
1

Speech and Language
Processing

Chapter 12
Constituency Parsing

9/25/2019 Speech and Language Processing - Jurafsky and Martin 2

Today

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity
 CKY parsing
 (Earley)
 Shallow

2

9/25/2019 Speech and Language Processing - Jurafsky and Martin 3

Parsing

 Parsing with CFGs refers to the task of
assigning proper trees to input strings
 Proper here means a tree that covers all

and only the elements of the input and
has an S at the top
 It doesn’t actually mean that the system

can select the correct tree from among all
the possible trees

9/25/2019 Speech and Language Processing - Jurafsky and Martin 4

Parsing

 As with everything of interest, parsing
involves a search which involves the
making of choices
 We’ll start with some basic (meaning bad)

methods before moving on to the one that
you need to know

3

9/25/2019 Speech and Language Processing - Jurafsky and Martin 5

For Now

 Assume…
 You have all the words already in some buffer
 The input isn’t POS tagged
 We won’t worry about morphological analysis
 All the words are known

 These are all problematic in various ways,
and would have to be addressed in real
applications.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 6

Top-Down Search

 Since we’re trying to find trees rooted with
an S (Sentences), why not start with the
rules that give us an S.
 Then we can work our way down from

there to the words.

4

9/25/2019 Speech and Language Processing - Jurafsky and Martin 7

Top Down Space

9/25/2019 Speech and Language Processing - Jurafsky and Martin 8

Bottom-Up Parsing

 Of course, we also want trees that cover
the input words. So we might also start
with trees that link up with the words in
the right way.
 Then work your way up from there to

larger and larger trees.

5

9/25/2019 Speech and Language Processing - Jurafsky and Martin 9

Bottom-Up Search

9/25/2019 Speech and Language Processing - Jurafsky and Martin 10

Bottom-Up Search

6

9/25/2019 Speech and Language Processing - Jurafsky and Martin 11

Bottom-Up Search

9/25/2019 Speech and Language Processing - Jurafsky and Martin 12

Bottom-Up Search

7

9/25/2019 Speech and Language Processing - Jurafsky and Martin 13

Bottom-Up Search

9/25/2019 Speech and Language Processing - Jurafsky and Martin 14

Top-Down and Bottom-Up

 Top-down
 Only searches for trees that can be answers

(i.e. S’s)
 But also suggests trees that are not consistent

with any of the words
 Bottom-up
 Only forms trees consistent with the words
 But suggests trees that make no sense

globally

8

9/25/2019 Speech and Language Processing - Jurafsky and Martin 15

Control

 Of course, in both cases we left out how
to keep track of the search space and how
to make choices
 Which node to try to expand next
 Which grammar rule to use to expand a node

 One approach is called backtracking.
 Make a choice, if it works out then fine
 If not then back up and make a different

choice

9/25/2019 Speech and Language Processing - Jurafsky and Martin 16

Problems

 Even with the best filtering, backtracking
methods are doomed because of two
inter-related problems
 Ambiguity
 Shared subproblems

9

9/25/2019 Speech and Language Processing - Jurafsky and Martin 17

Ambiguity

Example types of ambiguity

 POS
 Attachment
 PP
 Coordination (old dogs and cats)

9/25/2019 Speech and Language Processing - Jurafsky and Martin 18

10

9/25/2019 Speech and Language Processing - Jurafsky and Martin 19

Shared Sub-Problems

 No matter what kind of search (top-down
or bottom-up or mixed) that we choose.
 We don’t want to redo work we’ve already

done.
 Unfortunately, naïve backtracking will lead to

duplicated work.

Review

 Formal Grammars
 CFG – what, why, why not?
 Dependency
 Treebanks

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity

9/25/2019 Speech and Language Processing - Jurafsky and Martin 20

11

S  NP VP VP  V

S  Aux NP VP VP -> V PP

S -> VP PP -> Prep NP

NP  Det Nom N  old | dog | footsteps | young

NP PropN V  dog | eat | sleep | bark | meow

Nom -> Adj N Aux  does | can

Nom  N Prep from | to | on | of

Nom  N Nom PropN  Fido | Felix

Nom  Nom PP Det  that | this | a | the

VP  V NP Adj -> old | happy| young

“The old dog the footsteps of
the young.”

