tion, where

we presented the bosoni
 Lagrangian for the seven-dimensional SO(5)-gauged theory. Note

that � here is the Hodge dual in the seven-dimensional metri
 ds

2

7

, and it must be 
arefully

distinguished from Hodge dualisation in the eleven-dimensional metri
 dŝ

2

11

, whi
h we are

denoting by

^

�.

Before dis
ussing this redu
tion ansatz in detail, let us just note that it does indeed look

similar to something we have seen previously, if we temporarily (and illegally!) set the �ve

3-forms S

i

(3)

to zero and take the 14 s
alars to be trivial, T

ij

= Æ

ij

. The ansatz then takes

the form

dŝ

2

11

= ds

2

7

+

1

g

2

(d�

i

+ g A

ik

(1)

�

k

) (d�

j

+ g A

j`

(1)

�

`

) ; (2.59)

^

F

(4)

=

3

4!

�

i

1

���i

5

1

g

3

�

i

1

D�

i

2

^ � � � ^D�

i

5

+

1

4g

2

�

i

1

���i

5

F

i

1

i

2

(2)

^D�

i

3

^D�

i

4

�

i

5

;(2.60)
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and without too mu
h trouble one 
an establish the relation to the approximate ansatz that

we dis
ussed in se
tion 2.3.2,

dŝ

2

11

= ds

2

7

+ g

�2

(e

a

� g K

aI

A

I

(1)

) (e

a

� g K

aJ

A

J

(1)

) ;

^

F

(4)

= 3 g

�3




(4)

+

1

4

g

�2

F

I

(2)

^ dK

I

: (2.61)

Of 
ourse even without the in
lusion of the s
alars and 3-forms, the ansatz in (2.59) and

(2.60) is more 
omplete than (2.61), but they agree in the leading orders, and indeed purely

on the basis of gauge-invarian
e and agreeing with the leading-order terms, the stru
ture

of (2.59) and (2.60) is uniquely determined. However, degrees of 
ompleteness are rather

a
ademi
, until one in
ludes the s
alars and 3-forms, sin
e without them the ansatz violates

the eleven-dimensional equations of motion. And, in terms of 
omplexity, if one omits the

s
alars then, as the saying goes, \You ain't seen nothing yet!"

Now, let us go ba
k to the 
omplete ansatz (2.56) and (2.57). The 
laim is that if we

substitute these into the eleven-dimensional equations of motion (2.38), and the Bian
hi

identity d

^

F

(4)

= 0, then we will obtain a fully 
onsistent redu
tion that yields pre
isely the

equations of motion for the bosoni
 �elds of seven-dimensional SO(5)-gauged supergravity,

as given in se
tion 2.3.1. Che
king this is a 
onsiderable task; the Kaluza-Klein redu
tion

on S

4

is enormously more 
ompli
ated than a Kaluza-Klein redu
tion on S

1

or a torus! In

parti
ular, the \mira
les" that must take pla
e in order for all the dependen
e on the S

4


oordinates �

i

to mat
h in the various eleven-dimensional equations of motion are, to say

the least, quite remarkable. We shall just sket
h the 
al
ulations here.

Consider �rst the Bian
hi identity d

^

F

(4)

= 0. Substituting (2.57) into this, we (eventu-

ally) obtain the following seven-dimensional equations

D(T

ij

�S

j

(3)

) = F

ij

(2)

^ S

j

(3)

; (2.62)
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1

8

�

ij
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���j

4

F

j

1

j
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(2)

^ F

j

3

j

4

(2)

; (2.63)

where we de�ne

H

i

(4)

� DS

i

(3)

= dS

i

(3)

+ g A

ij

(1)

^ S

j

(3)

: (2.64)

These are pre
isely some of the equations of motion of seven-dimensional SO(5)-gauged

supergravity that we saw in se
tion 2.3.1.

Next, we substitute the ansatz into the D = 11 �eld equation d

^

�

^

F

(4)

=

1

2

^

F

(4)

^

^

F

(4)

. To

do this, we need the eleven-dimensional Hodge dual

^

�

^

F

(4)

. After mu
h 
al
ulation, one �nds

that this is given by

^

�

^

F

(4)

= �gU�

(7)

�

1

g

T

�1

ij

�DT

ik

�
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^D�

j

+

1

2g

2

T

�1

ik

T

�1

j`

�F

ij

(2)

^D�

k

^D�

`

(2.65)
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5

: (2.66)

The �eld equation for

^

F

(4)

then implies
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These are the Yang-Mills and s
alar equations of motion of seven-dimensional SO(5)-gauged

supergravity, whi
h we also saw in se
tion 2.3.1.

Finally, one should 
al
ulate the Ri

i-tensor for the metri
 ansatz (2.56), and 
he
k

the eleven-dimensional Einstein equation in (2.38). As mentioned above, this has not been

performed 
ompletely, although many highly non-trivial 
onsisten
y 
he
ks have been made.

There is no doubt, though, that it will work. In summary, substituting the ansatz (2.56)

and (2.57) into the equations of motion of eleven-dimensional supergravity, one 
onsistently

obtains the equations of motion of the bosoni
 se
tor of seven-dimensional SO(5)-gauged

supergravity, whi
h all follow from the Lagrangian (2.24).

We have repeatedly emphasised that the ability to perform this 
onsistent Kaluza-Klein


oset-spa
e redu
tion is quite ex
eptional, and that it depends on spe
ial properties both of

the original higher-dimensional theory, and of the 
ompa
tifying spa
e. In the next se
tion,

we shall explore this in more detail, and see just how ex
eptional are the 
ases where a


onsistent 
oset-spa
e redu
tion 
an be performed.

2.4 Group-theoreti
 
onsiderations

2.4.1 A 
riterion for 
onsisten
y

The 
onsisten
y of a Kaluza-Klein redu
tion on a 
ir
le, torus or group manifold G (keeping

only the gauge bosons of G) 
ould be understood straightforwardly by group-theoreti


arguments, sin
e one is keeping all the singlets under a transitively-a
ting group, and setting

to zero all the non-singlets. Thus there is never any danger of non-linear terms in the

retained �elds a
ting as sour
es for the non-singlet �elds that have been set to zero.

70



We have no su
h group-theoreti
 explanation for the 
onsisten
y of the S

4

redu
tion

of D = 11 supergravity. For example, the bilinears in the SO(5) Yang-Mills gauge bosons

might, a priori, have a
ted as sour
es for massive spin-2 �elds, and it is only be
ause of a

\mira
le" that the non-singlet part of the symmetri
 produ
t of two adjoint representations

of SO(5), whi
h 
ould in prin
iple have o

urred in Y

IJ

in (2.48), happened to give zero.

Although we are not in a position to explain group-theoreti
ally why the S

4

redu
tion

of eleven-dimensional supergravity works, we 
an give group-theoreti
 arguments for why


oset-spa
e redu
tions only have any 
han
e of working in very ex
eptional 
ir
umstan
es.

We already saw one type of argument along these lines, when we saw that the redu
tion of

D = 11 supergravity would fail unless the quantity Y

IJ

de�ned in (2.49) was 
onstant; i.e.

a singlet under the isometry group.

It is appropriate now to give a more general dis
ussion. The idea 
an be explained by

again 
onsidering the S

4

redu
tion from D = 11. We remarked that the SO(5)-gauged

supergravity in D = 7 that results from the S

4

redu
tion was in fa
t �rst 
onstru
ted,

many years ago, by instead gauging the ungauged D = 7 supergravity that one gets from a

4-torus redu
tion of D = 11 supergravity. The 
ru
ial point was that the global symmetry

group of the ungauged theory is SL(5; IR), the s
alars are in the 
oset SL(5; IR)=SO(5),

and so the SO(5) subgroup of the global symmetry group 
ould be gauged. This example

shows us that we 
an formulate the following ne
essary 
riterion for whether a 
onsistent

Kaluza-Klein redu
tion of a theory on S

n

might be possible:

If a 
onsistent Kaluza-Klein redu
tion of a theory on S

n

is to be possible,

then a ne
essary 
ondition is that if the theory is instead redu
ed on T

n

, then

the global symmetry group G of the resulting lower-dimensional theory must

have a maximal 
ompa
t subgroup H that is at least large enough to 
ontain

SO(n+ 1).

We emphasise here that by a 
onsistent Kaluza-Klein redu
tion on S

n

, we mean one

giving only a �nite number of lower-dimensional �elds, whi
h in
lude all the gauge bosons

of the SO(n+ 1) isometry group.

The point about the above 
riterion is that if we suppose that we have a 
onsistent

Kaluza-Klein redu
tion on S

n

then we 
an always take the (smooth) limit where the radius

of the sphere tends to in�nity, whi
h has the e�e
t of turning o� the gauging. In this limit

we e�e
tively have the same theory as we would have obtained from a redu
tion instead on

the n-torus. To be able to reverse the pro
ess, and \regauge" the theory, it must therefore

be that the T

n

-redu
ed theory has a large enough global symmetry group to 
ontain the
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isometry group of the n-sphere.

