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Shift Pairs and Shift Graphs

When listing the elements of a finite set of integers, we will always list
them in increasing order.

Definition. An ordered pair (A, B) of k-element subsets of {1,2,...,n} is a
(/o.on)- shift pair when there is a subset {iy,is,...,ixr1} C S so that A =

{il, ’ig, S ,Zk} and B = {ig, i3, 5o o ,’ik+1}.

Definition. When 1 < k < mn, the (/.1 )-shift graph S(k,n) is the graph whose
vertex set is the set of all k-element subsets of {1,2,...,n} with a k-element set




The Chromatic Number of Shift Graphs

S(1,n) is a complete graph on n vertices, so x(S(1,n)) = n.
The next theorem is part of the folklore of the subject.

For all n > 2,

x(S(2,n)) = [lgn].




Dedekind’s Problem

Definition. For an integert, let A(t) count the number of antichains in the lattice
of all subsets of {1,2,...,t}.

Note: In the preceding definition, we count the empty antichain.

There is a natural correspondence between antichains and down sets.




Dedekind Numbers

A(4) = 168




Shift Graphs and Dedekind Numbers

For every integer n > 3, the chromatic number of the
double shift graph S(3,n) is the least t for which A(t) > n.

The chromatic number of the double shift graph S(3,7000) is .




Dimension of Graphs
Definition. Let G = (V, FE) be a graph. A family R = {L1, Lo, ..., L} of linear
orders on V' is a realizer of G if

(%) For every edge S and every x € V' — S, there exists L; so that x is larger than
all elements of S in L;.

Definition.  The dimension of G, denoted dim(G), is the least t for which G has
a realizer R = {L1, Lo, ..., L;} of sizet.




The Dimension of Complete Graphs

How hard would it be to compute the dimension of the complete graph

Ki0007




HM Down Sets

Definition. A down set D in the lattice of subsets of {1,2,...,t} is HM if
SUT #{1,2...,t} forall S,T € D.

Definition. For an integer t, let HM(t) count the number of HM down sets in
the lattice of all subsets of {1,2,...,t}.

The HM numbers have several other interpretations. For example, they

are also:
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HM Numbers

AN <t

HM(1)
FIM(

a\

HM(3)
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HM Numbers and Dimension

For each integer n > 2, the dimension
of the complete graph K, is the least t for which HM(t — 1) > n.

As a consequence,

dim(Klooo) = 0.
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An Extremal Problem for Graphs

1. dim(G) < 2 if and only if G is a disjoint union of caterpillars.

2. dim(G) < 3 if and only if G is planar.

Find the maximum number M (n, k) of edges in a

Proposition.
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Larger Values of &

1. M(n,4) = (%) when n < 12.

2. M(n,4) < (3) whenn > 13.

Although it may be possible to find an exact formula for M (n,4) when n is large,

Proposition.
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k = 4: The First Interesting Case

It is relatively easy to see that the dimension of a graph is bounded as a function
of its chromatic number. Here is one important special case.

If x(G) < 4, then dim(G) < 4.

Proof. Let V =V, UV, U V3 UV, and let L be any linear order on V. Then set:

L, = L(Vl) < L(VQ) < L(V3) < L(V4);
Lo = L(V4) < L(Vg) < L(VQ) < L(Vl),
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Turan’s Theorem

Definition. Let T'(n,k) denoted the balanced complete k-partite graph on n
nodes, and let t(n, k) denote the number of edges in T'(n, k).

The maximum number of edges in a graph on n nodes which does not contain a
complete subraph on k + 1 nodes is t(n, k).
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The Erdés/Stone Theorem

Let k be an integer with k > 3 and let ¢ > 0. Then let G be a graph with
X(G) < k. Then there exists an integer ng so that if n > ng and H is any graph
on n vertices with more than (7, + €)n® edges, then H contains G as a subgraph.

Theorem. [Agnarsson, Felsner and Trotter, 1998]
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Larger Values of &

For £ = 5, we can only show:

24 _40
50 = M2 =81

And for larger k, the estimates fall back to those for the dimension of the

Theorem. [Agnarsson, Felsner and Trotter, 1998]
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Ramsey Theory for Probability Spaces
A Motivating Problem

If we flip a coin repeatedly and let E; be the event that the i*” toss is heads, then

for all ©+ < 7,

—
PI‘Ob[EZ'Ej] = Z

Can we do better? Does there exist an ¢ > 0 so that we can have
arbitrarily long sequences of events from any probability space for which
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The Answer is

Although we can do slightly better, for example by conditioning on n/2 of the
tosses being heads, in the limit we can not do better than 1/4.

