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Plan of the talk

The totally non-negative Grassmannian (also called positive Grassmannian)
is a subset of the real Grassmannian with remarkable properties.

I will start by explaining some of the reasons why mathematicians have
been interested in it.

I’ll then describe how it arose naturally in a physical context – shallow
water waves (via the KP hierarchy). Is this setting related to scattering
amplitudes?

Background on the positive Grassmannian

Why do mathematician’s care?

Interactions of shallow water waves

Using the positive Grassmannian and the KP equation to study
shallow water waves

What shallow water waves taught us (regularity ⇔ positivity; tropical
curves; criterion for reduceness; nonplanar plabic graphs)
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Total positivity on the Grassmannian

The real Grassmannian and its positive and non-negative parts

The Grassmannian Grk,n(R) = {V | V ⊂ R
n, dimV = k}

Represent an element of Grk,n(R) by a full-rank k × n matrix A.

(

1 0 −1 −2
0 1 3 2

)

Can think of Grk,n(R) as Matk,n/ ∼.

Given I ∈
([n]
k

)

, the Plücker coordinate ∆I (A) is the minor of the k × k
submatrix of A in column set I .

The totally positive part of the Grassmannian (Grk,n)>0 is the subset of
Grk,n(R) where all Plucker coordinates ∆I (A) > 0.

Similarly define the TNN Grassmannian (Grk,n)≥0 using ∆I (A) ≥ 0.
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Background on total positivity

1930’s: Classical theory of totally positive matrices. A square matrix is
totally positive (TP) if every minor is positive i.e. the determinant of every
square sub-matrix is positive. Similarly define the totally non-negative
(TNN) matrices.





3 1 3
2 2 4
2 3 10





1990’s: Lusztig developed total positivity in Lie theory. Defined the TP
and TNN parts of a reductive group, so that TP part of GLn is totally
positive matrices. Also defined TP and TNN parts of any flag variety
(includes Grk,n).

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 4 / 40



Background on total positivity

1930’s: Classical theory of totally positive matrices. A square matrix is
totally positive (TP) if every minor is positive i.e. the determinant of every
square sub-matrix is positive. Similarly define the totally non-negative
(TNN) matrices.





3 1 3
2 2 4
2 3 10





1990’s: Lusztig developed total positivity in Lie theory. Defined the TP
and TNN parts of a reductive group, so that TP part of GLn is totally
positive matrices. Also defined TP and TNN parts of any flag variety
(includes Grk,n).

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 4 / 40



Background on total positivity

1930’s: Classical theory of totally positive matrices. A square matrix is
totally positive (TP) if every minor is positive i.e. the determinant of every
square sub-matrix is positive. Similarly define the totally non-negative
(TNN) matrices.





3 1 3
2 2 4
2 3 10





1990’s: Lusztig developed total positivity in Lie theory. Defined the TP
and TNN parts of a reductive group, so that TP part of GLn is totally
positive matrices. Also defined TP and TNN parts of any flag variety
(includes Grk,n).

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 4 / 40



Background on total positivity (cont.)

1995-2000: Fomin and Zelevinsky studied Lusztig’s theory.

Sample question: “How many and which minors must we test, to
determine whether a given matrix is totally positive?”

Answer uses combinatorics of double wiring diagrams for longest
permutation in the symmetric group.

To answer the same question replacing “positive” with
“non-negative,” need to partition the space of TNN matrices into
cells and answer the question separately for each cell (each cell is
equi-dimensional; the biggest cell is the set of TP matrices). Cells
labeled by pairs of permutations.

This and related questions led them to discover cluster algebras.
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Background on total positivity (cont.)

1997-2003: Rietsch and March-Rietsch studied TP parts of flag varieties.

2001-2006: Postnikov studied (Grk,n)≥0.

His theory is in many ways parallel to study of totally positive
matrices.

He gave a decomposition into cells, indexed by decorated
permutations (among other things).

Plabic graphs are the analogue of double wiring diagrams, and allow
one to answer the question “How many minors, and which ones, must
we test to determine whether an element of the Grassmannian is
totally positive?”
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Postnikov’s decomposition of (Grk ,n)≥0 into positroid cells

Recall: Elements of (Grk,n)≥0 are represented by full-rank k × n matrices
A, with all k × k minors ∆I (A) being non-negative.

