
Abstract
The main study objective was to develop robust processing
and analysis techniques to facilitate the use of small-footprint
lidar data for estimating plot-level tree height by measuring
individual trees identifiable on the three-dimensional lidar
surface. Lidar processing techniques included data fusion
with multispectral optical data and local filtering with both
square and circular windows of variable size. The lidar
system used for this study produced an average footprint of
0.65 m and an average distance between laser shots of 0.7 m.
The lidar data set was acquired over deciduous and conifer-
ous stands with settings typical of the southeastern United
States. The lidar-derived tree measurements were used with
regression models and cross-validation to estimate tree height
on 0.017-ha plots. For the pine plots, lidar measurements
explained 97 percent of the variance associated with the
mean height of dominant trees. For deciduous plots, regres-
sion models explained 79 percent of the mean height variance
for dominant trees. Filtering for local maximum with circular
windows gave better fitting models for pines, while for decidu-
ous trees, filtering with square windows provided a slightly
better model fit. Using lidar and optical data fusion to differ-
entiate between forest types provided better results for
estimating average plot height for pines. Estimating tree
height for deciduous plots gave superior results without
calibrating the search window size based on forest type.

Introduction
Laser scanner systems currently available have experienced a
remarkable evolution, driven by advances in the remote sens-
ing and surveying industry. Lidar sensors offer impressive
performance that challange physical barriers in the optical
and electronic domain by offering a high density of points at
scanning frequencies of 50,000 pulses/second, multiple
echoes per laser pulse, intensity measurements for the return-
ing signal, and centimeter accuracy for horizontal and vertical
positioning. Given a high density of points, processing algo-
rithms can identify single trees or groups of trees in order to
extract various measurements on their three-dimensional rep-
resentation (e.g., Hyyppä and Inkinen, 2002).
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The foundations of lidar forest measurements lie with the
photogrammetric techniques developed to assess tree height,
volume, and biomass. Lidar characteristics, such as high sam-
pling intensity, extensive areal coverage, ability to penetrate
beneath the top layer of the canopy, precise geolocation, and
accurate ranging measurements, make airborne laser systems
useful for directly assessing vegetation characteristics. Early
lidar studies had been used to estimate forest vegetation char-
acteristics, such as percent canopy cover, biomass (Nelson
et al., 1984; Nelson et al., 1988a; Nelson et al., 1988b; Nelson
et al., 1997), and gross-merchantable timber volume (Maclean
and Krabill, 1986). Research efforts investigated the estima-
tion of forest stand characteristics with scanning lasers that
provided lidar data with either relatively large laser foot-
prints, i.e., 5 to 25 m (Harding et al., 1994; Lefsky et al., 1997;
Weishampel et al., 1997; Blair et al., 1999; Lefsky et al., 1999;
Means et al., 1999) or small footprints, but with only one
laser return (Næsset, 1997a; Næsset, 1997b; Magnussen and
Boudewyn, 1998; Magnussen et al., 1999; Hyyppä et al.,
2001). A small-footprint lidar with the potential to record the
entire time-varying distribution of returned pulse energy or
waveform was used by Nilsson (1996) for measuring tree
heights and stand volume.

As more systems operate with high performance, research
efforts for forestry applications of lidar have become very in-
tense and resulted in a series of studies that proved that lidar
technology is well suited for providing estimates of forest bio-
physical parameters. Needs for timely and accurate estimates
of forest biophysical parameters have arisen in response to in-
creased demands on forest inventory and analysis.

The height of a forest stand is a crucial forest inventory at-
tribute for calculating timber volume, site potential, and silvi-
cultural treatment scheduling. Measuring of stand height by
current manual photogrammetric or field survey techniques is
time consuming and rather expensive. Tree heights have been
derived from scanning lidar data sets and have been compared
with ground-based canopy height measurements (Næsset,
1997a; Næsset, 1997b; Magnussen and Boudewyn, 1998;
Magnussen et al., 1999; Næsset and Bjerknes, 2001; Næsset and
Økland, 2002; Persson et al., 2002; Popescu, 2002; Popescu
et al., 2002; Holmgren et al., 2003; McCombs et al., 2003).
Despite the intense research efforts, practical applications of
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small-footprint lidar have not progressed as far, mainly because
of the current cost of lidar data. However, with an anticipated
decline of lidar data cost in the near future and promising cur-
rent research efforts, lidar is expected to be used extensively in
forest measurements.

A review of the rapidly growing literature on lidar appli-
cations emphasizes the need for optical data fusion in the pro-
cessing phase of lidar data as a method to improve various fea-
ture extraction tasks. Previous studies using high-resolution
digital images attempted to estimate tree heights, canopy
density, and forest volume or biomass by individually map-
ping tree crowns (Gougeon, 1995; St-Onge and Cavayas,
1995; Brandtberg, 1997; Wulder et al., 2000). A trial study by
Næsset (2002) revealed that automated softcopy photogram-
metric methods did not provide better results when compared
to manual photogrammetric techniques for estimating tree
heights. As opposed to such endeavors, lidar sensors allow an-
alysts to directly portray forests in a three-dimensional format
over large areas. Lidar sensors are clearly superior to pho-
togrammetric instruments in their ability to see between the
trees and through the canopy openings, but lidar sensors have
their own shortcomings. Lidar data provide multiple return
position and intensity measurements, but contain only limited
information for deriving the correspondence to target objects.
Optical imagery allows for feature identification; thus, the fu-
sion of range and reflectance data provides additional support
for the automatic feature measurement process. Optical data
are particularly useful in forestry applications for differentiat-
ing between forest and non-forest areas and for discriminating
between major tree species, such as coniferous and deciduous.
Toth et al. (2001) examined the feasibility of combining lidar
data with simultaneously captured digital images to improve
the surface extraction process. Their investigation was limited
to the conceptual level and was only intended to demonstrate
the potential of lidar and optical data fusion. Lidar and multi-
spectral data fusion were used by McCombs et al. (2003) to
estimate stand density and mean tree height. They found that
tree identification in regularly spaced loblolly pine planta-
tions was more accurate when using spectral data rather than
lidar data alone, and that a fused data set provided the best
results for identifying peak values assumed to represent tree
tops.

This study attempts to make a contribution to inventory-
ing and measuring forest biophysical parameters using lidar
data by developing and testing specific processing algorithms
targeted towards forestry applications. The use of lidar remote
sensing techniques for assessing forest biophysical parameters
has been investigated by other researchers, but as of yet such
approaches have met with little success for multiage, multi-
species forests. Lidar studies published at this point have
shown success in several forest types with large-footprint
lidar, but applications of small-footprint lidar to forestry have
not progressed as far (Means, 2000), being limited mainly to
measuring even-aged coniferous stands. Thus, this study aims
at presenting a new approach for using a fused lidar data set
and multispectral optical data for assessing tree height in for-
est areas covered with both hardwoods and softwoods typical
of the eastern United States, because there is an increasing
need to improve the accuracy of forest estimates. The specific
objectives provide a general outline of the study approach and
are as follows: (1) to develop robust processing and analysis
techniques to facilitate the use of small-footprint lidar data for
predicting plot-level tree heights by directly measuring indi-
vidual trees identifiable on the three-dimensional lidar sur-
face, and (2) to compare the performance of different lidar
processing techniques for estimating tree height, as follows:
local filtering with variable window size and different
window shapes, square and circular, each with and without
data fusion with multispectral optical imagery.