We now have another way to see why Kaluza-Klein sphere redu
tions will almost always

fail to be 
onsistent. In 
hapter 1 we studied the global symmetry groups of toroidally-

redu
ed theories. In parti
ular, we saw that a generi
 theory in
luding gravity will give,

after redu
tion on T

n

, a theory with SL(n; IR) as its global symmetry group. This is


ommonly enlarged to GL(n; IR), if the higher-dimensional theory has an overall global

s
aling symmetry. Either way, the maximal 
ompa
t subgroup is SO(n), and this is 
ertainly

smaller than the SO(n+1) isometry group of the n-sphere. So generi
ally, our new ne
essary


riterion for the existen
e of a 
onsistent sphere redu
tion will not be satis�ed. The only

way to 
ir
umvent this is to start with a theory whose T

n

redu
tion has an enhan
ed global

symmetry group that is suÆ
iently larger than GL(n; IR) that it 
an 
ontain SO(n+1). In

the next se
tion, we shall study when this 
an happen.

2.4.2 Global symmetry enhan
ements

We saw in 
hapter 1 that the global symmetry of a theory redu
ed on T

n


an be studied by

fo
using on the s
alar se
tor of the lower-dimensional theory. From the gravity se
tor alone,

the higher-dimensional metri
 yields, after a redu
tion on T

n

, a set of n dilatoni
 s
alars

~

�,

and a set of

1

2

n(n� 1) axioni
 s
alars A

i

(0)j

. The lower-dimensional s
alar Lagrangian is

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

; (2.69)

where

F

i

(1)j

= 


k

j

dA

i

(0)k

; 


k

j

� [(1 +A

(0)

)

�1

℄

k

j

= Æ

k

j

�A

k

(0)j

+A

k

(0)`

A

`

(0)j

+ � � � : (2.70)

The 
onstant \dilaton ve
tors"

~

b

ij

form the positive roots of SL(n; IR), and

~

b

i;i+1

are the

simple roots. We introdu
e Cartan generators

~

H and positive-roots generators E

i

j

for

SL(n; IR), and de�ne

V = e

1

2

~

��

~

H

�

Y

i<j

e

A

i

(0)j

E

i

j

�

; (2.71)

where the ordering is anti-lexigraphi
al, i.e. � � � (24)(23) � � � (14)(13)(12). Then the s
alar

Lagrangian (2.69) 
an be written as

L =

1

4

tr(�dM

�1

^ dM) ; (2.72)

where M = V

T

V, whi
h shows that it has the SL(n; IR) global symmetry.
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To get an enhan
ed global symmetry in the lower-dimensional theory, we must 
learly

have more s
alar �elds. The idea then will be that these des
ribe a larger 
oset mani-

fold, with a larger symmetry group. At this stage the dis
ussion 
learly be
omes highly

theory-spe
i�
, and so we shall have to fo
us our dis
ussion on some parti
ular 
lass of

higher-dimensional theories. The experien
e with the 4-sphere redu
tion of D = 11 super-

gravity suggests that a natural 
lass of higher-dimensional theory to 
onsider would be one


omprising gravity plus a p-form �eld strength.

Let us begin, therefore, with a D-dimensional theory of gravity and a p-form �eld

strength:

L

D

=

^

R

^

�1l�

1

2

^

�

^

F

p

^

^

F

p

: (2.73)

We now redu
e this on T

n

, and study the form of the s
alar se
tor. The higher-dimensional

metri
 will give a 
ontribution pre
isely of the form (2.69). The antisymmetri
 tensor will

give n!=(p! (n�p)!) axions, A

(0)i

1

���i

p�1

. Their dilaton ve
tors 
an be easily 
al
ulated, using

the same te
hniques that we used in 
hapter 1. To avoid a profusion of indi
es, let us just

denote the new axions by �

�

, with dilaton ve
tors ~a

�

. Thus the total s
alar Lagrangian in

(D � n) dimensions will have the form

L = �

1

2

�d

~

� ^ d

~

��

1

2

X

i<j

e

~

b

ij

�

~

�

�F

i

(1)j

^ F

i

(1)j

�

1

2

X

�

e

~a

�

�

~

�

�G

(1)�

^G

(1)�

; (2.74)

where G

(1)�

= d�

�

+ � � �, and the ellipses represent the various \transgression" terms of the

kind that we saw in 
hapter 1.

The dilaton ve
tors ~a

�

will be found to be the weight ve
tors of some representation

of SL(n; IR). In general, the global symmetry group of the s
alar Lagrangian (2.74) will

just be GL(n; IR). If an enhan
ement of the symmetry group is to o

ur, it must be that

the positive-root ve
tors

~

b

ij

and weight ve
tors ~a

�

of SL(n; IR) \
onspire" to be
ome the

positive-root ve
tors of the larger symmetry group.

The additional simple root ve
tors would have to 
ome from ~a

�

, sin
e the

~

b

ij

are already

supplying the full set of simple roots

~

b

i;i+1

for SL(n; IR). We 
an now invoke a basi
 result

from the 
lassi�
ation of simple Lie algebras, that the ratio of the lengths of any two simple

roots 
an only take a small number of possible values, namely

1

p

3

;

1

p

2

; 1 ;

p

2 ;

p

3 : (2.75)

If the ratio is 1 for all simple roots then the algebra is simply-la
ed.

The upshot of this observation is that if we are to get a suitable enhan
ed global sym-

metry group (i.e. a larger simple group, whi
h 
an have SO(n+1) as a subgroup), then the
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lengths of the ~a

�

dilaton ve
tors must be 
ommensurate with the lengths of the

~

b

ij

dilaton

ve
tors. It is a simple matter to 
al
ulate these lengths, using the Kaluza-Klein formulae

that we derived in 
hapter 1. It turns out that all the

~

b

ij

have the same length j

~

bj as ea
h

other, and all the ~a

�

dilaton ve
tors have the same length j~aj as ea
h other. These two

lengths are given by

j

~

bj

2

= 4 ; j~aj

2

=

2(p� 1)(D � p� 1)

D � 2

: (2.76)

Consider the 
ase where we might get a simply-la
ed enhan
ed symmetry group; this

would require j

~

bj

2

= j~aj

2

. In fa
t this is the only 
ase that in the end turns out to be

relevant. Re
all that we are dis
ussing a ne
essary 
ondition for being able to 
onstru
t a


onsistent Kaluza-Klein sphere redu
tion. It turns out after a mu
h more elaborate analysis

that the 
ases in (2.75) 
orresponding to j

~

bj

2

6= j~aj

2

eventually seem not to allow 
onsistent

sphere redu
tions. Rather than getting bogged down in this analysis here, let us just fo
us

our attention on the one 
ase, j

~

bj

2

= j~aj

2

, that 
an in the end give theories whi
h allow


onsistent sphere redu
tions. From (2.76) we then �nd

D = p+ 3 +

4

p� 3

: (2.77)

Sin
e D and p must be integers, this immediately tells us that p � 7, and then an enumer-

ation of all the integer solutions gives the following:

(D; p) = (11; 4) ; (11; 7) ; (10; 5) : (2.78)

The �rst two 
ases listed here are equivalent, sin
e a 7-form �eld strength in D = 11 
an

be dualised to a 4-form. So we have dedu
ed that there are only two examples of theories


omprising gravity plus a p-form �eld strength that 
ould possibly admit 
onsistent Kaluza-

Klein sphere redu
tions! One of these is an eleven-dimensional theory with a 4-form �eld

strength, and the other is a ten-dimensional theory with a 5-form �eld strength. These

ingredients sound rather familiar, of 
ourse; we seem to be seeing the emergen
e of eleven-

dimensional supergravity and ten-dimensional type IIB supergravity, 
oming out from these

purely bosoni
 
onsiderations of the 
onsisten
y of Kaluza-Klein sphere redu
tions!

In fa
t the 
onne
tion with the supergravities is even stronger. So far, we have only


onsidered a ne
essary 
ondition for getting a global symmetry enhan
ement, namely that

the lengths of the dilaton ve
tors for the s
alars 
oming from the metri
 and the p-form �eld

should be 
ommensurate. When one 
he
ks the global symmetries in more detail, using the

methods des
ribed in detail in 
hapter 1, it turns out that in the D = 11 
ase, the symmetry

enhan
ement o

urs only if there is an extra term added to the basi
 Lagrangian (2.73).
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This is the \Chern-Simons" F

(4)

^ F

(4)

^A

(3)

term, and it must have exa
tly the 
oeÆ
ient

that arises in D = 11 supergravity. So we rea
h the 
on
lusion that the only way that the

(D; p) = (11; 4) theory stands a 
han
e of allowing a 
onsistent sphere redu
tion is if it is

pre
isely the bosoni
 se
tor of D = 11 supergravity,

L

11

=

^

R

^

�1l�

1

2

^

�

^

F

(4)

^

^

F

(4)

+

1

6

^

F

(4)

^

^

F

(4)

^

^

A

(3)

: (2.79)

Similarly, when one 
he
ks in detail for the 
ase of (D; p) = (10; 5), one �nds that

the proposed global symmetry enhan
ements for toroidal redu
tions a
tually do o

ur, but

only if the 5-form �eld is self-dual (or anti-self-dual). Thus again we see that this ne
essary


riterion for being able to make a 
onsistent Kaluza-Klein sphere redu
tion has singled out

a theory that is pre
isely 
ontained within one of the most important of the supergravities.