For every ¢ > 0, there exists ng so that if n > ng and E1,Es, ..., E, is any
sequence of events in a probability space, there exists 1 < j for which

— 1
Prob|F, E:| < — + ¢
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A Generalization to Shift Graphs

Definition. Suppose we have a space in which there is an event for every k-element
subset of {1,2,...,n}. Then we can find the minimum value of

over all (k,n)-shift pairs (A, B), and let \(k,n) denote the maximum value of this
minimum, taken over all probability spaces. Finally, let

Ak
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The Values £ =1 and k£ = 2

We have already seen that A\; = 1/4. Here's why A\ > 1/3. Take a random linear
order on {1,2,...,n}. Then let A be a 2-element subset, say A = {i1,i2}. Let A
correspond to the event that 71 < 75 in the random linear order. For every shift
pair (A, B) with AU B = {iy, 12,13}, we see that AB means that iy is larger than
both i; and i3 in the random linear order. This happens with probability 1/3.

On the other hand, this simple example is also asymptotically best possible.
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Larger Values of &

1. )\k:—i—l > \g.

2. limyp—o0 Ap = 1/2.

3. A, >1/2—1/(2k +2).
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Fractional Dimension of Posets

Fractional dimension is just the linear programming relaxation of dimension, an
integer valued parameter. More formally:

Definition. Let P be a poset and let F = {M, ..., M;} be a multiset of linear
extensions of P. F is a /:-fold realizer of P if for each incomparable pair (x,y),
there are at least k linear extensions in F which reverse the pair (x,y), i.e.,

{i:1<i<t,x>yin M} > k.
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The Dimension of Posets
of Bounded Degree

Definition. Let f(k) denote the largest integer t for which there exists a poset P
with A(P) = k and dim(P) = t.

f(k) <2k%+2.

Using the Lovasz Local Lemma and other probabilistic methods, we have:

Theorem. [Fiiredi and Kahn, 1984]

Theorem. [Erdods, Kierstead and Trotter, 1991]
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The Fractional Dimension of Posets
of Bounded Degree

Brightwell and Scheinerman proved that if P is a poset and A(P) = k, then
fdim(P) < k + 2. They conjectured that this inequality could be improved to
fdim(P) < k 4+ 1. Their conjecture was correct and the proof yielded a much
stronger conclusion, a result with much the same flavor as Brooks' theorem for

graphs.

Let k be a positive integer, and let P
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The Dimension of Interval Orders

In general, large height is not a prerequisite for large dimension. For example,
consider the standard examples. The situation is completely different for interval

orders.

Definition.  For an integer n, let i(n) denote the largest integer t for which there
exists an interval order of height n and dimension t.

Using connections with shift graphs, we have:

Theorem. [Fiiredi, Hajnal, Rodl and Trotter, 1984]
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The Fractional Dimension of Interval Orders

Interval orders enjoy many special properties. Here is an example.

Let A be a subset of a interval order P. Then there exists a linear
extension L with a > b in L whenevera € A, b€ P — A and al|b in P.

Here is an immediate consequence:

If P is an interval order, then
fdim(P) < 4.

Proof.
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The Inequality is Best Possible

Brightwell and Scheinerman conjectured that their upper bound on the fractional
dimension of interval orders was best possible—even though they did not know of
any example for which the parameter was more than 2.2.

However, using the techniques they developed to investigate ramsey theoretic
properties of probability spaces, the conjecture was settled in the affirmative.

For every € > 0, there exists an interval order P with
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More on the Dimension of Interval Orders

If an interval order has large dimension, then it has both large width
and large height.

For every interval order P, there
exists an integer t(P) so that if Q) is any interval order with dim(P) > t(P),
then () contains a subposet isomorphic to P.

The proof depends on connections with the chromatic number of circle

Remark.
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Dimension and Chromatic Number

There are many important connections between dimension and chromatic number.
Here is just one example.

Definition. Let G = (V, E) be a graph on n vertices. The adjacency poset of G,
denoted Ag, is the poset whose point set consists of AUB where A = {z' : x € V'}
is the set of minimal elements, B = {x" : x € V'} is the set of maximal elements,
and x’ < y" if and only if xy is an edge in GG. Note that x'||x"" for all x.

For every graph GG, the following

inequalities hold:

Theorem. [Felsner and Trotter, 1998]
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Dimension and Chromatic Number (2)

There is a natural interpretation of dimension in terms of chromatic number.

Definition. A linear extension L reverses the incomparable pair (x,y) if x > vy in
L.

A family R of linear extensions is a realizer of P if and only if for
every incomparable pair (x,vy), there is some L € R which reverses (z,y).

Definition.  Given a poset P, define a hypergraph Hp as follows. The vertex set

Proposition.
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Dimension and Chromatic Number (3)

Definition. The graph of incomparable pairs, denoted G p, is just the ordinary
graph determined by the edges in Hp of size 2.

For every poset P, dim(P) = x(Hp) > x(Gp).

The following result is somwhat more difficult than it appears. Its proof relies on
characterization theorems for comparability graphs.
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Dimension and Chromatic Number (4)

However, when the dimension of P is larger than 2, it may happen that
X(Hp) > x(Gp). In fact, | offer the following conjecture:

For every t > 3, there exists a poset P for which

1. X(Gp) =0




