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Abstract

We give a simple proof of a generalization of the equality

∞

∑
n=1

1
2[n=τ]

= [2;20;21;21;22;23;25; : : :];

where τ = (1+
p

5)=2 and the exponents of the partial quotients are the Fibonacci numbers, and some

closely related results.

P. E. Böhmer [2], L. V. Danilov [4], and W. W. Adams and J. L. Davison [1] showed independently
that if α > 0 is irrational, b > 1 is an integer, and Sb(α) = (b�1)∑

∞
k=1

1
b[k=α] , then the simple continued

fraction for Sb(α) can be described explicitly in the following way. Let α have simple continued fraction

α = a0 +
1

a1 +
1

a2+���
= [a0;a1; : : :];

with pn
qn

= [a0; : : : ;an], n � 0. Let t0 = a0b, tn = bqn�bqn�2

bqn�1�1 , n � 1. Then Sb(α) = [t0; t1; : : :]. Thus in the
case α = τ = (1+

p
5)=2, the golden ratio, and b = 2, one gets the remarkable equality ∑

∞
n=1

1
2[n=τ] =

[2;20;21;22;23;25; : : :], where the exponents of the partial quotients are the Fibonacci numbers.
More recently, R. L. Graham, D. E. Knuth, and O. Patashnik [7] indicated how to give a very different

proof of the power series version of this result, where the number b is replaced by an indeterminate (they
carried out the proof for the case α = (1+

p
5)=2), using the continuant polynomials of Euler [5].

In this note we give a proof, which we feel is simpler than the others, which makes use of a property
of the “characteristic sequence” of α discovered by H. J. S. Smith [12]. The crucial idea of our approach
appears in Lemma 2 below, where we regard certain initial segments of the characteristic sequence of α

as base b representations of integers.
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(Böhmer, Danilov, and Adams and Davison also show that Sb(α) is transcendental for every irrational
α . We omit the proof of this fact, which is an easy application of a theorem of Roth [10], using Lemma
3 and Theorem B below.)

Preliminaries. Let α be an irrational number with 0 < α < 1. (At the end, we will remove the re-
striction α < 1.) Let α = [0;a1;a2; : : :] and pn

qn
= [0;a1; : : : ;an], n � 0, where pn, qn are relatively prime

non-negative integers. (As usual, we put p�2 = 0, p�1 = 1, q�2 = 1, q�1 = 0, so that pn = an pn�1+ pn�2,
qn = anqn�1 +qn�2 for all n� 0.) For n� 1, define fα(n) = [(n+1)α]� [nα], and consider the infinite
binary sequence fα = ( fα(n))n�1, which is sometimes called the characteristic sequence of α . Define
binary words Xn, n � 0, by X0 = 0, X1 = 0a1�11, Xk = Xak

k�1Xk�2, k � 2, where Xa denotes the word X

repeated a times, and X1 = 1 if a1 = 1.
The following result was first proved by Smith [12]. Other proofs can be found in [3, 6, 11, 13], and

further references to the characteristic sequence can be found in [3]. Nishioka, Shiokawa, and Tamura [8]
treat the more general case [(n+1)α +β ]� [nα +β ].

Lemma 1. For each n� 1, Xn is a prefix of fα . That is, Xn = fα(1) fα(2) � � � fα(s), where s is the length

of Xn.

The main proof. We are now ready to prove the result stated in the Introduction. (However, we will
keep the restriction α < 1 until the following section.) Let b> 1 be an integer, let 0<α < 1 be irrational,
α = [0;a1;a2; : : :], let pn

qn
= [0;a1; : : : ;an], n� 0, and let the binary words Xn, n� 0, be defined as above.

According to Lemma 1, the binary word Xn (which has length qn by a trivial induction using qn =

anqn�1 + qn�2) is identical with the binary word fα(1) fα(2) � � � fα(qn). If we let xn denote the integer
whose base b representation is Xn, i.e., xn = fα(1)bqn�1+ fα(2)bqn�2+ � � �+ fα(qn)b0, then we can write

xn = bqn �
qn

∑
k=1

fα(k)
bk :

Now we come to the crucial step.