To summarise, we have seen that only for two distin
t 
ases 
an a D-dimensional theory

of gravity plus a p-form �eld strength have any 
han
e of allowing a 
onsistent Kaluza-

Klein sphere redu
tion, namely D = 11 with a 4-form �eld and the Chern-Simons term,

and D = 10 with a self-dual 5-form. As it turns out, these 
ases where the ne
essary


ondition is satis�ed do in fa
t all allow 
onsistent sphere redu
tions. Spe
i�
ally, we 
an

make a 
onsistent redu
tion on S

4

or S

7

from D = 11 (we saw the S

4

example previously),

and on S

5

from D = 10.

2.4.3 Sphere redu
tion of gravity plus p-form plus dilaton

Before moving on to other things, we may 
onsider a slight generalisation of the previous

dis
ussion. Sin
e the restri
tions that were implied by the requirement of having 
ommen-

surate lengths for the dilaton ve
tors from gravity and the p-form were so strong, we might

try to relax them somewhat by allowing a dilaton already in the higher-dimensional theory.

Thus we may 
onsider starting inD dimensions with a theory of gravity, p-form and dilaton,

with the Lagrangian

L

D

=

^

R

^

�1l�

1

2

^

�d' ^ d'�

1

2

e


 '

^

�

^

F

p

^

^

F

�

: (2.80)

The point now is that we 
an 
hoose the dilaton 
oupling 
 at will, thereby 
hanging the

length of the dilaton ve
tors ~a

�

in the lower dimension. Spe
i�
ally, the previous formula

(2.76) will now 
learly be 
hanged to

j

~

bj

2

= 4 ; j~aj

2

= 


2

+

2(p� 1)(D � p� 1)

D � 2

: (2.81)
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If we again demand that the lengths of the

~

b and ~a dilaton ve
tors be equal, then we 
an

express this as the following equation for 


2

:

1

2

(D � 2) 


2

= �(p� 3)(D � p� 3) + 4 : (2.82)

It is now easy to see that sin
e 
 must be real, we will only get any further possibilities by

having p � 3. (To see this, re
all that without loss of generality, we may assume (be
ause

of Hodge duality) that p �

1

2

D.) In fa
t, two new 
lasses of possibility open up, with D

being allowed to be arbitrary in ea
h 
ase, namely

p = 3 : 


2

=

8

D � 2

;

p = 2 : 


2

=

2(D � 1)

D � 2

: (2.83)

The �rst 
ase here, where we have gravity plus a 3-form �eld strength plus a dilaton in

the higher dimension, a
tually 
orresponds pre
isely to the low-energy e�e
tive a
tion for

the bosoni
 string in D dimensions. The se
ond 
ase, with gravity, a 2-form �eld strength

and a dilaton, is pre
isely the theory that one gets by redu
ing pure gravity in (D + 1)

dimensions on S

1

. (This 
an easily be veri�ed, using results from 
hapter 1.) We shall not

dwell on the details further here, but simply remark that in fa
t 
onsistent sphere redu
tions


an be performed for both 
lasses of theory. Spe
i�
ally, one 
an 
onsistently redu
e the

(D; 3) theories on either S

3

or S

D�3

, and one 
an 
onsistently redu
e the (D; 2) theories on

S

2

.

To 
lose this part of the dis
ussion, let us summarise the situation 
on
erning the en-

han
ement of global symmetry groups, for all the 
ases that in the end turn out to work.

Thus we shall list the \naive" GL(n; IR) global symmetry, and its SO(n) maximal 
ompa
t

subgroup, and then the a
tual enhan
ed global symmetry group that one �nds, for ea
h of

the relevant 
ases.

Dim Torus Naive G=H Enhan
ed G=H Sphere Isometry Gp

D = 11 T

4

GL(4; IR)=SO(4) SL(5; IR)=SO(5) S

4

SO(5)

D = 11 T

7

GL(7; IR)=SO(7) E

7

=SU(8) S

7

SO(8)

D = 10 T

5

GL(5; IR)=SO(5) SL(6; IR)=SO(6) S

5

SO(6)

D T

3

GL(3; IR)=SO(3) GL(4; IR)=SO(4) S

3

SO(4)

D T

D�3

GL(D � 3; IR)=SO(D � 3)

SO(D�2;D�2)

SO(D�2)�SO(D�2)

S

D�3

SO(D � 2)

D T

2

GL(2; IR)=SO(2) GL(3; IR)=SO(3) S

2

SO(3)
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Table 2: The global symmetry enhan
ements for the various relevant toroidal redu
tions.

The last line refers to the theory of gravity, 2-form and dilaton, and the previous two lines

refer to the theory of gravity, 3-form and dilaton.

We see, therefore, that in all these 
ases the hoped-for global symmetry enhan
ement for

the toroidal redu
tions has indeed taken pla
e. In ea
h of these 
ases the a
tual, enhan
ed,

global symmetry group for the redu
tion on T

n

is large enough to 
ontain the isometry

group of the sphere S

n

.

We have seen that a ne
essary 
ondition for being able to perform 
onsistent Kaluza-

Klein sphere redu
tions in these 
ases has been satis�ed, but it should be emphasised that

this is 
ertainly not, of itself, a proof that 
onsistent redu
tions are a
tually possible. In fa
t

at this point we know of no way of proving that the redu
tions 
an a
tually be performed

other than by trying expli
itly to 
onstru
t them.

We already saw in se
tion 2.3.3 that the authors of [8℄ have done all the hard work

for the 
ase D = 11 supergravity redu
ed on S

4

, and they showed that a fully non-linear


onsistent redu
tion really does work in this 
ase. It should be noted that in this example

the redu
tion ansatz requires the in
lusion not only of the seven-dimensional metri
 ds

2

7

and the ten SO(5) Yang-Mills potentials A

ij

(1)

, but also the fourteen s
alars des
ribed by

the unimodular symmetri
 matrix T

ij

, and the �ve 3-forms S

i

(3)

. And when we say that

these other �elds are required, we do mean required. This 
an be seen by looking at the

seven-dimensional equations of motion (2.30){(2.33). The equations of motion (2.31) for

the s
alars show that the Yang-Mills �elds a
t as sour
es for them, so we must in
lude the

s
alars. Similarly, the equations of motion (2.33) for H

i

(4)

� S

i

(3)

show that the Yang-Mills

�elds a
t as sour
es for these �elds too.

The next simplest 
ase to dis
uss is the 5-sphere redu
tion of ten-dimensional gravity


oupled to a self-dual 5-form. This is a subset of the full type IIB supergravity, and fur-

thermore it is itself a 
onsistent trun
ation of type IIB supergravity. (It is the trun
ation

to the SL(2; IR)-singlet se
tor, in fa
t.) In fa
t the S

5

redu
tion of this trun
ated theory

is quite ni
e, in that one only needs to in
lude the �ve-dimensional metri
 ds

2

5

, the SO(6)

Yang-Mills potentials A

ij

(1)

and the 20 s
alars des
ribed by the unimodular symmetri
 tensor

T

ij

in this 
ase. The details of this fully non-linear 
onsistent S

5

redu
tion were worked out

in [11℄. Sin
e it is fairly presentable and 
omplete, we shall give the results here.

The equations of motion for ten-dimensional gravity dŝ

2

10


oupled to the self-dual 5-form
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^

H

(5)

are

^

R

MN

=

1

96

^

H

MPQRS

^

H

N

PQRS

;

d

^

H

(5)

= 0 ;

^

�

^

H

(5)

=

^

H

(5)

: (2.84)

The full S

5

Kaluza-Klein redu
tion ansatz is found to be

dŝ

2

10

= �

1=2

ds

2

5

+ g

�2

�

�1=2

T

�1

ij

D�

i

D�

j

; (2.85)

^

H

(5)

=

^

G

(5)

+

^

�

^

G

(5)

; (2.86)

^

G

(5)

= �g U �

(5)

+ g

�1

(T

�1

ij

�DT

jk

) ^ (�

k

D�

i

)

�

1

2

g

�2

T

�1

ik

T

�1

j`

�F

(2)

ij

^D�

k

^D�

`

; (2.87)

where the �

i

here are six Cartestian 
oordinates on IR

6

, subje
t to the 
onstraint �

i

�

i

= 1,

U � 2T

ij

T

jk

�

i

�

k

��T

ii

; � � T

ij

�

i

�

j

;

F

ij

(2)

= dA

ij

(1)

+ g A

ik

(1)

^A

kj

(1)

; DT

ij

� dT

ij

+ g A

ik

(1)

T

kj

+ g A

jk

(1)

T

ik

;

�

i

�

i

= 1 ; D�

i

� d�

i

+ g A

ij

(1)

�

j

; (2.88)

and �

(5)

is the volume form on the �ve-dimensional spa
etime. The ten-dimensional Hodge

dual

^

�

^

G

(5)

of

^

G

(5)

is derivable from the above expressions, but sin
e it is a rather major task

we shall present the result for that too:

^

�

^

G

(5)

=

1

5!

