
Abstract
A simple, efficient algorithm is presented for sub-pixel target
mapping from remotely-sensed images. Following an initial
random allocation of “soft” pixel proportions to “hard” sub-
pixel binary classes, the algorithm works in a series of
iterations, each of which contains three stages. For each
pixel, for all sub-pixel locations, a distance-weighted
function of neighboring sub-pixels is computed. Then, for
each pixel, the sub-pixel representing the target class with
the minimum value of the function, and the sub-pixel
representing the background with the maximum value of the
function are found. Third, these two sub-pixels are swapped
if the swap results in an increase in spatial correlation
between sub-pixels. The new algorithm predicted accurately
when applied to simple simulated and real images. It
represents an accessible tool that can be coded and applied
readily by remote sensing investigators.

Introduction
Land cover is a fundamental variable that underpins much
scientific research. For example, data on land cover are
required to provide boundary conditions for climate models
(e.g., global circulation models (van den Hurk et al., 2003))
and hydrological and hydraulic models (e.g., the provision
of spatially distributed friction coefficients) (Mason et al.,
2003; Wilson and Atkinson, 2003). Despite their importance,
informative, and accurate data on land cover are both
difficult and expensive to provide. Therefore, much of the
land cover data currently being used in scientific research
are of inadequate quality. For example, much land cover
data may be (a) incomplete spatially, (b) out-of-date, or (c)
inaccurate. Remote sensing is capable of providing synoptic
and complete coverage of potentially very large areas.
Furthermore, multi-temporal images can be used to monitor
changes in land cover over time. For these reasons, remote
sensing has been of great value for land cover mapping and
monitoring.

Despite the obvious utility of remote sensing for land
cover mapping, many problems remain. For example, it
is often difficult to ensure appropriate spatial coverage
at an appropriate spatial resolution. Furthermore, it can
be difficult to provide temporal coverage with sufficient
frequency for monitoring purposes because of the limited
revisit time of the satellite, or obscuration of the scene due
to persistent cloud cover (e.g., in tropical regions). Even
where sufficient spatial and temporal coverage is possible,
the accuracy of classification algorithms is frequently
limited to around 80 to 90 percent (Congalton, 1991; Foody,
2002). Increasing the accuracy of land cover classification
has been the subject of intensive research for many years
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(Justice and Townshend, 1981; Foody, 2002). One limitation
to the accuracy of land cover classification that is implicit,
and always present, in remotely sensed images is the spatial
resolution. While complete cover may be provided for an
area of interest, the sample can never be complete; increas-
ing the spatial resolution of the sensor will generally reveal
greater detail.

Spatial resolution has been the subject of research in
remote sensing for many years because it forms a fundamen-
tal scale of measurement (Woodcock and Strahler, 1987;
Atkinson and Tate, 2000; Tate and Atkinson, 2001). The
spatial variation observed in remotely sensed imagery is a
function of both the property of interest (i.e., the real world)
and the sampling framework (i.e., the ensemble of sensor
characteristics including the spatial resolution). Researchers
have sought to evaluate the effect of spatial resolution on
detectable spatial variation as characterized by functions
such as the local variance (Woodcock and Strahler, 1987)
and variogram (Jupp et al., 1987, 1988; Curran and Atkin-
son, 1998). Furthermore, researchers have attempted to find
a suitable means of selecting a spatial resolution given
knowledge of functions such as the variogram (Atkinson and
Curran, 1997). Such research demonstrated that spatial
resolution has a fundamental effect on the spatial variation
in remotely sensed imagery.

Early techniques for land cover classification from
remotely sensed imagery focused on hard classification
(both supervised and unsupervised) in which each pixel
is allocated to one class (Thomas et al., 1987). About
two decades ago, researchers began to realize that for most
remotely-sensed scenes, hard classification is inappropriate
(Bezdek et al., 1984; Adams et al., 1985; Gillespie, 1992).
Many pixels in remotely sensed images represent more than
one land cover class on the ground. Such mixed pixels
occur where the frequency of spatial variation in land
cover is greater than or equal to the frequency of sampling
afforded by the sensor’s spatial resolution (Woodcock and
Strahler’s (1987), L-resolution case). However, a proportion
of pixels will be mixed even where the spatial resolution is
fine relative to the land cover variation (H-resolution case)
because some pixels inevitably straddle boundaries between
scene objects.

