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Speech and Language 
Processing

Chapter 12
Constituency Parsing
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Today

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity
 CKY parsing
 (Earley)
 Shallow
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Parsing

 Parsing with CFGs refers to the task of 
assigning proper trees to input strings
 Proper here means a tree that covers all 

and only the elements of the input and 
has an S at the top
 It doesn’t actually mean that the system 

can select the correct tree from among all 
the possible trees
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Parsing

 As with everything of interest, parsing 
involves a search which involves the 
making of choices
 We’ll start with some basic (meaning bad) 

methods before moving on to the one that 
you need to know 
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For Now

 Assume…
 You have all the words already in some buffer
 The input isn’t POS tagged
 We won’t worry about morphological analysis
 All the words are known

 These are all problematic in various ways, 
and would have to be addressed in real 
applications.

9/25/2019 Speech and Language Processing - Jurafsky and Martin       6

Top-Down Search

 Since we’re trying to find trees rooted with 
an S (Sentences), why not start with the 
rules that give us an S.
 Then we can work our way down from 

there to the words.
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Top Down Space
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Bottom-Up Parsing

 Of course, we also want trees that cover 
the input words. So we might also start 
with trees that link up with the words in 
the right way.
 Then work your way up from there to 

larger and larger trees.
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Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search 
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Bottom-Up Search
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Top-Down and Bottom-Up

 Top-down
 Only searches for trees that can be answers 

(i.e. S’s)
 But also suggests trees that are not consistent 

with any of the words
 Bottom-up
 Only forms trees consistent with the words
 But suggests trees that make no sense 

globally
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Control

 Of course, in both cases we left out how 
to keep track of the search space and how 
to make choices
 Which node to try to expand next
 Which grammar rule to use to expand a node

 One approach is called backtracking.
 Make a choice, if it works out then fine
 If not then back up and make a different 

choice
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Problems

 Even with the best filtering, backtracking 
methods are doomed because of two 
inter-related problems
 Ambiguity
 Shared subproblems
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Ambiguity

Example types of ambiguity

 POS
 Attachment
 PP
 Coordination (old dogs and cats)
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Shared Sub-Problems

 No matter what kind of search (top-down 
or bottom-up or mixed) that we choose.
 We don’t want to redo work we’ve already 

done.
 Unfortunately, naïve backtracking will lead to 

duplicated work.

Review

 Formal Grammars
 CFG – what, why, why not?
 Dependency
 Treebanks

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity
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S  NP VP VP  V

S  Aux NP VP VP -> V PP

S -> VP PP -> Prep NP

NP  Det Nom N  old | dog | footsteps | young

NP  PropN V  dog | eat | sleep | bark | meow

Nom -> Adj N Aux  does | can

Nom  N Prep from | to | on | of

Nom  N Nom PropN  Fido | Felix

Nom  Nom PP Det  that |  this | a | the

VP  V NP Adj -> old | happy| young 

“The old dog the footsteps of 
the young.”
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Shared Sub-Problems

 Consider
 A flight from Indianapolis to Houston on TWA
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Shared Sub-Problems

 Assume a top-down parse making choices 
among the various Nominal rules.
 In particular, between these two
 Nominal -> Noun
 Nominal -> Nominal PP

 Statically choosing the rules in this order 
leads to the following bad results...
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Dynamic Programming
 DP search methods fill tables with partial results 

and thereby
 Avoid doing avoidable repeated work
 Solve exponential problems in polynomial time
 Efficiently store ambiguous structures with shared 

sub-parts.
 Two approaches roughly correspond to bottom-

up and top-down approaches.
 CKY
 Earley
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CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more later)
 Consider the rule A   BC
 If there is an A somewhere in the input 

then there must be a B followed by a C in 
the input.
 If the A spans from i to j in the input then 

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.
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Problem
 What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

 Convert it to binary… any arbitrary CFG 
can be rewritten into Chomsky-Normal 
Form automatically.
 What does this mean?
 The resulting grammar accepts (and rejects) the 

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.
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Problem

 More specifically, we want our rules to be 
of the form
A  B C
Or
A  w

That is, rules can expand to either 2 non-
terminals or to a single terminal.
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Binarization Intuition

 Eliminate chains of unit productions.
 Introduce new intermediate non-terminals 

into the grammar that distribute rules 
with length > 2 over several rules. 
 So… S  A B C turns into 
S  X C and
X  A B
Where X is a symbol that doesn’t occur 

anywhere else in the the grammar.
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Sample L1 Grammar
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CNF Conversion
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CKY