Materials and Methods
Study Site
The study area is located in the southeastern United States, in
the Piedmont physiographic province of Virginia. It includes
a portion of the Appomattox-Buckingham State Forest that is
characterized by deciduous, coniferous, and mixed stands of
varying age classes (upper-left coordinates: 37°25� N, 78°41� W;
lower-right coordinates: 37°24� N, 78°39� W). A mean elevation
of 185 m, with a minimum of 159 m and a maximum of 238 m,
and rather gentle slopes characterize the topography of the
study area.

Ground Inventory Data
The ground-truth data were collected from November 1999 to
April 2000. Six forest vegetation types were covered by the
field sampling—pine-hardwoods; upland hardwoods; bottom-
land hardwoods; and stands of loblolly pine, Virginia pine,
and shortleaf pine. Forest type is a plot-level classification de-
fined by the relative stocking of tree species or species groups
(Powell et al., 1993). The stand age varied, being approxi-
mately 15 years for the majority of the pine stands, 35 to
55 years for the pine-hardwood mixed stands, 85 to 90 years
for the bottomland hardwoods, and up to 100 to 140 years for
the upland-hardwood stands. Three stands of loblolly pine
were exceptionally old, with ages of 60 to 65 years, and with a
multilayer vertical structure. The number of tree species iden-
tified per subplot ranged from one (pure stands) to ten, with
an average of 4.6 species per subplot. A more detailed de-
scription of the tree species inventoried on the ground can be
found in Popescu (2002) and Popescu et al. (2002). 

The plot design followed the U.S. National Forest Inven-
tory and Analysis (FIA) field data layout (Figure 1). An FIA plot
consists of a cluster of four subplots approximately 0.017 ha
(0.04 acres) each, with a radius of 7.32 m (24.0 ft) (USDA For-
est Service, 2001). One plot is distributed over an area of ap-
proximately 0.4 ha (1 acre); thus, it represents a sample of the
conditions within this area. The center plot is subplot 1. Sub-
plots 2, 3, and 4 are located 36.58 m (120.0 ft) at azimuths 0,
120, and 240 degrees from the center of subplot 1. Subplots
are used to collect data on trees with a diameter at breast
height (dbh, diameter measured at 1.37 m (4.5 ft) above the
ground) of 12.7 cm (5.0 in) or greater. For the purpose of this
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Figure 1. Layout of a single FIA plot with four
subplots.
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study, the FIA standard protocol was modified and data were
collected on trees with a dbh of at least 6.35 cm (2.5 in). A
total of 16 plots were measured in the study area, each with
four subplots. FIA plot centers (subplot 1 centers) were located
systematically on a 200- by 200-m (656- by 656-ft) grid, with
rows oriented east-west and columns oriented north-south
(Plate 1). The origin of the grid relative to the map was ran-
domly selected. Plots were selected to ensure representation
of the forest-cover types in the study area while maintaining
approximate equivalence between the number of coniferous
and deciduous plots (Table 1).

To simplify the analysis relative to tree species, subplots
were categorized as either “hardwoods” or “pines.”  For the
pine-hardwoods mixed stands, the species group of the sub-
plot was named after predominant tree species. Predominance
was established by basal area (Eyre, 1980), and the subplot
category was assigned to the species comprising more than
half of the stocking. The ground-truth data set contained 33
hardwood subplots and 31 pine subplots.

The centers of subplots 1, for most of the plots, were laid
out in the field using a navigational GPS unit, a Rockwell
Collins PLGR. Centers of subplots 2, 3, and 4 of the same plot
were located by bearing and distance from subplot 1. Four out
of the 16 plots were set by bearing and distance from previ-
ously located plots. In addition, all FIA subplot locations were
determined using 60-second static measurements with a
12-channel GPS receiver, an HP-GPS-L4 with a PC5-L data
collector (Corvallis Microtechnology, Inc., URL: http://www.
cmtinc.com/nav/frprod.html, last accessed 26 January 2004).
For a better GPS satellite signal reception, the antenna was
raised on a height pole fixed to a staff equipped with a level
for maintaining the antenna vertically over the plot location.
The GPS antenna height varied between 1.8 m and 7.6 m, with
an average height of 3.8 m. All measurements were collected
during the leaf-off season for the hardwood stands. The lack
of canopy foliage and the raised antenna in the denser pine
stands reduced the error effects of forest canopies on GPS

measurements. The reported mapping accuracy for the HP-
GPS-L4 unit, obtained under open sky for 60 seconds of static
measurements is 30 cm (Corvallis Microtechnology, Inc.).
Under forest canopy, GPS systems tend to yield from 1.5 to
3 times less accurate solutions (Craig Greenwald, Corvallis
Microtechnology, Inc., Technical Support, personal communi-
cation, 2001). Therefore, we estimate submeter accuracy for
locating the plot centers. Depending on the data availability,
the following National Geodetic Survey continuously operat-
ing reference stations in Virginia were used for the differential
correction: Blacksburg, Driver, Charlottesville, and Richmond,
all within the baseline distance of 300 km (187.5 miles) for
this type of GPS receiver from the location of the study area. 

On each subplot, the heights of all trees were measured
using a Vertex Forestor hypsometer. Some of the pine tree
heights that were less than 7.62 m (25 ft) were measured using
a height pole. Several heights less than 7.62 m were measured
with both methods and the height difference never exceeded
15 cm (0.5 ft). Tree heights on three plots were measured
using a Suunto clinometer (PM-5) and a distance tape. The
height measurement recorded the total length of the tree, to
the nearest 0.30 m (1.0 ft) from ground level to the top of the
tree. Diameter at breast height (dbh) was measured on all trees
within the subplots using a diameter tape. The actual diame-
ter was recorded for each tallied tree to the last whole 0.25 cm
(0.1 in). Crown width was measured on all trees with a dbh
larger than 12.7 cm (5.0 in) and was used in a separate study
to investigate the performance of lidar data for estimating
crown diameter (Popescu et al., 2003). Crown width was de-
termined as the average of four perpendicular crown radii
measured with a tape from the tree bole towards the subplot
center, away from it, to the right and to the left. The location
(X, Y) of each tree relative to the subplot center was deter-
mined by bearing and distance using a distance tape and a
Suunto compass (KB-14), with an expected standard error of
up to 30 cm (1 ft), depending on the distance to the subplot
center. Bearing was measured from the subplot center sighting
to the center of the base of each tree. The horizontal distance
was recorded to the nearest 0.03 m (0.1 ft) from the subplot
center to the pith at the base of the tree. Taking into account
the positional accuracy of the differential GPS unit for deter-
mining the location of the subplot centers, the error of a tree’s
position is expected to be approximately of 1.5 m. This error
only refers to the position of the base of the tree, without con-
sidering the deviation of the tree top relative to the base.

Subplot averages were calculated from individual tree
measurements and were used to assess the performance of the
lidar processing algorithms. Descriptive statistics of subplot
values for the pines and deciduous plots are given in Table 2.