9/25/2019 Speech and Language Processing - Jurafsky and Martin 22

Shared Sub-Problems

 Consider
 A flight from Indianapolis to Houston on TWA

12

9/25/2019 Speech and Language Processing - Jurafsky and Martin 23

Shared Sub-Problems

 Assume a top-down parse making choices
among the various Nominal rules.
 In particular, between these two
 Nominal -> Noun
 Nominal -> Nominal PP

 Statically choosing the rules in this order
leads to the following bad results...

9/25/2019 Speech and Language Processing - Jurafsky and Martin 24

Shared Sub-Problems

13

9/25/2019 Speech and Language Processing - Jurafsky and Martin 25

Shared Sub-Problems

9/25/2019 Speech and Language Processing - Jurafsky and Martin 26

Shared Sub-Problems

14

9/25/2019 Speech and Language Processing - Jurafsky and Martin 27

Shared Sub-Problems

9/25/2019 Speech and Language Processing - Jurafsky and Martin 28

Dynamic Programming
 DP search methods fill tables with partial results

and thereby
 Avoid doing avoidable repeated work
 Solve exponential problems in polynomial time
 Efficiently store ambiguous structures with shared

sub-parts.
 Two approaches roughly correspond to bottom-

up and top-down approaches.
 CKY
 Earley

15

9/25/2019 Speech and Language Processing - Jurafsky and Martin 29

CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more later)
 Consider the rule A  BC
 If there is an A somewhere in the input

then there must be a B followed by a C in
the input.
 If the A spans from i to j in the input then

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 30

Problem
 What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

 Convert it to binary… any arbitrary CFG
can be rewritten into Chomsky-Normal
Form automatically.
 What does this mean?
 The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.

16

9/25/2019 Speech and Language Processing - Jurafsky and Martin 31

Problem

 More specifically, we want our rules to be
of the form
A  B C
Or
A  w

That is, rules can expand to either 2 non-
terminals or to a single terminal.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 32

Binarization Intuition

 Eliminate chains of unit productions.
 Introduce new intermediate non-terminals

into the grammar that distribute rules
with length > 2 over several rules.
 So… S  A B C turns into
S  X C and
X  A B
Where X is a symbol that doesn’t occur

anywhere else in the the grammar.

17

9/25/2019 Speech and Language Processing - Jurafsky and Martin 33

Sample L1 Grammar

9/25/2019 Speech and Language Processing - Jurafsky and Martin 34

CNF Conversion

18

9/25/2019 Speech and Language Processing - Jurafsky and Martin 35

CKY

 So let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j]
in the table.
 So a non-terminal spanning an entire

string will sit in cell [0, n]
 Hopefully an S

 If we build the table bottom-up, we’ll
know that the parts of the A must go from
i to k and from k to j, for some k.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 36

CKY

 Meaning that for a rule like A  B C we
should look for a B in [i,k] and a C in [k,j].
 In other words, if we think there might be

an A spanning i,j in the input… AND
A  B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in [k,j]
for some i<k<j

19

9/25/2019 Speech and Language Processing - Jurafsky and Martin 37

CKY

 So to fill the table loop over the cell[i,j]
values in some systematic way
 What constraint should we put on that

systematic search?