�

i

1

���i

6

h

g

�4

U �

�2

D�

i

1

^ � � � ^D�

i

5

�

i

6

�5g

�4

�

�2

D�

i

1

^ � � � ^D�

i

4

^DT

i

5

j

T

i

6

k

�

j

�

k

�10g

�3

�

�1

F

i

1

i

2

(2)

^D�

i

3

^D�

i

4

^D�

i

5

T

i

6

j

�

j

i

: (2.89)

Substituting the ansatz into the ten-dimensional equations of motion (2.84), one �nds

after mu
h 
al
ulation that mira
les indeed o

ur, and all the dependen
e on the S

5


oordi-

nates �

i

exa
tly balan
es. The ten-dimensional equations of motion turn out to be satis�ed

if and only if the �ve-dimensional �elds ds

2

5

, A

ij

(1)

and T

ij

satisfy the equations that follow

from the Lagrangian

L

5

= R �1l�

1

4

T

�1

ij

�DT

jk

^ T

�1

k`

DT

`i

�

1

4

T

�1

ik

T

�1

j`

�F

ij

(2)

^ F

k`

(2)

� V �1l (2.90)

�

1

48

�

i

1

���i

6

�

F

i

1

i

2

(2)

F

i

3

i

4

(2)

A

i

5

i

6

(1)

� g F

i

1

i

2

(2)

A

i

3

i

4

(1)

A

i

5

j

(1)

A

ji

6

(1)

+

2

5

g

2

A

i

1

i

2

(1)

A

i

3

j

(1)

A

ji

4

(1)

A

i

5

k

(1)

A

ki

6

(1)

�

;

where the potential V for the s
alar �elds is given by

V =

1

2

g

2

�

2T

ij

T

ij

� (T

ii

)

2

�

: (2.91)
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Sin
e in these notes we have just reported what happens when one substitutes one

of these Kaluza-Klein sphere-redu
tion ans�atze into the higher-dimensional equations of

motion, without a
tually 
arrying it out before the reader's eyes, it is perhaps worth 
om-

menting on what is involved. (Better yet, the reader is invited to try the 
al
ulations for

himself or herself!) One �nds that 99% of the 
omplexity of the 
al
ulations, if not more, is


aused by the presen
e of the s
alar �elds T

ij

. Without the s
alars, the 
al
ulations would

be enormously simpli�ed. They would also, of 
ourse, not work, sin
e it is in
onsistent to

set the s
alars to zero! In
identally, another interesting 
ontrast is that when one is �rst

trying to �gure out what the 
orre
t ansatz should be, it is the determination of the ansatz

for the antisymmetri
 tensor that o

upies the overwhelming majority of one's attention.

The metri
 ansatz in these S

4

and S

5

examples is relatively simple, without too mu
h room

for maneoveur, but the determination of the antisymmetri
 tensor ansatz is mu
h less under


ontrol. Again, the real struggle 
omes from having to 
ope with the s
alar �elds.

It will be seen that the stru
ture of the S

5

redu
tion ansatz is quite similar to the S

4

redu
tion ansatz fromD = 11, given in (2.56) and (2.57). A di�eren
e is that while in the S

4

redu
tion it was ne
essary to in
lude also the 3-form �elds S

i

(3)

, here in the S

5

redu
tion one

needs only gravity, Yang-Mills and the s
alars T

ij

. Essentially, this di�eren
e results from

the fa
t that in the S

4

redu
tion to D = 7, the Yang-Mills bilinears �

ik

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

a
t as sour
es for DS

i

(3)

, i.e.

DS

i

(3)

=

1

8

�

ik

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

+ � � � (2.92)

whereas in the redu
tion on S

5

to D = 5 the stru
ture of these sour
e terms is now

�

ijk

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

, whi
h a
ts as \sour
es" in the Yang-Mills equations themselves:

D�F

ij

(2)

=

1

8

�

ijk

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

+ � � � (2.93)

In fa
t if we now turn to the third of the pure \gravity plus p-form �eld" redu
tions,

namely the S

7

redu
tion of D = 11 supergavity, we �nd that the analogous Yang-Mills

sour
e terms lead to an almighty 
ompli
ation. In this 
ase, the SO(8) Yang-Mills bilinears

in D = 4 are of the form �

i

1

i

2

i

3

i

4

k

1

���k

4

F

k

1

k

2

(2)

^F

k

3

k

4

(2)

, and so these are going to a
t as sour
es

for spin-0 �elds,

D�D�

i

1

i

2

i

3

i

4

=

1

8

�

i

1

i

2

i

3

i

4

k

1

���k

4

F

k

1

k

2

(2)

^ F

k

3

k

4

(2)

: (2.94)

What is more, these are not our old friends the unimodular symmetri
 s
alars T

ij

, of whi
h

there are 35 in the S

7

redu
tion. The �elds �

i

1

i

2

i

3

i

4

are a
tually another set of 35 spin-0

�elds, in a di�erent 35-dimensional irredu
ible representation of SO(8). This new set of 35
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�elds are a
tually pseudos
alars, and if one thought that dealing with the s
alars T

ij

was

diÆ
ult, then by 
omparison dealing with pseudos
alars is an absolute nightmare! In fa
t

in the metri
 ansatz they are still relatively under 
ontrol, and in the 1984 paper [12℄ by de

Wit and Ni
olai that 
omes nearest to proving the 
onsisten
y of the S

7

redu
tion, a very

elegant formula for the metri
 ansatz is obtained, giving expli
itly how the 28 Yang-Mills

gauge �elds, the 35 s
alars and the 35 pseudos
alars enter in the metri
 redu
tion ansatz.

However not even de Wit and Ni
olai, who are probably the most powerful 
al
ulators in

the business, were able to obtain a 
omplete formula for the 4-form ansatz. One looks in

vain for a senten
e and equation in [12℄ that says \...and the ansatz for the 4-form is:"

A somewhat similar level of 
ompexity, although probably a bit less severe, would arise in

the 5-sphere redu
tion if we asked to perform the redu
tion on the full bosoni
 se
tor of type

IIB supergravity, rather than just on the trun
ated SL(2; IR)-singlet se
tor of gravity plus

self-dual 5-form that we presented above. The full gauged supergravity in �ve dimensions

has a total of 42 spin-0 �elds, 
omprising the 20 in T

ij

that we have already met, a pair of

SO(6) singlets that are just the dire
t redu
tions of the type IIB dilaton and axion, and

then twenty further spin-0 �elds arising as two 10-dimensional representations of SO(6).

These latter sets of 10 + 10 �elds are again the dreaded pseudos
alars.

A di�eren
e between the S

5

and the S

7

redu
tions is that with S

5

we had the luxury of

being able to 
onsistently trun
ate the original ten-dimensional theory to just gravity and

the self-dual 5-form, and that eliminated the 10 + 10 of pseudos
alars from the problem.

By 
ontrast, in the S

7

redu
tion there is no analogous 
onsistent trun
ation possible, and

so if one is keeping the full set of 28 SO(8) Yang-Mills gauge �elds then one has no option

but to go for the \Full Monty," and in
lude the 35 pseudos
alars as well as the 35 s
alars.

It is possible to 
onsider simpli�
ations that still give non-trivial 
onsistent redu
tions,

by noting that the gauged supergravities with lesser amounts of supersymmetry are them-

selves 
onsistent trun
ations of the maximal theories. By doing this, a number of gauged

supergravities have been obtained fully and expli
itly as 
onsistent Kaluza-Klein sphere re-

du
tions, in 
ases where the redu
tion to the maximal theory is prohibitively 
ompli
ated.

Two su
h examples are the redu
tion of type IIB supergravity on S

5

to get SU(2) � U(1)

gauged N = 4 supergravity in D = 5 [13℄, and the redu
tion of D = 11 supergravity on S

7

to give SO(4)-gauged N = 4 supergravity in D = 4 [14℄.
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2.5 In
onsisten
y of the T

1;1

redu
tion

We have seen that one 
annot in general make a Kaluza-Klein redu
tion on an n-dimensional

sphere in whi
h only massless modes, in
luding the SO(n+ 1) Yang-Mills gauge �elds, are

retained. The very small number of ex
eptions, where su
h a 
onsistent redu
tion is possible,

in
lude the S

4

and S

7

redu
tions of D = 11 supergravity, and the S

5

redu
tion of type IIB

supergravity.