The standards for FIA data collection (i.e., acceptable er-
rors in quality checks, though check crews were not used in
this study) are as follows: tree height: �10 percent of the total
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TABLE 1. NUMBER OF SUBPLOTS DIFFERENTIATED BY FOREST COVER TYPE

Forest Cover Type Number of Subplots

Pine-hardwood 14
Upland hardwood 17
Bottomland hardwood 7

Total hardwood and mixed pine-hardwood 38

Loblolly pine 16
Virginia pine 6
Shortleaf pine 4

Total pines 30

Total number of subplots 64

TABLE 2. DESCRIPTIVE STATISTICS OF THE FIELD INVENTORY DATA FOR PINES AND DECIDUOUS SUBPLOTS

Statistic Dbh (cm) Height (m) Crown Width (m) Number of Trees/Plot

Pines Subplots
Mean 13.22 10.56 4.04 21.90
Minimum 7.57 5.03 1.97 3
Maximum 26.67 17.37 10.12 68
Standard Deviation 4.21 2.98 1.79 13

Deciduous Subplots
Mean 17.18 12.99 5.98 11.3
Minimum 8.42 8.58 3.79 3
Maximum 28.88 18.64 8.85 22
Standard Deviation 4.30 2.18 1.27 5
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height; tree mapping: �3 degrees for azimuth and 0.3 m
(1.0 ft) for distance; and dbh: 0.25 cm (0.10 inch) for trees
50.8 cm (20 inches) or less and 0.51 cm (0.2 inches) for trees
larger than 50.8 cm. For crown width there is no FIA standard
but the error is estimated to be about 0.6 to 0.9 m (2 to 3 ft).

Lidar Data Set
The lidar data were acquired on 02 September 1999 over an
area of 1012 ha (2500 acres) located in the Appomattox-
Buckingham (AB) State Forest in Virginia. The lidar system
(AeroScan, EarthData, Inc.) utilizes advanced technology in
airborne positioning and orientation, enabling the collection
of high-accuracy digital surface data. The scanning system
uses an oscillating mirror with a scanning rate of 10 Hz and a
scanning angle that can be adjusted from 1° to 75°. For the
Appomattox-Buckingham data set the scanning angle was 10°,
giving a total field of view of 20°. The average ground swath
width was 699 m and the entire research area was covered by
21 parallel flight lines. The mission was designed with up to
70 percent side overlap to increase the point density on the
ground and to correct for the typical zig-zag lidar scanning
pattern. A more detailed description of the lidar data set and
the sensor characteristics is given in Popescu et al. (2002a).
The laser beam divergence was 0.33 mrad, yielding a footprint
of 0.65 m from the flying height of 1980 m. 

The AeroScan system used for this study was capable of
recording up to four returns for each laser pulse, depending
on the ground cover. For this study, only the first and the last
returns were used. The last return could coincide with the
first, if there is only one return per pulse, or could be any
other return from the second to the fourth, depending on the
number of returns for a particular pulse. 
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Plate 1. Location of study plots (yellow dots) on a leaf-off
color infrared ATLAS image (NASA’s Airborne Terrestrial Land
Applications Scanner, 4-m resolution, 1998). The green
square shows the lidar data coverage. (Copyright 2002,
American Society for Photogrammetry and Remote
Sensing, 2002 Annual Conference Proceedings.)

To investigate the laser point density, a regular grid of 660
by 660 meters was overlaid with the lidar points located in
the upper right corner of the study area. This portion of the
study area is covered by nine FIA-type plots with a mixture of
pine and hardwood stands and is representative for the range
of scanning patterns. The grid cell size was 1 by 1 m; there-
fore, the statistical measures were reported directly per 1 m2.
The area included laser points from seven adjacent flight
lines, though some of the flight lines only partially covered
the area. The distribution of the number of points in each
1-m2 cell was analyzed for the entire grid, and the results are
summarized in Table 3. Figure 2 shows the frequency distrib-
ution of the number of lidar points per 1 m2. By pooling all
the laser points from adjacent swaths into the same point file,
the average interpoint distance decreased to 0.7 m.

The provider performed an evaluation of the lidar data,
including a comparison of the data from flight line to flight
line. This comparison showed high relative accuracy and no
anomalies in the data. All ranges were postprocessed by
EarthData, Inc., and corrected for atmospheric refraction and
transmission delays. The reported accuracies for the AeroScan
lidar system flying at less than 2400 m above ground, over
open homogeneous flat terrain, are as follows: an elevation or
vertical accuracy of �25 cm and a horizontal accuracy of
�50 cm (EarthData, Inc., URL: http://www.earthdata.com/
lidar.htm, last accessed 26 January 2004).

Optical Data
In addition to the lidar data, spatially coincident optical data
used for this study include a leaf-off ATLAS image (NASA’s
Airborne Terrestrial Land Applications Scanner; 4-m spatial
resolution; flown 17 March 1998 at 2100 m above ground
level), shown in Plate 1. The multispectral ATLAS image was
acquired in the leaf-off season of 1998. Only the first eight
bands, covering the visible, near-, and mid-infrared portion of
the spectrum, were used for this study.

TABLE 3. BASIC STATISTICAL MEASURES FOR THE NUMBER OF
LIDAR POINTS PER 1 M2

Statistic Value

Number of 1-m2 cells analyzed 435,600
Mean 1.35
Mode 1
Median 1
Standard Deviation 1.89
Range 54
Interquartile Range 2

Figure 2. Frequency distribution of the number of lidar
points (n) per 1 m2.
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Canopy Height Model (CHM)
The tree canopy height model was computed as the difference
between tree canopy hits and the corresponding lidar-derived
terrain elevation values. An iterative approach was used to
construct the terrain model from the raw lidar data points
using a slope-based algorithm. The ground-points classifica-
tion algorithm was implemented in IDL (Interactive Data
Language), with details provided in Popescu (2002).

Tree canopy hits or first-return lidar points are usually in-
terpolated to a regular grid that corresponds to the digital sur-
face model (DSM). To take advantage of the lidar point density
that allows a 3D surface representation of individual trees, the
grid size of the DSM of first-return lidar points was 0.5 meters.
The lidar point density per 0.25 m2 was investigated by over-
laying a grid of 0.5- by 0.5-meter cells over the first-return
lidar points. The number of lidar points per 0.25 m2 ranged
from 0 to 32. The average elevation difference of lidar points
in the same cell was 0.44 m, with a range between 0 and
29.73 m and a standard deviation of 1.8 m. This large eleva-
tion difference for a small area is most likely due to overlay-
ing lidar points with different incidence angles from adjacent
flight lines or to different penetration heights for laser pulses
with similar incidence angles (Figure 3).

When situations like the one depicted in Figure 3 occur,
it is difficult to anticipate what elevation values are used to
interpolate lidar heights to a regular grid. To measure tree
height, processing techniques must accurately derive the top
vegetation surface. Therefore, to have a better control over the
interpolation results, only the highest lidar elevations in each
of the 0.25 m2 cells were used with kriging to derive the top
DSM. A comparison with the interpolated surface obtained
from all first-return lidar heights shows that the top DSM is, on
average, higher by 0.17 m. The largest height difference be-
tween the top DSM and the first-return surface was 25.19 m.
Therefore, the use of all first-return lidar points to interpolate
the DSM creates a slightly lower surface that can contribute to
underestimating tree heights with lidar. The underestimation
of tree height by lidar has been attributed in recent studies
(Nilsson, 1996; Næsset, 1997a; McCombs et al., 2003) to the
more frequent laser sampling of the crown shoulders than the

tree apex. As such, canopy heights are biased toward low val-
ues, but the method of deriving the lidar surface can further
contribute to this effect.

To obtain the tree canopy height model (CHM), the terrain
elevation was subtracted from the top DSM. Therefore, the ac-
curacy of deriving the ground elevation directly affects the ac-
curacy of measuring tree heights.