Let M ⊂
([n]
k

)

. (Think of this as a collection of Plücker coordinates.)
Let S tnn

M := {A ∈ (Grk,n)≥0 | ∆I (A) > 0 iff I ∈ M}.

(Postnikov) If S tnn
M is non-empty it is a (positroid) cell, i.e. homeomorphic

to an open ball. Positroid cells of (Grk,n)≥0 are in bijection with:

Decorated permutations on [n] with k weak excedances.

Γ

-diagrams contained in a k × (n − k) rectangle.

Equivalence classes of reduced planar-bicolored graphs.
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How many cells does the TNN Grassmannian have?

Let Ak,n(q) be the polynomial in q whose qr coefficient is the number of
positroid cells in Gr+k,n which have dimension r .

Theorem (W.): Let [i ] := 1 + q + q2 + · · · + qi−1. Then

Ak,n(q) =
k−1
∑

i=0

(

n

i

)

q−(k−i)2([i − k]i [k − i + 1]n−i − [i − k + 1]i [k − i ]n−i ).

Theorem (W.): Define Ek,n(q) := qk−n
∑n

i=0(−1)i
(

n
i

)

Ak,n−i (q). Then:

Ek,n(0) is the Narayana number Nk,n = 1
n

(

n
k

)(

n
k−1

)

Ek,n(1) is the Eulerian number Ek,n =
∑k

i=0(−1)i
(

n+1
i

)

(k − i)n.

Remark: Narayana and Eulerian numbers appear in the BCFW recurrence
and twistor string theory (Eulerian connection: Spradlin-Volovich).
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What does the TNN Grassmannian look like?

The face poset of a cell complex

The face poset F (K ) of a cell complex K is the partially ordered set which
specifies when one cell is contained in the closure of another.

(Postnikov) Explicit description of face poset of (Grk,n)≥0.
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The face poset of (Gr2,4)≥0
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The face poset of (Gr2,4)≥0
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What does the positive Grassmannian look like?

Conjecture (Postnikov): The (Grk,n)≥0 is homeomorphic to a ball, and
its cell decomposition is a regular CW complex – i.e. the closure of every
cell is homeomorphic to a closed ball with boundary a sphere.

Theorem (W.): The face poset of (Grk,n)≥0 is the face poset of some
regular CW decomposition of a ball. In particular, it is an Eulerian poset.
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What does the positive Grassmannian look like?

Theorem (Rietsch-W.)

Postnikov’s conjecture is true up to homotopy-equivalence: the closure of
every cell is contractible, with boundary homotopy-equivalent to a sphere.
In particular, (Grk,n)≥0 is contractible, with boundary homotopy-equivalent
to a sphere.

Remark

All these results hold in much greater generality. Rietsch gave a cell
decomposition of (G/P)≥0 (1997) which coincides with Postnikov’s in the
case of the Grassmannian, and described its face poset.

Moreover, we showed that (G/P)≥0 is contractible, with boundary
homotopy-equivalent to a sphere, and the same is true for the closure of
each cell.
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The interaction of shallow water waves

Question: Suppose we’re given the slopes and directions of a finite
number of solitons (waves maintaining their shape and traveling at
constant speed) that are traveling from the boundary of a disk towards the
center. How will these waves interact?
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Many possible combinatorial configurations can arise!

How can we describe them?
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The positive Grassmannian and shallow water waves

The key to answering the question lies in the study of the positive
Grassmannian and the KP equation.

The KP equation

∂

∂x

(

−4
∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3

)

+ 3
∂2u

∂y2
= 0

Proposed by Kadomtsev and Petviashvili in 1970 (in relation to KdV)

References: Sato, Hirota, Freeman-Nimmo, many others ...

Solutions provide a model for shallow water waves
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Soliton solutions to the KP equation

Recall: the Grassmannian Grk,n(R) = {V | V ⊂ R
n, dimV = k}.

Represent an element of Grk,n(R) by a full-rank k × n matrix A.