It is of interest also to see whether 
onsistent redu
tions of the type we are interested

in are possible on other internal spa
es instead of spheres. The answer here seems to be

even bleaker, in the sense that they do not work even in the 
ases of D = 11 and type IIB

supergravities. Let us 
onsider a 
ase of some topi
al interest, namely the Kaluza-Klein

redu
tion of type IIB supergravity on the �ve-dimensional Einstein spa
e sometimes known

as T

1;1

, or Q(1; 1). This is a parti
ular example of a 
lass of �ve-dimensional spa
es Q(p; q),

de�ned as follows. One starts with the four-dimensional base spa
e S

2

�S

2

, and 
onstru
ts

the standard 
lass of homogeneous metri
s on the U(1) bundle over S

2

�S

2

, where the U(1)

�bres have winding numbers p and q over the two S

2

fa
tors. The metri
s 
an be written

as

ds

2

5

= 


2

(dz+p 
os �

1

d�

1

+q 
os �

2

d�

2

)

2

+�

�1

1

(d�

2

1

+sin

2

�

1

d�

2

1

)+�

�1

2

(d�

2

2

+sin

2

�

2

d�

2

2

) ;

(2.95)

where 
 is a 
onstant. One 
an show that for any 
hoi
e of the integers p and q, thene by


hoosing the relations between the 
onstants 
, �

1

and �

2

appropriately, the metri
 
an be

an Einstein metri
. The 
ase p = q = 1 is parti
ularly interesting, be
ause then the Einstein

meti
 admits two Killing spinors, and so one gets a supersymmetri
 �ve-dimensional theory

if type IIB supergravity is redu
ed on this spa
e. The Einstein metri
 in this 
ase is given

by

ds

2

5

= 


2

(dz + 
os �

1

d�

1

+ 
os �

2

d�

2

)

2

+�

�1

1

(d�

2

1

+ sin

2

�

1

d�

2

1

) + �

�1

2

(d�

2

2

+ sin

2

�

2

d�

2

2

) ;

(2.96)

satisfying

R

ab

= 4m

2

g

ab

; (2.97)

with

�

1

= �

2

= 6m

2

; 
 =

1

3m

: (2.98)

In se
tion 2.3.2 we saw that based initially on a linearised analysis of the subse
tor 
om-

prising the seven-dimensional metri
 and Yang-Mills �elds, we 
ould derive the ne
essary
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ondition for a 
onsistent redu
tion from D = 11 that the quantity Y

IJ

de�ned in (2.49)

should be independent of the 
oordinates of the internal 
ompa
tifying 4-spa
e. This was

essential in order that (2.48) should be a self-
onsistent equation, with a mat
hing between

the left-hand side that is 
learly independent of the internal 
oordinates, and the right-hand

side that will depend on these 
oordinates unless Y

IJ

is a 
onstant.

It turns out that the situation is pre
isely analogous in the redu
tion of type IIB su-

pergravity to D = 5. Again, a linearised analysis around an AdS

5

�M

5

ba
kground shows

that if M

5

is an Einstein spa
e satisfying

R

ab

= 4m

2

g

ab

; (2.99)

and with isometry group G, then a Kaluza-Klein redu
tion that retains only the massless

�elds in D = 5, in
luding the gauge bosons of the Yang-Mills group G, 
an be 
onsistent

only if the quantity

Y

IJ

= K

aI

K

J

a

+

1

2

m

�2

L

abI

L

J

ab

(2.100)

is 
onstant, where L

I

ab

� r

a

K

I

b

, and K

I

a

are the Killing ve
tors on M

5

. Satisfying this


ondition is not of itself a guarantee of 
onsisten
y, but violating it is a guarantee of in-


onsisten
y. Of 
ourse it turns out that if M

5

is taken to be the 5-sphere, then Y

IJ

is

independent of the 5-sphere 
oordinates.

It is a
tually a fairly simple matter to apply this test to the T

1;1

(or Q(1; 1)) spa
e

des
ribed above. Its isometry group is SU(2)�SU(2)�U(1), 
orresponding to the isometry

group SU(2)�SU(2) of the S

2

�S

2

base, times the U(1) isometry of the �bres. The Killing

ve
tor for the U(1) fa
tor is just �=�z. The remaining Killing ve
tors 
an all be expressed

rather simply in terms of those on the S

2

� S

2

base spa
e. A general analysis for the

mu
h more extensive 
lass of metri
s on spa
es 
alled Q

q

1

���q

N

n

1

���n

N

, de�ned as U(1) bundles over

CP

n

1

�CP

n

2

� � � �CP

n

N

, with winding numbers q

i

over ea
h CP

n

i

fa
tor, was 
arried out

in [15℄. (Our 
ase is Q

11

11

in this 
lassi�
ation, sin
e S

2

= CP

1

.) Two fa
ts are of great

importan
e in allowing the problem to be expli
itly solved. Firstly, the base spa
es are

K�ahler, and in fa
t they are the produ
t of Einstein-K�ahler spa
es. It is easy to see that

on any 
ompa
t Einstein-K�ahler spa
e M , with R

mn

= � g

mn

, the ea
h Killing ve
tor K

m


an be written as

K

m

= J

mn

�

n

 ; (2.101)

where  is a s
alar eigenfun
tion on M with eigenvalue 2�:

�  = 2� : (2.102)
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Se
ondly, the fa
t that CP

n

is homogenous, with a large symmetry group ((SU(n + 1)),

means that it is easy to 
onstru
t the s
alar eigenfun
tions. Using these fa
ts, it is proven

in [15℄ that none of the SU(n

i

Killing ve
tors on the bundle spa
es Q

q

1

���q

N

n

1

���n

N


an satisfy the


ondition that Y

IJ

in (2.100) is 
onstant. In fa
t, the 
al
ulation is parti
ularly easy for

the 
ase Q

11

11

= T

1;1

of interest to us here, sin
e the base itself is just S

2

� S

2

, with the

Einstein metri
. The simple proof for spa
es in
luding this one is handled as an additional

separate dis
ussion in [15℄.

To summarise, the upshot from the analysis is that none of the SU(2)� SU(2) Killing

ve
tors on T

1;1

has the property that Y

Ij

is 
onstant, while on the other hand the U(1)

Killing ve
tor by itself does give a 
onstant Y

IJ

. In other words, this proves that a 
onsistent

Kaluza-Klein redu
tion on T

1;1

, in whi
h the massless �elds in
luding the SU(2)�SU(2)�

U(1) Yang-Mills �elds are retained, while setting the massive �elds to zero, is impossible. In

fa
t the best thta one 
an do is to retain just the U(1) gauge �eld in a 
onsistent trun
ation.

3 Brane-world Kaluza-Klein Redu
tion

3.1 Introdu
tion

So far, we hav met to prin
ipal types of Kaluza-Klein redu
tion. The �rst, in 
hapter 1,

was redu
tion on a 
ir
le or a torus, for whi
h the 
al
ulations are relatively simple, and the


onsisten
y of the trun
ation to the massless se
tor is guaranteed by simple group theory.

The se
ond type, in 
hapter 2, involved redu
tion on a sphere, together with the trun
ation

to the massless se
tor. In this 
ase it is only in very ex
eptional 
ases that su
h a 
onsistent

redu
tion is possible at all, and we do not have a proper understanding of why it works, in

those ex
eptional 
ases where it does. The 
omplexity of these redu
tions is vastly greater

than that for the 
ir
le and torus redu
tions.

In this 
hapter, we shall study a third 
ategory of 
onsistent Kaluza-Klein redu
tion,

whi
h was only re
ently dis
overed [16℄. It grew out of the re
ent developments in the

Randall-Sundrum \brane-world," and the intriguing suggestion that one 
an extra
t an

e�e
tive four-dimensional spa
etime theory from a �ve-dimensional theory in whi
h the

�fth dimension is non-
ompa
t, and in�nite in extent [17, 18℄. This is rather remarkable,

be
ause normally one would expe
t that with a non-
ompa
t �fth dimension gravity would

really appear to be �ve dimensional! We 
annot simply \pretend" not to see the �fth

dimensional of a Minkowskian 5-dimensional spa
etime, for example, be
ause we would have

to expand all �ve-dimensional �elds in terms of Fourier transforms on the �fth 
oordinate
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(the radius�! 1 limit of a �fth 
ir
le dimension), and this would give us a 
ontinuum of

massive four-dimensional graviton states, extending all the way down to zero mass. This

would turn out just to be des
ribing �ve-dimensional gravity in a (highly disgusied!) way.

The remarkable thing about the Randall-Sundrum brane-world pi
ture is that although

there is still a 
ontinuum of massive graviton states extending down to zero mass, and

the �fth dimension is of in�nite extent, the way in whi
h these modes are distributed as a

fun
tion of mass means that a
tually gravity looks pretty-nearly four-dimensional.

We shall not need to 
on
ern ourselves mu
h with the details of the \Randall-Sundrum

S
enario" here, be
ause the prin
ipal fo
us of this 
hpater will be to present the new kind

of 
onsistent Kaluza-Klein redu
tion that was motivated by it. This \Brane-world Kaluza-

Klein Redu
tion" has 
ertain features in 
ommon with the sphere redu
tions of the previous


hapter, in that the ansatz depends on the extra 
oordinate, and there is no obvious reason

why it should be possible to make a 
onsistent redu
tion. However, the situation here is


onsiderably simpler than in the sphere redu
tions, and so 
al
ulationally it is mu
h easier

to see what is going on.