Tree Dimensions

Differentiation between Conifers and Hardwoods
The forest biometrics relationship between tree height and
crown width was used in the processing of lidar data to locate
individual trees and to measure their crown diameter. Be-
cause such a relationship is highly dependent on the tree
species, it is of interest in the processing phase to differentiate
between coniferous and deciduous species. Lidar data with
only height measurements do not offer adequate information
to distinguish between tree species. Therefore, data fusion
with the leaf-off ATLAS image in Plate 1 was used to differenti-
ate between the two categories of species, deciduous and
coniferous.

The image was classified into three classes—open ground,
deciduous, and coniferous—using a supervised approach and
the maximum-likelihood classification decision rule (Plate 2).
Only the first eight bands, covering the visible, near-, and
mid-infrared portion of the spectrum (0.45 to 2.35 �m), were
used in the classification process. The regions that represent
each class are distinct and clearly identifiable on the ATLAS
image; therefore, training samples were selected on this image
for each of the three classes using the digitized polygon
method. Several polygons digitized for each class were
merged to create each spectral signature. Once the image was
classified, the dominant and codominant trees from all the
ground plots, which are the trees most likely seen from above,
were used to assess the accuracy of the classified image. Tree
locations and their species are known from the ground inven-
tory. Dominant trees are considered the trees that have their
dbh larger than the quadratic mean diameter for each plot.
The quadratic mean diameter is also known as the diameter
of the tree of mean basal area and is slightly larger than the
arithmetic mean dbh (Avery and Burkhart, 1994). From the
64 FIA-type subplots, 425 dominant and codominant trees
(133 deciduous and 292 pines) were selected for the accuracy
assessment. In addition, the seven GPS points collected in
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Plate 2. Classified ATLAS image.

Figure 3. Difference in elevation over the same horizontal
area due to combining data from adjacent flight lines (a) or
to different laser penetration heights for the same inci-
dence angle (b).
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open ground were added to the reference data. Table 4 shows
the error matrix associated with the classification process. The
accuracy report is given in Table 5.

The users accuracy gives an indication on the reliability
of the classified image as a predictive device relative to what
species are on the ground (Campbell, 1996). Of the pine-
forested area on the image, 88.85 percent is actually covered
by pine species, while of the deciduous area, 72.39 percent.
The Kappa statistic expresses the difference relating the ob-
served agreement between the classified image and the ground
reference, compared to the agreement of a completely random
classification (Congalton and Green, 1999, p. 49). The 0.66
value for pines and 0.60 for deciduous species would imply
that the classification process achieved an accuracy that is
better than would be expected from chance assignment of
pixels to the three categories (Congalton and Green, 1999,
pp. 51–53).

The ATLAS image was georeferenced to the color-infrared
ortho-image and, therefore, spatially coregistered to the lidar
data. The initial 4-meter spatial resolution of the classified
ATLAS image did not match the 0.5-m pixel size of the lidar
CHM, but the image was resampled to the smaller grid size of
the lidar surface using the nearest-neighbor method. The re-
sampled image with three classes allows a pixel-level data
fusion with the lidar surface. For a visual analysis of the co-
registration between lidar data and the ATLAS image, the
multiband image was draped over the three-dimensional CHM,
as shown in Plate 3. Large individual deciduous crowns are
visible in the foreground in Plate 3, while pine plantations
show a smooth texture and are covered with shades of red,
due to their strong reflection in the infrared portion of the
spectrum on the leaf-off ATLAS image. In the absence of multi-
spectral imagery acquired simultaneously with the lidar data,
the ATLAS image offers an adequate source of information to
differentiate between the two major tree species, deciduous
and coniferous, which can be subsequently used for process-
ing lidar data.

Tree Heights
Popescu et al. (2002) used two approaches to estimate the tree
height on the same circular areas covered by the FIA-type sub-
plots. The first approach was based on the height of all laser
pulses within the area covered by the ground-truth data. The

second method to estimate tree heights was based on single-
tree identification using a variable window technique with
local maximum (LM) focal filtering. Their results showed that
the technique of estimating mean tree height by identifying the
location of individual trees performed better than the first
technique, which makes use of all laser height values within
the subplots. For their study, Popescu et al. (2002) used a vari-
able square shaped window. A similar technique with variable
window size and texture analysis was used by Daley et al.
(1998) with high-resolution optical images (MEIS-II) to estimate
crown position in stands of Douglas fir (Pseudotsuga menziesii
(Mirb.) Franco). Variable window sizes were also used by
Wulder et al. (2000) for the extraction of tree locations and es-
timation of basal area from high spatial resolution imagery for
stands of Douglas fir and western red cedar (Thuja plicata).
With an image spatial resolution of 1 m, they used window
sizes of 3 by 3, 5 by 5, and 7 by 7 m. The variable window sizes
assigned to each pixel were based on the semivariance range
or local breaks in slope.

The LM technique used for this study operates with two
shapes of the search window, such as a square n by n window
and a circular window that is more appropriate for identifying
tree crowns. The algorithm was implemented in IDL Version
5.5 (Research Systems, Inc.). The LM technique operates on
the assumption that high laser values in a spatial neighbor-
hood represent the tip of a tree crown. Successful identifica-
tion of the tree location using the LM technique depends on
the careful selection of the filter window size. If the filter size
is too small or too large, errors of commission or omission
respectively, occur. Thus, the variable window LM technique
functions under the supposition that there are multiple tree
crown sizes and that the moving LM filter should be adjusted
to an appropriate size that corresponds to the spatial structure
found on the lidar image and on the ground. The LM filter
works best for trees with a single well-defined apex, such as
coniferous species.

Tree crown form has been associated with different geo-
metric shapes, such as conical, parabolic, ellipsoidal, or com-
binations of such geometric shapes. Although the form of a
tree crown does not follow exactly a Euclidean geometric
shape, but is stochastic in nature (Biging and Gill, 1997) and,
when seen from above, the tree crown most closely can be
projected within a circle. Doruska and Burkhart (1994) inves-
tigated the circular distribution of branches for crowns of
loblolly pine trees and found that in most cases a circular
uniform distribution was appropriate. Therefore, it is evident
that searching for the LM to identify individual crowns with a
circular window of variable diameter is more appropriate than
filtering with a square window.

The derivation of the appropriate window size to search
for tree tops is based on the assumption that there is a rela-
tionship between the height of the trees and their crown size.
The higher the trees, the larger the crown size. Thus, tree
height and crown size data from the field inventory were used
to derive a relationship between tree height and crown size.
Crown size was considered the dependent variable, and linear
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TABLE 4. ERROR MATRIX FOR THE MAXIMUM-LIKELIHOOD CLASSIFICATION
OF THE ATLAS IMAGE

Reference Data

Open Ground Deciduous Pines Row Total

Classified Data
Open ground 6 4 1 11
Deciduous 1 97 36 134
Pines 0 32 255 287
Column Total 7 133 292 432

TABLE 5. ACCURACY ASSESSMENT REPORT FOR THE MAXIMUM-LIKELIHOOD CLASSIFICATION OF THE ATLAS IMAGE

Reference Classified Number Producers Users Kappa
Class Name Totals Totals Correct Accuracy % Accuracy % Statistic

Open ground 7 11 6 85.71 54.55 0.5380
Deciduous 133 134 97 72.93 72.39 0.6011
Pines 292 287 255 87.33 88.85 0.6559
Total 432 432 358

Overall classification accuracy � 82.87%
Overall Kappa statistic � 0.6236
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and nonlinear regression models were tested separately for
deciduous trees, pines, and the combined data. Data on height
and crown diameter from 235 pines and 189 deciduous trees
were used in this analysis. The best prediction for crown
width (m) using tree height (H m) was obtained when using
linear regression with a quadratic model as shown below:

Deciduous: Crown width � 3.09632 � 0.00895 H2

(R2 � 0.54, Sy�x � 1.49) (1)

Pines: Crown width � 3.75105 � 0.17919 H
� 0.01241 H2 (R2 � 0.58, Sy�x � 1.20) (2)

Combined: Crown width � 2.51503 � 0.00901 H2

(R2 � 0.59, Sy�x � 1.45) (3)

As expected, using only height as the predictor variable,
the relationship is not as strong as between dbh and height,
but it offers a base to continuously vary the LM filter size
when moved across the grid of laser height values. The regres-
sion models are different for pines and deciduous trees, be-
cause height proved to be non-significant at the 0.05 level in
the regression model for deciduous trees. The regression
model for pines had a higher R2 value and a reduced standard
error of the estimate when compared with the deciduous
model. Consequently, it is advantageous to differentiate be-
tween deciduous trees and pines when relating lidar heights
with window size for the LM filter.