Given I ∈
([n]
k

)

, ∆I (A) is the minor of the I -submatrix of A.

From A ∈ Grk,n(R), can construct τA, and then a solution uA of the KP equation.

(cf Sato, Hirota, Satsuma, Freeman-Nimmo, ...)

The τ function τA

Fix real boundary data κj such that κ1 < κ2 < · · · < κn.
(κj ’s control slopes of waves coming in from the disk)
Define Ej (t1, . . . , tn) := exp(κj t1 + κ2j t2 + · · · + κnj tn).
For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . .Ejk

∏

ℓ<m(κjm − κjℓ).
The τ -function is

τA(t1, t2, . . . , tn) :=
∑

J∈([n]k )

∆J(A)EJ (t1, t2, . . . , tn).
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Soliton solutions to the KP equation

The τ function τA

Choose A ∈ Grk,n(R), and fix κj ’s such that κ1 < κ2 < · · · < κn.
Define Ej (t1, . . . , tn) := exp(κj t1 + κ2j t2 + · · · + κnj tn).
For J = {j1, . . . , jk} ⊂ [n], define EJ := Ej1 . . .Ejk

∏

ℓ<m(κjm − κjℓ).
τA(t1, t2, . . . , tn) :=

∑

J∈([n]k )
∆J(A)EJ(t1, t2, . . . , tn).

A solution uA(x , y , t) of the KP equation (Freeman-Nimmo)

Set x = t1, y = t2, t = t3 (treat other ti ’s as constants). Then

uA(x , y , t) = 2
∂2

∂x2
ln τA(x , y , t) is a solution to KP. (1)

Note: If all ∆I (A) ≥ 0, this solution is everywhere regular. Therefore we
will initially restrict attention to those A ∈ (Grk,n)≥0.
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Visualing soliton solutions to the KP equation

The contour plot of uA(x , y , t)

We analyze uA(x , y , t) by fixing t, and drawing its contour plot Ct(uA) for
fixed times t – this will approximate the subset of the xy plane where
uA(x , y , t) takes on its maximum values.
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Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Definition of the contour plot at fixed time t

uA(x , y , t) is defined in terms of τA(x , y , t) :=
∑

I∈([n]k )
∆I (A)EI (x , y , t).

At most points (x , y , t), τA(x , y , t) will be dominated by one term –
– at such points, uA(x , y , t) ∼ 0.
Define the contour plot Ct(uA) to be the subset of the xy plane where two
or more terms dominate τA(x , y , t).
This approximates the locus where uA(x , y , t) takes on its max values.
When the κi ’s are integers, Ct(uA) is a tropical curve.

1 3

2

E E

E

Labeling regions of the contour plot by dominant exponentials

One term EI dominates uA in each region of the complement of Ct(uA).
Label each region by the dominant exponential.

Lauren K. Williams (UC Berkeley) The Positive Grassmannians March 2014 20 / 40



Visualizing soliton solutions to the KP equation

Generically, interactions of line-solitons are trivalent or are X-crossings
(think of this as a crossing of two edges in a non-planar graph).

[1,3]
[2,5] [3,7]

[2,4]

[1,5]

[2,5]

[2,3]

[6,8]

[7,9]

[6,9] [4,8]

[8,9]

[6,7]

[4,7]

[4,5]

E1246

E4589

[1,7]

[1,5]

[4,8]

If two adjacent regions are labeled EI and EJ , then J = (I \ {i}) ∪ {j}.
The line-soliton between the regions has slope κi + κj ; label it [i , j].
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Soliton graphs

We associate a soliton graph Gt(uA) to a contour plot Ct(uA) by:
forgetting lengths and slopes of edges, and marking a trivalent vertex
black or white based on whether it has a unique edge down or up.

[1,3]
[2,5] [3,7]

[2,4]

[1,5]

[2,5]

[2,3]

[6,8]

[7,9]

[6,9] [4,8]

[8,9]

[6,7]

[4,7]

[4,5]

E1246

E4589

[1,7]

[1,5]

[4,8]

Goal: classify soliton graphs.
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Soliton graph → generalized plabic graph

E

E

1246

4589

[6,9]
[4,8]

[2,4]

[1,5]

[1,3]

[2,5]
[3,7]

[6,8]

[7,9]

[6,7]

[8,9]

[1,7]

[1,5]
[2,3]

[2,5]

[4,5]

[4,7]

[4,8]

Associate a generalized plabic graph to each soliton graph by:

For each unbounded line-soliton [i , j] (with i < j) heading to y >> 0,
label the incident bdry vertex by j.