The basi
 idea is as follows. The Randall-Sundrum brane is 
omposed of two segments

of 5-dimensional Anti-de Sitter spa
etime, AdS

5

. The AdS

5

metri
 
an be written as

dŝ

2

5

= e

�2k z

�

��

dx

�

dx

�

+ dz

2

; (3.1)

where z runs from a Cau
hy horizon at z = �1 to the so-
alled \bounadry" at z = +1.

AdS

5

is being written here in \horospheri
al" or \Poin
ar�e 
oordinates, as a nesting of

4-dimensional Minkowski spa
times, with metri
 ds

2

4

= �

��

dx

�

dx

�

. If one 
al
ulates the


urvature, whi
h is very simple here, one �nds that it is of maximally symmetri
 form,

^

R

ABCD

= k

2

(�

AC

�

BD

� �

AD

�

BC

) ; (3.2)

and the Ri

i tensor is therefore

R

AB

= �4k

2

�

AB

: (3.3)

(We use vielbein 
omponents here for simpli
ity.) Thus the spa
etime has the 
onstant neg-

ative 
urvature 
hara
teristi
 of AdS

5

. A
tually the whole 
onstru
tion generalises straight-

forwardly to higher dimensions, with AdS

D

des
ribed in terms of with Minkowski

D�1

level

surfa
es at 
onstant z, so from now on we shall 
onsider the 
ase of the general dimension.

The Randall-Sundrum brane is obtained, lo
ated at z = 0, by taking the se
tor of (3.1)

(generalised to D dimensions) for z � 0 and joining it on to a Z

2

re
e
tion of itself, thus:

dŝ

2

D

= e

�2k jzj

�

��

dx

�

dx

�

+ dz

2

; (3.4)
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Cal
ulating the 
urvature now, we �nd that sin
e the glueing pro
ess has introdu
ed a

dis
ontinuity in the gradient of the metri
, there are now delta-fun
tions in the 
urvature.

In parti
ular, the Ri

i tensor is given now by

^

R

ab

= �(D � 1)k

2

�

ab

+ 2k Æ(z) �

ab

;

^

R

zz

= �(D � 1) k

2

+ 2k (D � 1) Æ(z) ; (3.5)

The basi
 idea of the brane-world Kaluza-Klein redu
tion 
an be seen in a rather trivial

example, where we attempt only to get pure gravity in (D � 1) dimensions, starting from

gravity with a negative 
osmologi
al 
onstant in D dimensions. All we have to do is to

generalise (3.4) to

dŝ

2

D

= e

�2k jzj

ds

2

D�1

+ dz

2

; (3.6)

where the (D � 1)-dimensional metri
 is as yet unspe
i�ed, ex
pet that it depends only on

the 
oordinates of the (D � 1) dimensions. If we now 
al
ulate the D-dimensional Ri

i

tensor for this metri
, now viewed as a Kaluza-Klein redu
tion ansatz, we get

^

R

ab

= e

2k jzj

R

ab

� (D � 1) k

2

�

ab

+ 2k Æ(z) �

ab

;

^

R

zz

= �(D � 1) k

2

+ 2k (D � 1) Æ(z) ; (3.7)

where we have de
omposed the D-dimensional vielbein index A = (a; z). Leaving aside the

delta-fun
tion terms, whi
h ultimately will be assumed to be supplied by singular brane

sour
es, we see that if the D-dimensional metri
 satis�es the Einstein equation with a

negative 
osmologi
al 
onstant,

^

R

AB

= �(D � 1) k

2

�

AB

; (3.8)

then the (D� 1)-dimensional metri
 ds

2

D�1

satis�es the (D� 1)-dimensional pure Einstein

equation with no 
osmologi
al 
onstant:

R

ab

= 0 : (3.9)

This is therefore a 
onsistent Kaluza-Klein redu
tion.

This example, in the 
ase D = 5, 
an be extended to in
lude a gravitino too, if one starts

with the appropriate gauged supergravity in D = 5. (It needs to be gauged supergravity so

that we have the ne
essary negative 
osmologi
al 
onstant.) In fa
t if we start with minimal

gauged supergravity in D = 5 (
alled N = 2 supergravity, in the s
heme where the possible

supersymmetries in D = 5 are N = 2; 4; 6; 8), then we 
an end up with N = 1 ungauged
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supergravity in D = 4, using the redu
tion s
heme des
ribed above. If we just look at the

bosoni
 se
tor, the gauged N = 2 theory in D = 5 has the Lagrangian

L

5

=

^

R

^

�1l�

1

2

^

�

^

F

(2)

^

^

F

(2)

�

1

3

p

3

^

F

(2)

^

^

F

(2)

^

^

A

(1)

� 12g

2

^

�1l ; (3.10)

where

^

A

(1)

is the \graviphoton" of the N = 2 supermuliplet, and g is the gauge 
oupling


onstant. (The N = 2 gravitini in D = 5 
arry 
harge �g with respe
t to the graviphoton.)

The Kaluza-Klein redu
tion s
heme in the bosoni
 se
tor is then pre
isely as above for the

metri
, together with setting the graviphoton to zero:

dŝ

2

5

= e

�2k jzj

ds

2

4

+ dz

2

;

^

F

(2)

= 0 : (3.11)

Substituting into the equations of motion following from (3.10), one gets the equations of

motion of the bosoni
 se
tor of ungauged N = 1 supergravity in four dimensions, namely

R

ab

= 0 : (3.12)

Noti
e that we do not get any four-dimensional �eld out of the original 5-dimensional

graviphoton

^

A

(1)

. Mu
h was made of this in some of the literature, but a
tually it is a

very reasonable result. It is well known that the basi
 p-brane solutions, in
luding domain

walls of the form (3.4), break half of the supersymmetry of the supergravity in whi
h they

are a solution. It is thus very reasonable to expe
t to see just half the supersymmetry of

the higher-dimensional theory, when one looks for lower-dimensional �elds lo
alised on the

brane. In this 
ase, for example, we are seeing N = 1 ungauged supergravity lo
alised on

the 4-dimensional brane, starting from N = 2 gauged supergravity in the 5-dimensional

bulk.

If we want to see more interesting �elds on the 4-dimensional brane, we should start

with larger theories, with more supersymmetry, in the 5-dimensional bulk. For example,

if we start with N = 4 gauged supergravity in �ve dimensions, then we should end up

with N = 2 ungauged supergravity in four dimensions. The bosoni
 se
tor of this theory


omprises the Einstein-Maxwell system, so now we 
an expe
t to get a photon as well as

gravity lo
alised on the brane. This is interesting for many reasons, in
luding the fa
t that

we 
an now study BPS bla
k-hole solutions on the brane.

In the next se
tion, we shall see just how the redu
tion to N = 2 supergravity works.
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3.2 N = 2 supergravity in D = 4 from gauged N = 2 supergravity in D = 5

Here, we show that we 
an obtain ungauged four-dimensional Maxwell-Einstein (N = 2)

supergravity as a 
onsistent Kaluza-Klein redu
tion of gauged �ve-dimensional N = 4

supergravity, within a Randall-Sundrum type of framework. The bosoni
 se
tor of the

�ve-dimensional theory 
omprises the metri
, a dilatoni
 s
alar �, the SU(2) Yang-Mills

potentials A

i

(1)

, a U(1) gauge potential B

(1)

, and two 2-form potentials A

�

(2)

whi
h transform

as a 
harged doublet under the U(1). The Lagrangian [19℄, expressed in the language of

di�erential forms that we shall use here, is given by [13℄

L

5

= R

~

�1l�

1

2

~

�d� ^ d��

1

2

X

4

~

�G

(2)

^G

(2)

�

1

2

X

�2

(

~

�F

i

(2)

^ F

i

(2)

+

~

�A

�

(2)

^A

�

(2)

)

+

1

2g

�

��

A

�

(2)

^ dA

�

(2)

�

1

2

A

�

(2)

^A

�

(2)

^B

(1)

�

1

2

F

i

(2)

^ F

i

(2)

^B

(1)

+4g

2

(X

2

+ 2X

�1

)

~

�1l ; (3.13)

where X = e

�

1

p

6

�

, F

i

(2)

= dA

i

(1)

+

1

p

2

g �

ijk

A

j

(1)

^ A

k

(1)

and G

(2)

= dB

(1)

, and

~

� denotes the

�ve-dimensional Hodge dual. It is useful to adopt a 
omplex notation for the two 2-form

potentials, by de�ning

A

(2)

� A

1

(2)

+ iA

2

(2)

: (3.14)

Our Kaluza-Klein redu
tion ansatz involves setting the �elds �, A

i

(1)

and B

(1)

to zero,

with the remaining metri
 and 2-form potentials given by

ds

2

5

= e

�2k jzj

ds

2

4

+ dz

2

;

A

(2)

=

1

p

2

e

�k jzj

(F

(2)

� i �F

(2)

) ; (3.15)

where ds

2

4

is the metri
 and F

(2)

is the Maxwell �eld of the four-dimensional N = 2 super-

gravity, and � denotes the Hodge dual in the four-dimensional metri
.