Based on the CHM heights and Equations 1, 2, and 3
above, the window size varied between 3 by 3 and 31 by
31 pixels, which corresponds to crown sizes between 1.5 m
and 15.5 m. The maximum crown diameter measured on the
ground, 13.8 m, belonged to a white oak tree. In the case of
the circular window for the LM filter (Figure 4), the window
diameter varied between the same limits mentioned above for
the size of the regular square windows.

The algorithm (Figure 5) reads the height value at each
pixel and calculates the window size to search for the local
maximum. The concept of variable windows is illustrated in
Figure 6, which shows a portion of the CHM with the filtering
windows that identified tree tops, with either square or circu-
lar shape. When filtering the image with variable windows,
if the current pixel corresponds to the local maximum, it is
flagged as a tree top (Plate 4). Once the location of each identi-
fied tree crown has been established, the canopy 3D surface of
laser heights (CHM) is sampled only at the positions of the tree
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Figure 4. Circular window (white back-
ground) compared to a square window
(19 by 19 pixels—9.5 by 9.5 m).

Figure 5. Flow chart of the algorithm for locating trees and measuring
height.
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apex to find out the height of each tree. To avoid identifying
local maxima, i.e., trees, in areas with low vegetation heights,
a minimum threshold was used to flag a location as a tree top.
The threshold value was set to the minimum tree height in-
ventoried on the ground (3.96 m).

The algorithm was run with both circular and square win-
dow LM filters, with and without data fusion with optical
data. When no optical data were used to differentiate between
deciduous and pines when calculating the width of the search
window, the filter size was calculated based on the relation-
ship between height and crown size derived from all invento-
ried trees (Equation 3).

Regression Analysis
The algorithm for identifying the location of individual trees
was used in conjuction with an algorithm for measuring the
crown diameter of each identified tree. The crown diameter is
the average of two values measured along two perpendicular
directions from the location of the tree top. Details about the
steps of this algorithm and its performance are given in
Popescu et al. (2003). The variable window size LM technique
that identifies tree tops was also used to estimate the number
of trees per plot. The total number of local maxima within one
plot is an indicator of the number of stems per plot. Linear
regression models were used to develop equations relating
lidar-derived parameters, such as tree height, stand density,
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Figure 6. Portion of the CHM with variable windows of
square (a) and circular (b) shape. Only the windows that
identified tree tops are shown in the figure.

Plate 3. Multispectral ATLAS image draped over the CHM.

Plate 4. Ortho-image (a) and tree tops identified in the
hardwood stand (b) and the pine plantation (c). Rectangles
on the ortho-image shows approximate location of zoom
windows (b) to the left, and (c) to the right. Plantation row
pattern oriented SW-NE is visible in (a) and (c). The ortho-
image was provided by EarthData, Inc., derived from
1:13,800-scale color-infrared photography acquired by NASA
in the fall of 1999 (0.5-m spatial resolution).

(a)

(a)

(b)

(b) (c)
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and crown width, with field inventory data of tree height for
each of the FIA subplots. Subplots were pooled together in two
categories, deciduous trees and pines. Stepwise multiple re-
gression models with 0.15 significance level were developed
separately for each of the two forest type categories. The inde-
pendent variables (Table 6) were the lidar measurements for
each subplot, including the number of trees, average height,
minimum and maximum height, average crown diameter,
minimum and maximum crown diameter, and the standard
deviation of height and crown diameter. Lidar measurements
were obtained for each of the four methods of filtering the
CHM—square and circular variable windows, each with and
without data fusion. Each set of lidar estimates was compared
to the same set of field measurements for each FIA subplot,
which includes mean and maximum height (Table 2).

The study of Popescu et al. (2002) confirmed that lidar is
better suited to measure trees in the upper layer of the canopy,
mainly the dominant and codominant trees. Therefore, the
field-measured dependent variables for height, crown diame-
ter, dbh, and number of trees were separated into three cate-
gories, based on the dbh: (1) all trees inventoried on the
ground (includes trees with a dbh larger than 6.35 cm or
2.5 inch), (2) all trees traditionally measured using FIA stan-
dards (trees with dbh larger than 12.7 cm or 5.0 inch), and
(3) dominant and codominant trees (trees with dbh larger than
the quadratic mean diameter). Intermediate and overtopped
trees, with small values for dbh and height, have a small con-
tribution to the total subplot volume and biomass, and thus,
ground measured volume, basal area, and biomass were not
separated into the three categories above. Instead, these values
were calculated using all ground-inventoried trees.

The presence of multicollinearity effects was investigated
using eigenvalues and eigenvectors of the correlation matri-
ces. Multicollinearity can be measured in terms of the ratio of
the largest to the smallest eigenvalue, which is called the con-
dition number of the correlation matrix (Myers, 1990, p. 370).
A condition number that exceeds 1,000 raises concerns for
multicollinearity effects. The highest condition number of all
the regression models for each of the biophysical parameters,
for both pines and deciduous data, was equal to 305.99, con-
siderably lower than the value that raises concerns, i.e., 1000
(Myers, 1990, p. 370). 

Because the ground-truth data were split into pine and
deciduous plots, it was not practical to split it again for vali-
dation purposes. Therefore, the PRESS statistic (Prediction
Sum of Squares) was used as a form of cross-validation, very
much in the spirit of data splitting (Myers, 1990, p. 171–178).
To calculate the PRESS statistic, one observation, in this case
one subplot ground value, is set aside from the sample, and

the remaining observations are used to estimate the coeffi-
cients for a particular candidate model. Each observation is
therefore removed one at a time and the model is fit n times,
n being the number of observations in the data set. The obser-
vation set aside is predicted each time, resulting in n predic-
tion errors or PRESS residuals. These residuals are true predic-
tion errors, because one observation is not simultaneously
used for fit and model assessment. The PRESS statistic was cal-
culated for the models obtained for each of the four filtering
methods. In addition, the range of PRESS residuals, their mean,
and their standard deviation are reported for each model. For
the choice of the best model, one might favor the model with
the smallest PRESS.

Identification of Outlying Observations
Maximum tree heights measured with lidar and on the ground
for the same subplots are not affected by the number of trees
“seen” on the lidar CHM, unlike, for example, the average
height. Therefore, the maximum height per plot is a good in-
dicator of the correspondence between the two sets of mea-
surements, lidar and ground. Maximum height is only af-
fected by the inclusion of the highest tree on the subplot
within the subplot boundaries that tie the ground and lidar
measurements. Therefore, it mitigates the positional errors of
both the field and lidar data.