For each unbounded line-soliton [i , j] (with i < j) heading to y << 0,
label the incident bdry vertex by i.

Forget the labels of line-solitons and regions.
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label the incident bdry vertex by i.

Forget the labels of line-solitons and regions.
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Theorem (Kodama-W). Passing from the soliton graph to the
generalized plabic graph does not lose any information!

We can reconstruct the labels by following the “rules of the road” (zig-zag
paths). From the bdry vertex i , turn right at black and left at white.

Label each edge along trip with i , and each region to the left of trip by i .
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Consequence: can IDENTIFY the soliton graph with its gen. plabic graph.
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Classification of soliton graphs for (Gr2,n)>0

Theorem (K.-W.)

Up to graph-isomorphism,a the generic soliton graphs for (Gr2,n)>0 are in
bijection with triangulations of an n-gon. Therefore the number of
different soliton graphs is the Catalan number Cn = 1

n+1

(2n
n

)

.

aand the operation of merging two vertices of the same color

1

2

3

4

5

6

16 56

12

23 34

45

26

36

46

E12

E16 E56

E26

E23 E34

E45
E36

E46

[2,6]

[1,3]

[1,5]

[2,4]

[4,6]

[3,5]
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The soliton graphs for (Gr2,5)>0
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What about soliton graphs for (Grk ,n)≥0, for k > 2?

The positroid cell decomposition

Recall that the positroid cell decomposition partitions elements of
(Grk,n)≥0 into cells S tnn

M based on which ∆I (A) > 0 and which ∆I (A) = 0.

Recall that positroid cells of (Grk,n)≥0 are in bijection with:

decorated permutations π of [n] with k weak excedances

Γ

-diagrams L contained in a k × (n − k) rectangle

If S tnn
M is labeled by the decorated permutation π, we also refer to the cell

as S tnn
π . Similarly for L.
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Total positivity on the Grassmannian and KP solitons

Let A be an element of a positroid cell in
(Grkn)≥0. What can we say about the
soliton graph Gt(uA)?

[1,3]

[2,5]
[3,7]

[2,4]

[1,5]

[6,8]

[7,9]

[6,9]

[4,8]

E1246

E4589

Metatheorem

Which cell A lies in determines the asymptotics of Gt(uA) as y → ±∞ and
t → ±∞. Use the decorated permutation and

Γ

-diagram labeling the cell.
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How the positroid cell determines asymptotics at y → ±∞

Recall: positroid cells in (Grkn)≥0 ↔ decorated permutations π ∈ Sn with
k weak excedances.

Definition

A decorated permutation π on [n] = {1, 2, . . . , n} is a permutation on [n]
in which a fixed point may have one of two colors, red or blue.

An excedance of π is a position i such that π(i) > i .

A nonexcedance of π is a position i such that π(i) < i .

A weak excedance of π is a position i such that π(i) > i or π(i) = i is a
red fixed point.
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How the positroid cell determines asymptotics at y → ±∞

Theorem (Chakravarty-Kodama + Kodama-W.)

Let A lie in the positroid cell Stnn
π of (Grkn)≥0. For any t:

the line-solitons at y >> 0 of Gt(uA) are in bijection with, and
labeled by the excedances [i , π(i)] of π, and

the line-solitons at y << 0 of Gt(uA) are in bijection with, and
labeled by the nonexcedances [i , π(i)].
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Gt(uA) where A ∈ Stnn
π for π = (5, 4, 1, 8, 2, 9, 3, 6, 7).
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How the positroid cell determines asymptotics at t → −∞

Recall: positroid cells in (Grk,n)≥0 ↔

Γ

-diagrams contained in k × (n − k)
rectangle

Definition

A

Γ

-diagram is a filling of the boxes of a Young diagram by +’s and 0’s
such that: there is no 0 with a + above it in the same column, and a + to
its left in the same row.