To show that this ansatz gives a 
onsistent redu
tion to four dimensions, we note from

(3.13) that the �ve-dimensional equations of motion are [13℄

d(X

�1

~

� dX) =

1

3

X

4

~

�G

(2)

^G

(2)

�

1

6

X

�2

(

~

�F

i

(2)

^ F

i

(2)

+

~

�

�

A

(2)

^A

(2)

)

�

4

3

g

2

(X

2

�X

�1

)

~

� 1l;

d(X

4

~

�G

(2)

) = �

1

2

F

i

(2)

^ F

i

(2)

�

1

2

�

A

(2)

^A

(2)

;

d(X

�2

~

�F

i

(2)

) =

p

2 g �

ijk

X

�2

~

�F

j

(2)

^A

k

(1)

� F

i

(2)

^G

(2)

;

X

2

~

�F

(3)

= �i g A

(2)

;

R

MN

= 3X

�2

�

M

X �

N

X �

4

3

g

2

(X

2

+ 2X

�1

) g

MN

+

1

2

X

4

(G

M

P

G

NP

�

1

6

g

MN

G

2

(2)

) +

1

2

X

�2

(F

i P

M

F

i

NP

�

1

6

g

MN

(F

i

(2)

)

2

)
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+

1

2

X

�2

(

�

A

(M

P

A

N)P

�

1

6

g

MN

jA

(2)

j

2

) ; (3.16)

where

F

(3)

= DA

(2)

� dA

(2)

� i g B

(1)

^A

(2)

: (3.17)

It follows from (3.15) that

F

(3)

= �

1

p

2

k �(z) e

�k jzj

(F

(2)

� i �F

(2)

) ^ dz +

1

p

2

e

�k jzj

(dF

(2)

� i d�F

(2)

) ; (3.18)

where �(z) = �1 a

ording to whether z > 0 or z < 0. Thus the equation of motion for F

3

implies �rst of all that

dF

(2)

= 0 ; d�F

(2)

= 0 ; (3.19)

and so then, after taking the Hodge dual of the remaining terms in (3.18), we �nd from

(3.16) that

�

1

p

2

k �(z) e

�k jzj

(�F

(2)

+ iF

(2)

) = �

1

p

2

i g e

�k jzj

(F

(2)

� i �F

(2)

) ; (3.20)

whi
h is identi
ally satis�ed provided that

g =

(

+k ; z > 0 ;

�k ; z < 0 :

(3.21)

Sin
e k is always positive (to ensure the trapping of gravity), this means that the Yang-

Mills gauge 
oupling 
onstant g has opposite signs on the two sides of the domain wall. This

implies that the Randall-Sundrum s
enario 
annot arise stri
tly within the standard �ve-

dimensional gauged supergravity, where g is a �xed parameter. It has a 
ompletely natural

explanation from a ten-dimensional viewpoint, where g arises as a 
onstant of integration

in the solution for an antisymmetri
 tensor, and the imposed Z

2

symmetry in fa
t requires

that the sign must 
hange a
ross the wall. For 
onvenien
e, however, we shall 
ommonly

treat the 
oupling 
onstant g of the gauged supergravity as if its sign 
an be freely 
hosen

to be opposite on opposite sides of the domain wall, with the understanding that this 
an

be justi�ed from the higher-dimensional viewpoint.

The equations of motion for X and G

(2)

are satis�ed sin
e for our ansatz

�

A

(2)

^A

(2)

= 0 (3.22)

and

~

�A

(2)

= iA

(2)

. The only remaining non-trivial equation in (3.16) is the Einstein equa-

tion. Substituting (3.7) with D = 5 into the �ve-dimensional Einstein equations, we �nd

that the \internal" (zz) 
omponent is identi
ally satis�ed, whilst the lower-dimensional


omponents imply k

2

= g

2

(
onsistent with (3.21)), and

R

��

�

1

2

Rg

��

=

1

2

(F

��

F

�

�

�

1

4

F

2

g

��

) ; (3.23)
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where R

��

is the four-dimensional Ri

i tensor. Thus we have shown that the ansatz (3.15),

when substituted into the equations of motion for the �ve-dimensional N = 2 gauged

supergravity, gives rise to the equations of motion (3.19) and (3.23) of four-dimensional

Einstein-Maxwell supergravity.

The fa
t that the Kaluza-Klein redu
tion that we have performed here gives a 
onsistent

redu
tion of the �ve-dimensional equations of motion to D = 4 is somewhat non-trivial,

bearing in mind that the �ve-dimensional �elds in (3.15) are required to depend on the


oordinate z of the �fth dimension. The manner in whi
h the z-dependen
e mat
hes in

the �ve-dimensional �eld equations so that 
onsistent four-dimensional equations of motion

emerge is rather analogous to the situation in a non-trivial Kaluza-Klein sphere redu
tion,

although in the present 
ase the required \
onspira
ies" are rather more easily seen.

One indi
ation of the lo
alisation of gravity in the usual Randall-Sundrum model is the

o

urren
e of the exponential fa
tor in the metri
 ds

2

5

= e

�2k jzj

dx

�

dx

�

+ dz

2

, whi
h falls

o� as one moves away from the wall. It is therefore satisfa
tory that we have found that

this same exponential fall-o� o

urs for the 
omplete redu
tion ansatz (3.15), whi
h we

derived purely on the basis of the requirement of 
onsisten
y of the embedding. In fa
t the

very 
onsisten
y of the brane-world Kaluza-Klein redu
tion immediately guarantees that

the lo
alisation of gravity on the brane will extend to the entire supergravity multiplet.

This 
an be seen from the fa
t that the 
onsisten
y implies that if the redu
tion ansatz

is substituted into the higher-dimensional Lagrangian, it will give a result that has just a

homogeneous fa
tor of e

�2k jzj

multiplying the z-independent lower-dimensional Lagrangian.

Thus the integration over z 
onverges for the whole Lagrangian, exa
tly as it did for the

Einstein-Hilbert term.

Of 
ourse the N = 4 gauged �ve-dimensional supergravity that was our starting point

here 
an itself be obtained from a 5-sphere redu
tion of type IIB supergravity, and so the

entire dis
ussion 
an be reinterpreted ba
k in D = 10. Be
ause it would involve setting up

quite a lot more formalism we shall not present the reults here; they are dis
ussed in detail

in [16℄. In the next se
tion, we shall present an analogous dis
ussion for another example of

a brane-world Kaluza-Klein redu
tion, in a 
ase where we have already extensively studied

the asso
iated sphere redu
tion in 
hapter 2 of these le
tures.

The idea that we have exhibited here for the 
onsistent Kaluza-Klein redu
tion of gauged

N = 4 supergravity in D = 5 to ungauged N = 2 supergravity in D = 4 
an be generalised

to many other 
ases. In general, a gauged supergravity in D dimensions turns out to

allow a 
onsistent brane-world Kaluza-Klein redu
tion to ungauged supergravity in (D� 1)
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dimensions, with one half of the original supersymmetry [16℄. The prin
ipal 
ases that have

been worked out, in [16℄ and [20℄, are summarised in the following Table:

D D-dimensional Theory (D � 1)-dimensional Theory from

Brane-world Redu
tion

10 Massive IIA D = 9, N = 1

8 SU(2)-gauged N = 2 D = 7, N = 2

7 SO(5)-gauged N = 4 D = 6, N = (2; 0)

6 SU(2)-gauged N = 2 D = 5, N = 2

5 SO(6) gauged N = 8 D = 4, N = 4

Table 3: The ungauged supergravities in (D � 1) dimensions obtained by brane-world

Kaluza-Klein redu
tions.

We shall present one further example here, whi
h is quite intriguing be
ause it shows how

a 
hiral supergravity arises from a brane-world Kaluza-Klein redu
tion of a non-
hiral one.

The example we shall give is one of those worked out in [20℄; the brane-world redu
tion of

SO(5)-gauged N = 4 supergravity in D = 7 to give ungauged N = (2; 0) 
hiral supergravity

in D = 6.

3.3 (2; 0) supergravity in D = 6 from SO(5)-gauged supergravity in D = 7

We already dis
ussed the SO(5)-gauged seven-dimensional supergravity in se
tion 2.3.1.