Linear regression with the ground maximum height as the
dependent variable was used to identify outliers or observa-
tions that are well separated from the remainder of the data.
Such observations involve large residuals and have a dramatic
effect on the fitted least-squares regression model, not only for
regressing maximum height, but also for the rest of the esti-
mated parameters. Externally studentized residuals, also
called R-Student, (Neter et al., 1983, pp. 406–407; Montgomery
and Peck, 1992, pp. 174–177) were used for the outliers diag-
nostic. The R-student residuals follow the t distribution with
n � p � 1 degrees of freedom, where n is the number of obser-
vations and p is the number of regression parameters in the
model, including the intercept term. Tail areas of 0.05 on each
side of the t distribution were considered extreme; therefore,
absolute values of the R-Student residuals were compared
with t (.95, n � p � 1).

Large differences between maximum tree heights can
occur due to misregistration between the lidar CHM and the
FIA-type plots located with GPS. Also, very large trees located
in the plot neighborhood may overtop inventoried trees.
Besides, their top could be identified on the lidar CHM as
being inside the plot. Errors in the derivation of the CHM and
the terrain DEM can also lead to large differences between the
lidar and ground measurements. Due to the size of the FIA-
type subplots (0.017 ha or 0.04 acres), large differences be-
tween lidar and ground measured tree heights are more likely
to occur in stands with a complex vertical and horizontal
canopy structure, such as the deciduous stands. Outliers were
also investigated by analyzing the CHM and the ground data to
gather nonstatistical evidence for discarding extreme values.

Results and Discussion
Outlying Observations
All four filtering methods—circular window with and without
data fusion and square windows with and without data
fusion—gave similar results with respect to the residual
analysis. Residuals and R-Student residuals were investigated
when regressing maximum height for both pines and decidu-
ous plots against all lidar-derived variables. For one of the
pine plots, the lidar processing was not able to identify any
trees; therefore, the results for the pine plots are reported for
only 30 plots. The pine plot with no lidar trees has five domi-
nant trees ranging in height from 21.95 to 34.75 m, with an
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TABLE 6. REGRESSION VARIABLES

Independent Variables Predicted Variables
(lidar measured) (field measured)

Tree height

• Average height/subplot
• Minimum height
• Maximum height
• Standard deviation of individual Tree height

tree heights • Average tree height/

Crown diameter subplot

• Average crown diameter/subplot • Maximum height

• Minimum crown diameter
• Maximum crown diameter
• Standard deviation of individual

tree crown diameters

Number of trees
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average of 29.3 m. The corresponding filtering window sizes
for these tree heights (Equation 1) range between 5.55 and
12.27 m, with an average of 9.12 m. Such window sizes for LM
filtering are large when compared to the plot radius (7.32 m)
and could lead to errors of tree top identification over the plot
area.

As explained in the previous section, the R-Student resid-
uals follow a t distribution; therefore, the t statistic can be
used to ascertain outlying values. Tail areas of 5 percent
on were considered extreme, and absolute values of the
R-Student residuals were compared with t95%,27 � 1.703 for
pine plots and t95%,30 � 1.697 for deciduous plots. By using
this formal procedure for outlier detection employing hypoth-
esis testing based on the t distribution, four of the pine plots
and three of the deciduous plots were identified as outliers.
The magnitude of the residuals for pine and deciduous out-
liers are very different. While pine outliers have absolute val-
ues for residuals of about 2 m, deciduous outliers have much
larger absolute values, between 7.5 and 11.8 m. To investigate
the influence of outliers on the regression models for both
pines and deciduous plots, new regression equations for the
maximum height were fitted with outliers deleted from the
data set. For the method of filtering with circular windows
and data fusion, a comparison of the summary statistics from
the two models, with and without outliers, for the pines and
deciduous plots are given in Table 7. The other three methods
of processing the CHM gave similar results when comparing re-
gression models with and without outliers.

Deleting the outliers from the pines data set had almost no
effect on explaining the variance associated with the maxi-
mum height. The increase in R2 is almost negligible, with only
a slight reduction in the standard error of the estimate. There
was, however, a significant increase in the R2 value for the de-
ciduous data set along with a substantial reduction in the
RMSE. Figures 7a and 7b show the plots of residuals versus the
predicted maximum height for pines and the normal probabil-
ity plot of the residuals. These plots do not indicate any seri-
ous departures from the normality assumption. The points on
the normal probability plot lie approximately on a straight
line, while for the deciduous data set with outliers (Figure 7d),
they indicate a skewed distribution. For the deciduous data
set with outliers out, the range of residuals decreased consid-
erably and the normal probability plot (Figure 7f) indicates a
closer approximation of normality.

The two deciduous plots that had large negative residuals,
i.e., fitted height much larger than the actual maximum height
measured on the ground, had very large trees right next to the
plot. The radius for the FIA-type subplots is 7.32 m and one of
the plots (ground maximum height 10.97 m) had a large mock-
ernut hickory tree (Carya tomentosa (Poir.) Nutt) with a height
of 18.90 m at 7.56 m from the plot center and a southern red
oak (Quercus falcata Michx.) with a height of 27.74 m at
9.20 m from the plot center. A similar situation was found on
the second plot (ground maximum height of 17.07 m) that had
a white oak (Quercus alba L.) with a height of 25.30 m at 7.60
m from the plot center and chestnut oak (Quercus prinus L.)
with a height of 23.16 m at 8.35 m, respectively. Such tall trees
located next to the plot have large crowns extending over the
plot and can have their top vertically located inside the plot

boundary. The third outlier plot had a large positive residual
with the lidar-measured maximum height being lower than
the ground observed height. The reason why lidar failed to
measure the tallest tree on this plot is not apparent. However,
the average height of the dominant-codominant trees on this
plot is 27.3 m, while the lidar-measured maximum height is
27.87 m. The situation might be explained by inaccuracies in
the lidar DEM. The vegetation profile of the plot estimated on
the ground reveals a cover height of 3.65 m for 35 percent of
the subplot area that, along with the dense overstory canopy,
might prevent laser pulses to reach the ground.

Despite the conclusion of the statistical testing for out-
liers of the pines data set, the examination of residuals ranges
and normality plots fails to reveal strong reasons for discard-
ing the four subplots from further analysis. Therefore, the
subsequent results presented for the pines data set were
obtained by using all 30 subplots. Linear regression with
stepwise elimination and 0.15 significance level was used to
predict subplot-level average tree tree height measured on the
ground.

For the deciduous data set, the residuals analysis and
ground data investigations offer a robust motivation for
discarding the three subplots from subsequent analysis. The
results that follow were obtained after removing the three
deciduous subplots.

Tree Height
The current research results show that lidar can accurately es-
timate tree height, which is one of the key parameters in forest
inventories. These findings are particularly important, taking
into account that height measurements on the ground are con-
sidered more difficult and costly to collect than dbh, espe-
cially in tall dense stands. As a result, some forest inventories
measure all trees on the plot for dbh and subsample for
heights. For this study, all four processing methods, such as
square and circular filtering windows, each with and without
data fusion, were able to explain a high percentage of the vari-
ance associated with the average tree height. Results show a
rather intuitive behavior for both pines and deciduous data
sets (Table 8) by obtaining better R2 values for estimating the
height of dominant and codominant trees and for trees mea-
sured by FIA standards, i.e., trees with a dbh larger than
12.7 cm (5 in). The upper layer of dominant trees intercepts
most of the laser shots, and thus, estimates better correlate
with their mean height. Part of the unexplained variance
could be attributed to the terrain DEM, to the collocation of the
lidar CHM and field subplots, and to the lidar limitations for
constructing an accurate CHM.