The existence of mixed pixels led to the development of
several approaches for soft (often termed fuzzy in the remote
sensing literature) classification in which each pixel is
allocated to all classes in varying proportions. Examples of
techniques for soft classification applied to remotely-sensed
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imagery include the linear mixture model (Adams et al.,
1985; Foody and Cox, 1994; Garcia-Haro et al., 1996), fuzzy
c-means classification (Bezdek, 1981; Bezdek et al., 1984),
and feed-forward, back-propagation (FFBP) neural networks
trained on class proportions (Benediktsson et al., 1990;
Paola and Schowengerdt, 1995; Atkinson and Tatnall, 1997;
Atkinson et al., 1997), among many others. More recently,
softened support vector machines have also become popular
(Brown et al., 1999).

All of the above techniques may be used to provide a soft
classification of land cover that is both more informative and
potentially more accurate than the equivalent hard classifica-
tion. However, while the proportions of each land cover
within each pixel may be predicted, the spatial location of
each land cover within each pixel is not. For example, a soft
classifier may predict 60 percent woodland within a pixel.
This is undoubtedly more informative than woodland as
predicted by a hard classifier. However, it would also be
useful to know where, within the pixel, the woodland is
located spatially. That goal, referred to here as sub-pixel
mapping, is the subject of this paper. It amounts to transform-
ing multispectral (i.e., multivariate) data into spatial (univari-
ate) data. While no new information is created, it does result
in an increase in spatial resolution above that achieved with
hard (and soft) classification of the original remotely sensed
imagery.

There exist many different potential techniques for sub-
pixel mapping from remotely sensed imagery. Perhaps the
simplest approach involves converting a hard-classified
image into the vector data model by replacing class object
boundaries with vectors. Generalizing these vectors will
produce sub-pixel spatial information on land cover, albeit
of limited value (Atkinson, 1997). Foody (1998) evaluated an
interpolation-based technique for predicting the boundary of
a lake with sub-pixel geometric precision. However, as for
the line generalization approach above, this approach was
under-constrained. Specifically, the resulting contour line
(representing the boundary between lake and not lake) need
not honor any prior model or expectation (e.g., soft land
cover proportions, if these are known).

More recently, Aplin and Atkinson (2001) developed a
technique for converting the output from a per-pixel soft-
classification of land cover into a per-parcel hard classifica-
tion of land cover objects. Landline vector data from the
Ordnance Survey were used to constrain the placement of the
soft proportions within each pixel. However, the technique
depends on the availability of a vector or polygon database
making the technique redundant for (a) less developed areas
of the world, and (b) updating the vector database.

Several authors have attempted sub-pixel mapping
directly from multispectral remotely-sensed imagery. For
example, in a series of papers, Schneider (1993, 1999) and
Steinwendner et al. (1998) document a technique for sub-
pixel mapping of linear features based on a 3 pixel by 3 pixel
kernel, or moving window. This approach was extended to
include neural network prediction of vector boundaries, but is
restricted to remotely sensed images and the detection of
linear features. Flack et al. (1994) developed a technique
based on the Hough transform for, first, detecting linear
features in remotely sensed images of agricultural scenes and,
second, un-mixing the signal on either side of the boundary.
Again, the technique is suitable for application to linear
features in unprocessed, remotely sensed images.