 For each cell, loop over the appropriate k
values to search for things to add.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 38

Note

 We arranged the loops to fill the table a
column at a time, from left to right,
bottom to top.
 This assures us that whenever we’re filling a

cell, the parts needed to fill it are already in
the table (to the left and below)
 It’s somewhat natural in that it processes the

input a left to right a word at a time
 Known as online

20

9/25/2019 Speech and Language Processing - Jurafsky and Martin 39

Example

CKY Parser

40

Book the flight through Houston

i=
0

1

2

3

4

j= 1 2 3 4 5

Cell[i,j]
contains all
constituents
(non-terminals)
covering words
i +1 through j

21

CKY Parser

41

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

CKY Parser

42

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

22

CKY Parser

43

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

CKY Parser

44

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

S

VP,
X2

23

CKY Parser

45

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

CKY Parser

46

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

24

CKY Parser

47

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

CKY Parser

48

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

25

CKY Parser

49

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP

CKY Parser

50

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

S
VP

26

CKY Parser

51

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

CKY Parser

52

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S

27

CKY Parser

53

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S

X2
S

CKY Parser

54

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse
Tree
#1

28

CKY Parser

55

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse
Tree
#2

9/25/2019 Speech and Language Processing - Jurafsky and Martin 56

Example

Filling column 5

29

9/25/2019 Speech and Language Processing - Jurafsky and Martin 57

Example

9/25/2019 Speech and Language Processing - Jurafsky and Martin 58

Example

30

9/25/2019 Speech and Language Processing - Jurafsky and Martin 59

Example

9/25/2019 Speech and Language Processing - Jurafsky and Martin 60

Example

31

9/25/2019 Speech and Language Processing - Jurafsky and Martin 61

CKY Notes

 Since it’s bottom up, CKY populates the
table with a lot of phantom constituents.
 Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.
 To avoid this we can switch to a top-down

control strategy
 Or we can add some kind of filtering that

blocks constituents where they can not
happen in a final analysis.

9/25/2019 Speech and Language Processing - Jurafsky and Martin 62

Earley Parsing

 Allows arbitrary CFGs
 Top-down control
 Fills a table in a single sweep over the

input
 Table is length N+1; N is number of words
 Table entries represent
 Completed constituents and their locations
 In-progress constituents
 Predicted constituents

32

9/25/2019 Speech and Language Processing - Jurafsky and Martin 63

Back to Ambiguity

 Did we solve it?

9/25/2019 Speech and Language Processing - Jurafsky and Martin 64

Ambiguity

 No…
 Both CKY and Earley will result in multiple S

structures for the [0,N] table entry.
 They both efficiently store the sub-parts that

are shared between multiple parses.
 And they obviously avoid re-deriving those

sub-parts.
 But neither can tell us which one is right.

33

9/25/2019 Speech and Language Processing - Jurafsky and Martin 65

Ambiguity

 In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never
noticed.
 I ate the spaghetti with chopsticks
 I ate the spaghetti with meatballs

 We’ll try to model that with probabilities.

Shallow or Partial Parsing

 Sometimes we don’t need a complete
parse tree
 Information extraction
 Question answering

 But we would like more than simple POS
sequences

66

34

Chunking

 Find major but unembedded constituents
like NPs, VPs, AdjPs, PPs
 Most common task: NP chunking of base NPs
 [NP I] saw [NP the man] on [NP the hill] with

[NP a telescope]
 No attempt to identify full NPs – no recursion,

no post-head words
 No overlapping constituents
 E.g., if we add PPs or VPs, they may consist

only of their heads, e.g. [PP on]

Approaches: RE Chunking

 Use regexps to identify constituents, e.g.
 NP  (DT) NN* NN
 Find longest matching chunk
 Hand-built rules
 No recursion but can cascade to approximate

true CF parser, aggregating larger and larger
constituents

35

Approaches: Tagging for
Chunking

 Require annotated corpus
 Train classifier to classify each element of

input in sequence (e.g. IOB Tagging)
 B (beginning of sequence)
 I (internal to sequence)
 O (outside of any sequence)
 No end-of-chunk coding – it’s implicit
 Easier to detect the beginning than the end
Book/B_VP that/B_NP flight/I_NP quickly/O

Summary and Limitations

 Sometimes shallow parsing is enough for
task
 Performance quite accurate

36

Distribution of Chunks in
CONLL Shared Task

Summing Up

 Parsing as search: what search strategies
to use?
 Top down
 Bottom up
 How to combine?

 How to parse as little as possible
 Dynamic Programming

 Shallow Parsing

72