For pines, the LM technique with a variable window size
of circular shape gave the best results with data fusion. This
method explained 97 percent of the variance associated with
the mean height of dominant trees with a small standard error
for the estimate (1.14 m). The PRESS statistic (Table 9) for this
method is almost three times smaller than the one obtained
when performing the LM filtering with squared windows. The
PRESS residuals have a standard deviation of 1.33 m. Næsset
and Økland (2002) report a standard deviation of PRESS resid-
uals for individual tree heights of 3.15 m. They conducted
their study in an uneven-aged spruce forest.

Results for estimating mean height for pines show that
the LM window shape plays the most important role in the ac-
curacy of measuring height. The use of circular windows of
variable radius for identifying tree tops brings an 11 percent
improvement in R2 values for the height of all trees measured
on the plots (from 0.75 to 0.85) and 7 percent for the height of
dominant trees (from 0.90 to 0.97). The cross-validation
revealed that filtering with circular windows, without data
fusion, gave the best prediction for mean height of all trees.
The PRESS statistic in this case is less than half of the value
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TABLE 7. SUMMARY STATISTICS FOR REGRESSING MAXIMUM HEIGHT WITH AND
WITHOUT OUTLIERS

With Outliers In With Outliers Out

Statistics Pines Deciduous Pines Deciduous

R2 0.98 0.36 0.99 0.61
RMSE (m) 0.99 3.71 0.68 2.33
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obtained by the model for filtering with squared windows.
The gain in explaining the mean height variance for trees
measured by FIA standards (dbh greater than 12.7 cm or 5 in)
with circular LM filters is not that substantial, but all methods
provide R2 values above 0.94. Data fusion and circular LM fil-
ters brought the standard error for estimating pines mean
height with the FIA threshold down to 1.07 m, for an R2 value
of 0.95. The independent variables included in the regression
model in this case were the number of trees, maximum height,
and maximum crown diameter. Parameter estimates are posi-
tive for maximum height and crown diameter, while for the

number of trees the parameter estimate is negative—the larger
the trees, the fewer there are.

Results were different for deciduous plots that have a
very complex horizontal and vertical structure. The square LM
filter performed better overall, though for the dominant trees
the difference between the two window shapes was small. Re-
gression models explained 79 percent of the mean height vari-
ance for dominant trees, with a 1.91-m root-mean-squared
error (RMSE). Data fusion only proved to be useful for assessing
the height of dominant trees. The cross-validation indicated
better model prediction for filtering with square windows,
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Figure 7. Plot of residuals versus fitted values (a) and normal probability plot (b)
for pines, with outliers in. (c) Plot of residuals versus fitted values and (d) normal
probability plot for deciduous plots, with outliers in. (e) Plot of residuals versus fit-
ted values and (f) normal probability plot for deciduous plots, with outliers out.

(a) (b)

(c) (d)

(e) (f)
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TABLE 8. REGRESSION RESULTS—DEPENDENT VARIABLE: AVERAGE HEIGHT (M)/SUBPLOT

Significant
Independent

Trees Method* Variables** Sy.x R2 Model***

Pines
Dominants SQ Hmax 1.87 0.90 0.82647 � 0.80818Hmax

SQF Hmax 1.87 0.90 0.82647 � 0.80818Hmax
CW Hmax, CDave, CDstd 1.26 0.96 � 0.77630 � 0.57257Hmax

� 0.91903CDave � 2.38845CDstd
CWF Have, Hmin, Hstd, CDave 1.14 0.97 �0.21885 � 0.78538Have

� 0.37937Hmin � 0.50150Hstd
� 1.78613CDave

All SQ Have, CDstd 1.50 0.74 4.52287 � 0.37786Have
� 1.14151CDstd

SQF Have, CDstd 1.48 0.75 4.31588 � 0.39436Have
� 1.16062CDstd

CW Have, CDstd 1.14 0.85 3.93120 � 0.39505Have
� 1.64873CDstd

CWF Have, CDstd 1.18 0.84 4.20656 � 0.37934Have
� 1.48877CDstd

FIA standard SQ Have, Hmax, CDmax 1.18 0.94 3.31532 � 0.23535Have � 0.57874Hmax
� 0.54824CDmax

SQF Have, Hmax, CDmax 1.11 0.95 3.79115 � 0.22589Have
� 0.60009Hmax �0.70397CDmax

CW Hmax, CDmax 1.09 0.95 1.08697 � 0.55224Hmax
� 0.69952CDmax

CWF N, Hmax, CDmax 1.07 0.95 3.52918 � 0.08886N � 0.48535Hmax
� 0.62258CDmax

Deciduous
Dominants SQ Hmax, CDave 2.06 0.76 4.20097 � 0.83107Hmax

� 0.58420CDave
SQF Hmax, CDave 1.91 0.79 3.67791 � 0.82446Hmax

� 0.41608CDave
CW Hmax 2.08 0.73 4.22851 � 0.68477Hmax
CWF Hmax 2.07 0.74 4.39941 � 0.67972Hmax

All SQ CDmax 1.22 0.50 8.20149 � 0.66389CDmax
SQF Have 1.58 0.40 8.36490 � 0.22249Have
CW Hmax, CDave 1.60 0.37 8.24679 � 0.28781Hmax

� 0.33682CDave
CWF CDmax 1.58 0.36 8.26377 � 0.66760CDmax

FIA standard SQ Hmax, CDmax 1.48 0.75 7.31106 � 0.63421Hmax
� 0.62351CDmax

SQF Hmax, CDmax 1.57 0.74 6.68390 � 0.64977Hmax
� 0.55472CDmax

CW Hmax, CDmax 1.57 0.71 7.41716 � 0.53921Hmax
� 0.33535CDmax

CWF Hmax 1.66 0.66 7.01565 � 0.45870Hmax

*Method refers to LM filtering technique: SQ (square window), SQF (square window with data fusion), CW (circular window), and CWF (circular
window with data fusion).
**Have, average height of all lidar identified trees per plot; Hmin, minimum height; Hmax, maximum height; Hstd, height standard deviation; CDave,
average crown diameter; CDmin, minimum crown diameter; CDmax, maximum crown diameter; CDstd, crown diameter standard deviation; and N,
number of trees.
***All units, except for the number of trees, are meters (m).

with standard deviations of PRESS residuals between 1.30 and
2.20.

As explained when documenting outliers in the previous
section, maximum height gives an indication of how well the
CHM portrays vegetation height over one plot. The circular LM
filter gave very accurate results for pines (Table 10). This
method explained 98 percent of the variance with a sub-meter
standard error of the estimate using only lidar-measured max-
imum height as the independent variable. For deciduous
plots, the best R2 value was 0.69 (RMSE 2.07 m).

Figures 8a and 8b show scatterplots of lidar-measured
versus field-measured height and observed versus predicted
values for height, for the pine and deciduous models that gave
the best results for estimating ground-measured height.

Comparison between Processing Techniques
Processing techniques were compared based on two statistics,
the variance of field-based estimates that each regression
model was able to explain and the PRESS statistic. The conclu-
sions are not surprising. Filtering for local maximum with
circular windows gives better fitting models for pines, because
one would expect that a circular window shape is more
appropriate for identifying individual tree crowns. For
deciduous trees, filtering with square windows provided a
slightly better model fit. 