Let us just repeat the key details here. The bosoni
 Lagrangian for maximal SO(5)-gauged

supergravity in D = 7 
an be written as

L

7

=

^

R

^

�1l�

1

4

T

�1

ij

�DT

jk

^ T

�1

k`

DT

`i

��

1

4

T

�1

ik

T

�1

j`

^

�

^

F

ij

(2)

^

^

F

k`

(2)

��

1

2

T

ij

^

�

^

S

i

(3)

^

^

S

j

(3)

+

1

2g

^

S

i

(3)

^

^

H

i

(4)

�

1

8g

�

ij

1

���j

4

^

S

i

(3)

^

^

F

j

1

j

2

(2)

^

^

F

j

3

j

4

(2)

+

1

g




(7)

� V

^

�1l ; (3.24)

where

^

H

i

(4)

� D

^

S

i

(3)

= d

^

S

i

(3)

+ g

^

A

ij

(1)

^

^

S

j

(3)

: (3.25)

The potential V is given by

V =

1

2

g

2

�

2T

ij

T

ij

� (T

ii

)

2

�

; (3.26)

and 


(7)

is a Chern-Simons type of term built from the Yang-Mills �elds, whi
h has the

property that its variation with respe
t to

^

A

ij

(1)

gives

Æ


(7)

=

3

4

Æ

j

1

j

2

j

3

j

4

i

1

i

2

k`

^

F

i

1

i

2

(2)

^

^

F

j

1

j

2

(2)

^

^

F

j

3

j

4

(2)

^ Æ

^

A

k`

(1)

: (3.27)
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Let us now set the SO(5) Yang-Mills potentials A

ij

(1)

to zero, and take the s
alars to be

trivial also, T

ij

= Æ

ij

. This is not in general a 
onsistent trun
ation, sin
e the remaining

�elds

^

S

i

(3)

would a
t as sour
es for the Yang-Mills and s
alar �elds that have been set to

zero. If we impose that these sour
e terms vanish, i.e.

^

S

i

(3)

^

^

S

j

(3)

= 0 ;

^

�

^

S

i

(3)

^

^

S

j

(3)

= 0 ; (3.28)

then the trun
ation will be 
onsistent. (As we shall see below, these sour
es terms will

indeed vanish in the brane-world redu
tion that we shall be 
onsidering.) The remaining

equations of motion following from (3.24) are then

d

^

�

^

S

i

(3)

= 0 ; d

^

S

i

(3)

= g

^

�

^

S

i

(3)

;

^

R

AB

=

1

4

(

^

S

i

ACD

^

S

i

B

CD

�

2

15

(S

i

(3)

)

2

ĝ

AB

)�

3

2

g

2

ĝ

AB

: (3.29)

We �nd that the following Kaluza-Klein Ansatz for the seven-dimensional �elds yields

a 
onsistent redu
tion to six dimensions:

dŝ

2

7

= e

�2k jzj

ds

2

6

+ dz

2

;

^

S

i

(3)

= e

�2k jzj

F

i

(3)

;

^

A

ij

(1)

= 0 ; T

ij

= Æ

ij

; (3.30)

where the 
onstant k is related to the gauge 
oupling 
onstant g by

g =

(

�2k ; z > 0 ;

+2k ; z < 0 :

(3.31)

Substituting this Ansatz into the �eld equations of seven-dimensional SO(5)-gauged su-

pergravity, we �nd that all the equations are 
onsistently satis�ed provided that the six-

dimensional �elds ds

2

6

and F

i

(3)

satisfy the equations of motion of six-dimensional ungauged

N = (2; 0) 
hiral supergravity, namely

F

i

(3)

= �F

i

3

; dF

i

(3)

= 0 ; R

��

=

1

4

F

i

���

F

i

�

��

: (3.32)

Note that the self-duality of the 3-forms ensures that the 
onstraints (3.28) are indeed

satis�ed, sin
e F

i

(3)

^ F

j

(3)

= 0 for any pair of self-dual 3-forms. Of 
ourse the self-duality of

the F

i

(3)

�elds also implies one 
annot write a 
ovariant Lagrangian for this theory.

It is intriguing that the 
onsisten
y of the Kaluza-Klein redu
tion here depends 
ru
ially

on the fa
t that the �elds in the six-dimensional theory are restri
ted to those of the 
hiral

N = (2; 0) supergravity. Thus 
onsisten
y has for
ed us to obtain a 
hiral theory in D = 6,

even though we started (of 
ourse) with a non-
hiral theory in D = 7. This is an interesting
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new feature in these brane-world redu
tions; usually, one would have said that Kaluza-Klein

redu
tions 
ould not generate 
hiral theories from non-
hiral starting points.

Sin
e we have already dis
ussed the exa
t embedding of seven-dimensional maximal

SO(5)-gauged supergravity in D = 11, via the S

4

redu
tion, it is now a simple matter to

lift the above Ansatz to an embedding in eleven-dimensional supergravity. Using the S

4

redu
tion Ansatz of [8℄, whi
h we presented in se
tion 2.3.3, we therefore obtain

dŝ

2

11

= e

�2k jzj

ds

2

6

+ dz

2

+ g

�2

d�

i

d�

i

;

^

F

(4)

=

1

8g

3

�

i

1

���i

5

�

i

1

d�

i

2

^ � � � ^ d�

i

5

� g

�1

d(�

i

e

�2k jzj

F

i

(3)

) ; (3.33)

where �

i

are 
oordinates on IR

5

, subje
t to the 
onstraint

�

i

�

i

= 1 ; (3.34)

whi
h de�nes the unit 4-sphere. This gives us a dire
t redu
tion from D = 11 supergravity

to 
hiral N = (2; 0) supergravity in D = 6.

3.4 Puzzles on the horizon

There are some 
urious and perhaps slightly surprising features of the brane-world redu
-

tions that we have been 
onsidering in this 
hapter. At �rst sight it looks very appealing to

have gravity in the lower dimension des
ribed in terms of the brane-world metri
 redu
tion

dŝ

2

= e

�2k jzj

ds

2

+ dz

2

: (3.35)

If we take the lower-diensional metri
 to be 
lose to Minkowski spa
etime, ds

2

= (�

��

+

h

��

) dx

�

dx

�

, then at looks rather satisfa
tory that the 
u
tuation h

��

is multiplied by

the fa
tor e

�2k jzj

, whi
h de
reases exponentially as one approa
hes the Cau
hy horizons at

z = �1. However, this is perhaps a bit misleading, as one 
an see by looking at (3.35)

itself. If one 
al
ulates the Riemman tensor

^

R

ABCD

of the D-dimensional metri
 dŝ

2

in

terms of the 
urvature of the (D � 1)-dimensional metri
 ds

2

, one �nds that the s
alar

invariant built from the square of the Riemman tensor is given by

^

R

ABCD

^

R

ABCD

= e

4k jzj

R

ab
d

R

ab
d

� 4k

2

e

2k jzj

R+ 2D(D � 1) k

4

(3.36)

in the bulk, where R

ab
d

and R are the Riemann tensor and Ri

i s
alar of the redu
ed

metri
 ds

2

. This implies that any 
urvature of the lower-dimensional metri
 for whi
h

R

ab
d

R

ab
d

or R is non-zero, no matter how small, will lead to 
urvature singularities in

the higher-dimensional metri
 on the Cau
hy horizons at z = �1. If an inmate in the
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brane-world at z = 0 were to let a pin drop, the resulting disturban
e in the gravitational

�eld would lead to a 
urvature singularity on the Cau
hy horizon. The legendary butter
y

in the Amazonian rain forest that 
aps its wing and 
auses a hurri
ane in Florida pales into

insigni�
an
e by 
omparison!

9

The basi
 point here is that when a metri
 is s
aled by a


onformal fa
tor that gets small, the 
urvature gets large.

These singularities were dis
ussed in detail for a S
hwarzs
hild bla
k hole on the brane

in [21℄, and for BPS Reissner-Nordstr�om bla
k holes on the brane, in the 
ontext of N = 2

supergravity on the brane, in [16℄. In [22℄, it was argued that su
h 
urvature singularities

on the horizons arise as an artefa
t of 
onsidering only the zero-mode of the metri
 tensor,

and that if the massive Kaluza-Klein modes are taken into a

ount they 
ould a
tually

be
ome dominant near the horizons, and may lead to a �nite 
urvature there. The results

of [16℄ and [20℄ that we have been des
ribing in this 
hapter suggest that the phenomenon

of diverging 
urvature on the Cau
hy horizons in the brane-world redu
tions may be more

severe. Spe
i�
ally these results show that the brane-world redu
tions 
orrespond to exa
t

fully non-linear 
onsistent embeddings in whi
h the massive Kaluza-Klein modes 
an be


onsistently de
oupled. This implies that there 
ertainly exist exa
t solutions on the brane-

world where massive Kaluza-Klein modes do not enter the pi
ture, even at the non-linear

level. For these solutions, the 
urvature will inevitably diverge at the horizons. It be
omes

ne
essary, therefore, either to live with these singularities or else to �nd a prin
iple, perhaps

based on the imposition of appropriate boundary 
onditions, for reje
ting the solutions of

this type.

These, then, are puzzles that arise out of the brane-world redu
tions. Notwithstanding

this, it is intriguing that exa
t 
onsistent Kaluza-Klein redu
tions are possible within the

brane-world s
enario.
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