Lemma 2. For n� 0, let tn+1 =
bqn+1�bqn�1

bn�1 . Then for n� 1,

xn+1 = tn+1xn + xn�1:

Proof. Using the facts that Xn has length qn, Xn�1 has length qn�1, xn+1 is the integer whose base b

representation is Xn+1, and Xn+1 = Xan+1
n Xn�1, it follows that

xn+1 = bqn�1(1+bqn +b2qn + � � �+b(an+1�1)qn)xn + xn�1

=
bqn�1(ban+1qn �1)

(bqn �1)
xn + xn�1 = tn+1xn + xn�1

Lemma 3. For n� 1,

[0; t1; : : : ; tn] =
b�1

bqn �1
� xn:
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Proof. Let yn =
bqn�1
b�1 , n� 0. We show by induction on n that [0; t1; : : : ; tn] = xn

yn
. We start the induction

at n = 0 by setting t0 = 0. Note that x0 = 0, x1 = 1, y0 = 1, y1 = bq1�1
b�1 = t1. For the induction step, we

simply note that xn+1 = tn+1xn + xn�1 and yn+1 = tn+1yn + yn�1.

Theorem A. Let b > 1 be an integer, and let 0 < α < 1 be irrational, with fα(n) = [(n+1)α]� [nα],
n� 1. Let α = [0;a1;a2; : : :], let pn

qn
= [0;a1; : : : ;an], n� 0 (where pn;qn are relatively prime non-negative

integers), and let tn = bqn�bqn�2

bqn�1�1 , n� 1. Then

(b�1)
∞

∑
k=1

fα(k)
bk = [0; t1; t2; : : :]:

Proof. We have seen that xn = bqn ∑
qn
k=1

fα (k)
bk . Hence by Lemma 3,

(b�1)
�

bqn

bqn �1

� qn

∑
k=1

fα(k)
bk = [0; t1; : : : ; tn];

and we can take the limit as n! ∞.

Theorem B. With the same hypotheses as in Theorem A, we have

(b�1)
∞

∑
n=1

1
b[n=α]

= [0; t1; t2; : : :]:

Proof. This is a restatement of Theorem A, using the easily verified fact (when 0<α < 1) that fα(k) = 1
if and only if k = [n=α] for some n.

Theorem C. With the same hypotheses as in Theorem A, we have

(b�1)2
∞

∑
k=1

[kα]

bk = [0; t1; t2; : : :]:

Proof. Using fα(k) = [(k+1)α]� [kα] and [α] = 0, the series in Theorem C is obtained from the series
in Theorem A by a slight rearrangement.

Theorem D. With the same hypotheses as in Theorem A, we have

∞

∑
k=1

fα(k)
bk = (b�1)

∞

∑
k=1

(�1)k�1

(bqk �1)(bqk�1 �1)
:

Proof. We say in the proof of Lemma 3 that [0; t1; : : : ; tn] = xn
yn

, n � 1, where yn = bqn�1
b�1 , n � 0. By a

well-known theorem (J. B. Roberts [9, pp. 101]), xn
yn

= ∑
n
k=1

(�1)k�1

ykyk�1
, n� 1, and Theorem D now follows

from Theorem A.

Removing the restriction α < 1. Now let α 0 = a0 +α , where a0 � 0 is an integer, α is irrational, and
0 < α < 1.
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By Theorem A we get

(b�1)
∞

∑
k=1

fα 0(k)
bk = (b�1)

∞

∑
k=1

a0 + fα(k)
bk

= (b�1)a0

∞

∑
k=1

1
bk +(b�1)

∞

∑
k=1

fα(k)
bk

= a0 +[0; t1; t2; : : :]

= [a0; t1; t2; : : :]:

To handle Theorem B we need to use the fact, whose simple proof we omit, that if α 0 = a0 +α ,
where 0 < α < 1, then for each k = 0;1;2; : : :, the value k is assumed by the expression [n=α 0] exactly
a0 + 1 times if [n=α] = k for some n � 1, and exactly a0 times if [n=α] never equals k. It then follows
from Theorem B that (b�1)∑

∞
n=1

1
b[n=α 0] = [a0b; t1; t2; : : :].

By Theorem C and some careful rearrangement we get (b�1)2
∑

∞
k=1

[kα 0]
bk = [a0b; t1; t2; : : :].

Finally, the modified Theorem D (using the modified Theorem A) is

(b�1)
∞

∑
k=1

fα 0(k)
bk = a0 +

∞

∑
k=1

(�1)k�1(b�1)2

(bqk �1)(bqk�1 �1)
:

Remark. This paper grew out of the first author’s consideration of the number ∑
∞
k=1

fα (k)
2k , where α =

1+
p

5
2 , as the fixed point of the sequence fgn(0)g, n� 1, where g1(x) = x=2, g2(x) = (x+1)=2, gn(x) =

gn�1(gn�2(x)), n� 3. This quickly leads (upon setting gn(x) = (x+an)=bn and solving for an and bn) to

∞

∑
k=1

fα(k)
2k = [2;20;21;21;22;23;25; : : :]:

Acknowledgement. The authors are grateful to the referee for references [2] and [4] and for several
helpful remarks.
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