All pine regression models, with only one exception
when estimating average height for all trees, proved to ex-
plain a higher percentage of the variance associated with
field-measured average height when the size of the filtering
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TABLE 9. PRESS STATISTICS FOR PREDICTING AVERAGE HEIGHT (M)/SUBPLOT

Range of PRESS
Mean of StandardResiduals
PRESS Deviation of

Trees Method* PRESS Min Max Residuals PRESS Residuals

Pines
Dominants SQ 141.66 �8.22 5.50 0.00 2.21

SQF 141.66 �8.22 5.50 0.00 2.21
CW 90.53 �5.23 3.33 �0.05 1.77
CWF 51.62 �2.53 2.13 �0.01 1.33

All SQ 119.35 �4.87 7.14 0.13 2.02
SQF 108.41 �5.16 6.35 0.10 1.93
CW 52.94 �2.30 3.24 0.04 1.35
CWF 58.22 �2.41 3.77 0.04 1.42

FIA standard SQ 63.85 �4.29 3.48 0.07 1.54
SQF 55.54 �4.10 3.42 0.04 1.43
CW 48.39 �3.48 2.24 �0.08 1.34
CWF 49.40 �3.04 3.21 �0.03 1.35

Deciduous
Dominants SQ 120.26 �3.73 4.52 0.01 2.19

SQF 109.68 �3.87 4.19 0.01 2.05
CW 139.99 �4.08 4.69 0.01 2.20
CWF 138.70 �4.10 4.64 0.01 2.19

All SQ 42.31 �2.35 1.79 �0.03 1.30
SQF 75.15 �4.70 4.71 �0.02 1.70
CW 120.71 �4.80 6.53 0.10 2.04
CWF 79.77 �3.06 5.25 �0.03 1.66

FIA standard SQ 63.97 �2.19 3.20 0.00 1.60
SQF 73.15 �2.38 3.36 �0.02 1.68
CW 78.82 �2.29 3.37 �0.00 1.65
CWF 88.58 �2.60 3.54 0.01 1.75

*Method refers to LM filtering technique: SQ (square window), SQF (square window with data fusion), CW (circular window), and CWF (circular
window with data fusion).

TABLE 10. REGRESSION RESULTS—DEPENDENT VARIABLE: MAXIMUM HEIGHT (M)/SUBPLOT*

Significant
Independent

Trees Method Variables Sy�x R2 Model

Pines
All SQ Hmax, CDmax 0.91 0.98 1.42214 � 1.02681Hmax

� 0.54600CDmax
SQF Hmax, CDmax 0.91 0.98 1.58459 � 1.02089Hmax

� 0.56401CDmax
CW Hmax, CDstd 0.96 0.98 0.41051 � 0.89765Hmax

� 0.60232CDstd
CWF Hmax 0.99 0.98 0.54189 � 0.92320Hmax

Deciduous
All SQ Hmax 2.24 0.64 9.35914 � 0.56096Hmax

SQF Hmax 2.07 0.69 8.75699 � 0.59639Hmax
CW Hmax 2.37 0.60 9.19615 � 0.57294Hmax
CWF Hmax 2.33 0.61 9.21868 � 0.57395Hmax

*Method and variable abbreviations are the same as in Table 8. 

windows was calibrated for the tree species groups, i.e., when
using data fusion in conjunction with the lidar processing
techniques. For deciduous plots, all regression models for es-
timating field-based average height, with one exception when
estimating the average height of the dominants, had a better fit
without using optical data. Still, the optical data (ATLAS multi-
spectral imagery) has a spatial resolution of 4 m, while the
lidar CHM has a grid size of 0.5 m. Previous lidar studies (e.g.,
Maclean and Krabill, 1986; Nelson et al., 1988b; Næsset
1997b) reached the conclusion that, prior to fitting regression
models for estimating forest parameters, it is necessary to dif-
ferentiate between forest types. Therefore, it is expected to ob-
tain a better fit for regressing field estimates when high spatial

and spectral resolution optical data are used to differentiate
between forest types in the processing phase of the lidar data.
For practical forestry application of lidar, existing maps of for-
est types can be used to distinguish between forest types.
However, coregistered optical data with a spatial resolution
comparable to the lidar sampling density can be used not only
for calibrating the lidar filtering window size, but also in the
process of deriving the ground DEM and the lidar CHM.

The cross-validation showed the same situation as the R2

values with respect to the shape of the LM filtering windows
for pines. All pine models provided smaller PRESS residuals
when the lidar estimates were obtained by identifying indi-
vidual trees with circular search windows. While pine models
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work better when using data fusion, all deciduous models,
with the exception of one model for dominant trees, better
predicted field estimates without using optical data.

Conclusions
To conclude, using circular filtering windows to locate indi-
vidual trees and optical data to differentiate between forest
types provides better results for estimating biophysical para-
meters for pines. Given the spatial resolution of the optical
data used for this study, estimating forest parameters for de-
ciduous plots seems to give superior results without calibrat-
ing the search window size based on forest type.

The results of the current study show that lidar data
could be used to accurately estimate plot-level tree height by
focusing on the individual tree level. The generation of indi-
vidual tree crown forest inventories from high spectral and
spatial resolution imagery, although still a research subject, is
coming of age (Gougeon et al., 2001). In this context, lidar
proves to be the best suited technology to derive accurate
models of the terrain elevation and measure the height of the
dominant and codominant trees in the forest canopy.

Overall, this research proved that small footprint airborne
lidar data in conjunction with spatially coincident optical
data are able to accurately predict tree heights of interest for
forest inventory and assessment. The main objective of this re-
search was to develop robust processing and analysis tech-
niques to facilitate the use of lidar data for predicting tree

height by focusing on the individual tree level. The algorithm
used for measuring forest height provides individual tree
heights for the entire forested area covered by lidar. These re-
sults have profound implications in forest management, be-
cause tree height in relation to tree age has been found the
most practical, consistent, and useful indicator of site quality.
In forestry, site index is estimated by determining the average
total height and age of dominant and codominant trees in
even-aged stands. For pine plantations and even-aged stands,
stand age is commonly well documented. Much of the forest
inventory data, including stand age, is available through GIS-
stored maps and, by combining lidar-derived tree height and
stand boundaries, site index can be mapped within stands.
Therefore, seeing the trees in the forest and, more importantly,
measuring them brings an important contribution to concepts
such as precision forest inventory and automated data pro-
cessing for forestry applications.

The integration with co-registered multi- and hyperspec-
tral digital imagery makes lidar a realistic precision forestry
alternative to traditional measurements in forest inventory.
Even without the same high spatial resolution as the lidar
data, optical data used for this study demonstrated the ability
of data fusion to improve the estimates of tree height, espe-
cially for the pine plots. Lidar and image data fusion can bring
dramatic gains in characterizing the three-dimensional struc-
ture of the forest canopy, and it would accelerate the transi-
tion of lidar applications from scientific interests to reliable
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Figure 8. Scatterplots of predicted versus observed and lidar versus field height values.
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commercial implementations. An ideal system would incor-
porate lidar and optical data for species recognition and tree
measurements. Future investigations could consider using
high spatial resolution multi- or hyperspectral data not only
for species group identification, but also for processing lidar
data for vegetation removal, individual tree location, and
crown measurements. The focus of this research on the indi-
vidual tree level and the innovative processing techniques,
mainly the variable-radius circular window used for tree top
filtering with optical data fusion, demonstrates that airborne
laser scanners can reliably measure tree height.
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