 So let’s build a table so that an A spanning 
from i to j in the input is placed in cell [i,j]
in the table.
 So a non-terminal spanning an entire 

string will sit in cell [0, n]
 Hopefully an S

 If we build the table bottom-up, we’ll 
know that the parts of the A must go from 
i to k and from k to j, for some k.
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CKY

 Meaning that for a rule like A  B C we 
should look for a B in [i,k] and a C in [k,j].
 In other words, if we think there might be 

an A spanning i,j in the input… AND 
A  B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in [k,j]
for some i<k<j
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CKY

 So to fill the table loop over the cell[i,j] 
values in some systematic way
 What constraint should we put on that 

systematic search?

 For each cell, loop over the appropriate k 
values to search for things to add.
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Note

 We arranged the loops to fill the table a 
column at a time, from left to right, 
bottom to top. 
 This assures us that whenever we’re filling a 

cell, the parts needed to fill it are already in 
the table (to the left and below)
 It’s somewhat natural in that it processes the 

input a left to right a word at a time
 Known as online
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Example

CKY Parser

40

Book       the        flight    through  Houston

i=
0

1

2

3

4

j= 1           2              3             4              5

Cell[i,j]
contains all
constituents
(non-terminals)
covering words
i +1 through j
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CKY Parser

41

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP
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CKY Parser

43

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

S

VP, 
X2



23

CKY Parser

45

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP
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CKY Parser

47

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

CKY Parser

48

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP
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CKY Parser

49

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

S
VP
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CKY Parser

51

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S



27

CKY Parser

53

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S

X2 
S

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse 
Tree
#1
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CKY Parser

55

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse 
Tree
#2
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Example

Filling column 5
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Example
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Example
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Example
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Example
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CKY Notes

 Since it’s bottom up, CKY populates the 
table with a lot of phantom constituents.
 Segments that by themselves are constituents 

but cannot really occur in the context in which 
they are being suggested.
 To avoid this we can switch to a top-down 

control strategy
 Or we can add some kind of filtering that 

blocks constituents where they can not 
happen in a final analysis.
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Earley Parsing

 Allows arbitrary CFGs
 Top-down control
 Fills a table in a single sweep over the 

input
 Table is length N+1; N is number of words
 Table entries represent
 Completed constituents and their locations
 In-progress constituents
 Predicted constituents
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Back to Ambiguity

 Did we solve it?
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Ambiguity

 No…
 Both CKY and Earley will result in multiple S

structures for the [0,N] table entry.
 They both efficiently store the sub-parts that 

are shared between multiple parses.
 And they obviously avoid re-deriving those 

sub-parts.
 But neither can tell us which one is right.
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Ambiguity

 In most cases, humans don’t notice 
incidental ambiguity (lexical or syntactic). 
It is resolved on the fly and never 
noticed.
 I ate the spaghetti with chopsticks
 I ate the spaghetti with meatballs

 We’ll try to model that with probabilities.

Shallow or Partial Parsing

 Sometimes we don’t need a complete 
parse tree
 Information extraction
 Question answering

 But we would like more than simple POS 
sequences

66
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Chunking

 Find major but unembedded constituents 
like NPs, VPs, AdjPs, PPs
 Most common task:  NP chunking of base NPs
 [NP I] saw [NP the man] on [NP the hill] with 

[NP a telescope]
 No attempt to identify full NPs – no recursion, 

no post-head words
 No overlapping constituents
 E.g., if we add PPs or VPs, they may consist 

only of their heads, e.g. [PP on]

Approaches:  RE Chunking

 Use regexps to identify constituents, e.g.
 NP  (DT) NN* NN
 Find longest matching chunk
 Hand-built rules
 No recursion but can cascade to approximate 

true CF parser, aggregating larger and larger 
constituents
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Approaches:  Tagging for 
Chunking

 Require annotated corpus
 Train classifier to classify each element of 

input in sequence (e.g. IOB Tagging)
 B (beginning of sequence)
 I (internal to sequence)
 O (outside of any sequence)
 No end-of-chunk coding – it’s implicit
 Easier to detect the beginning than the end
Book/B_VP that/B_NP flight/I_NP quickly/O

Summary and Limitations

 Sometimes shallow parsing is enough for 
task
 Performance quite accurate
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Distribution of Chunks in 
CONLL Shared Task

Summing Up

 Parsing as search:  what search strategies 
to use?
 Top down
 Bottom up
 How to combine?

 How to parse as little as possible
 Dynamic Programming

 Shallow Parsing

72