+ + +
+ +
++++

+ + +

0 0
000
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How the positroid cell determines asymptotics at t → −∞

Theorem (K.-W.)

Let L be a

Γ

-diagram. The following procedure realizes the soliton graph
Gt(uA) for any A ∈ Stnn

L and t << 0.

+ + +
+ +
++++

+ + +

0 0
000
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Soliton graphs and cluster algebras

Cluster algebras (Fomin and Zelevinsky)

Cluster algebras are an important class of commutative algebras; they
come with distinguished generating sets called clusters.

Theorem (K.-W.)

Let A ∈ (Grk,n)>0. If Gt(uA) is generic (no vertices of degree > 3), then
the set of dominant exponentials labeling Gt(uA) is a cluster for the cluster
algebra associated to the Grassmannian.

We use J. Scott’s work on the cluster algebra structure of C[Grk,n].
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Application: solving the inverse problem for soliton graphs

Inverse problem

Given a time t together with the contour plot of a soliton solution of KP,
can one reconstruct the point of (Grk,n)≥0 which gave rise to the solution?

Theorem (K.-W.)

1. For t << 0, we can solve the inverse problem, no matter what cell of
(Grk,n)≥0 the element A came from.
2. If the contour plot is generic and came from a point of (Grk,n)>0, we
can solve the inverse problem, regardless of time t.

Proof of 1: uses our description of soliton graphs at t << 0, and work of
Kelli Talaska.

Proof of 2: uses our result that the set of dominant exponentials labeling
such a contour plot forms a cluster for C[Grk,n].
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Extending results from (Grk ,n)≥0 to Grk ,n.

Almost all our results can be extended to Grk,n, using the Deodhar
decomposition of Grk,n instead of the positroid decomposition.

Recall: If A ∈ (Grk,n)≥0, the solution uA(x , y , t) to the KP equation is
regular for all times t. IS THE CONVERSE TRUE?

Theorem – the regularity problem

Choose A ∈ Grk,n(R). The solution uA(x , y , t) is regular for all times t if
and only if A ∈ (Grk,n)≥0.
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Choose A ∈ Grk,n(R). The solution uA(x , y , t) is regular for all times t if
and only if A ∈ (Grk,n)≥0.
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What we learned about (Grk ,n)≥0 and plabic graphs

The subset (Grk,n)≥0 of Grk,n has a natural physical interpretation: it
picks out the set of regular solutions to the KP equation (among all
those coming from the real Grassmannian Grk,n).

Reduced plabic graphs can be realized as tropical curves. This leads to
a simple and local characterization of reduced plabic graphs (K.-W.):

Nonplanar plabic graphs arise naturally in the study of solutions of
the KP equation. These also satisfy the characterization above.

Just as one can use networks on planar graphs to tile the non-negative
Grassmannian by cells, one can use networks on certain nonplanar
graphs to tile the entire real Grassmannian by strata (Talaska-W.)
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Other areas where the positive Grassmannian has appeared

Scattering amplitudes (work of many people here – see e.g. paper of
Arkani-Hamed-Bourjaily-Cachazo-Goncharov-Postnikov-Trnka). The
authors show that the theory of the positive Grassmannian can be
used to compute scattering amplitudes in string theory.

Free probability. We interpret the number of positroid (respectively,
connected positroids) as the moments and cumulants of a random
variable. (Ardila-Rincon-W.).

Oriented matroids. We prove Da Silva’s 1987 conjecture that every
positively oriented matroid is realizable, i.e. it comes from the
positive Grassmannian (Ardila-Rincon-W.).
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Thanks for listening! (movies?)
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Why look at asymptotics as y → ±∞ and not x → ±∞?

The equation for a line-soliton separating dominant exponentials EI and
EJ is where I = {i ,m2, . . . ,mk} and J = {j ,m2, . . . ,mk} is

x + (κi + κj)y + (κ2i + κiκj + κ2j )t = constant.

So we may have line-solitons parallel to the y -axis, but never to the x-axis.
(κi ’s are fixed)
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