The author (Atkinson, 1997) suggested sub-pixel map-
ping based solely on the output from a soft classification.
The idea proposed was to convert soft land cover propor-
tions to hard (per-sub-pixel) land cover classes (that is, at a
finer spatial resolution) by maximizing the spatial depend-
ence or spatial correlation between neighboring sub-pixels

under the constraint that the original pixel proportions were
maintained (Atkinson, 1997). Spatial dependence is the
likelihood that observations close together are more alike
than those that are further apart (Matheron, 1965; Goovaerts,
1997; Chiles and Delfiner, 1999). This objective is reasonable
where the land cover target of interest is larger than the
pixels in the imagery. The algorithm produced excellent
results for simple shapes such as a circle and a torus. The
algorithm was also applied to a complex arrangement of
multiple-class land cover objects found in a Systéme Pour
L’Observation de la Terre (SPOT) High Resolution Visible
(HRV) image of the New Forest, Hampshire.

The algorithm proposed by Atkinson (1997) predicted
sub-pixel class on the basis of neighboring pixels. Two
algorithms have subsequently been proposed that also utilize
the information in neighboring pixels. Verhoeye and De Wulf
(2002), building on the earlier work of Atkinson (1997),
attempted to allocate sub-pixel hard classes using a tech-
nique similar to the spectral mixture model. The pixel
proportion constraints were built into the mixture model,
and a solution was achieved by least squares approximation.
Zhan et al. (2002) implemented an inverse-distance weight-
ing algorithm to interpolate the unknown sub-pixel class
from neighboring pixel-level land cover proportions. To
locate the “point” meant to represent the location of the
neighboring pixel; both the corners and centers of neighbor-
ing pixels were used.

Recently, Tatem et al. (2001a) developed an alternative
to the above algorithms in which sub-pixels are compared to
neighboring sub-pixels. The advantage of comparing sub-
pixels to sub-pixels is that the draw of a neighboring pixel is
not static from iteration to iteration. Specifically, Tatem et al.
(2001a) developed a Hopfield neural network (HNN) tech-
nique (Hopfield and Tank, 1985) for sub-pixel target map-
ping. The HNN is an optimization tool in which all neuron
outputs are connected to all neuron inputs. To solve the sub-
pixel mapping problem, with the pixel proportions as initial
conditions, the HNN architecture must be such that all sub-
pixels in the target image are represented by one neuron or
node in the HNN. The sub-pixel class allocations are initial-
ized randomly. The HNN is then set up to minimize an
energy function which comprises a goal and constraints:

(1)

where the goal G is to increase the spatial correlation between
neighboring sub-pixels, the constraint C is that the original
class proportions per-pixel are maintained in the sub-pixel
land cover map, k1 and k2 are weighting coefficients, and b is
a bias term. The HNN was applied initially to detect targets
(two-class problem) (Tatem et al., 2001a), but eventually
extended to sub-pixel land cover mapping (multiple-class
problem) (Tatem et al., 2001b).

The HNN has been demonstrated to be a useful and
accurate tool for sub-pixel mapping. However, alternative
classes of algorithm remain to be investigated. One, in
particular, stands out as an obvious candidate, i.e., the
adoption of a geographical pixel-swapping algorithm to
allow the comparison of sub-pixels with sub-pixels. In
the present paper, a simple pixel-swapping algorithm is
described which is capable of producing sub-pixel maps
from binary input images. This simple algorithm initially
allocates hard binary classes randomly to sub-pixels. There-
after, the spatial location of the hard classes is altered
(pixel-swapping), rather than the attribute value at each
location (as with the HNN). The algorithm is similar in
concept to the set of techniques known as simulated anneal-
ing in a geostatistical framework (Deutsch and Journel,
1998). The new pixel-swapping algorithm for sub-pixel
mapping is described in the next section.

E � k1G � k2C � b
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Methods
The simple algorithm presented and described here is both
simple and efficient.

Pixel-swapping Algorithm
The pixel-swapping algorithm is designed to receive, as input,
an image of land cover proportions in K � 2 classes (probably
obtained by application of a soft classifier to a remotely
sensed image). First, the pixel-level land cover proportions
are transformed into sub-pixel hard land cover classes. Thus,
if 10 sub-pixels by 10 sub-pixels are to be mapped within
each pixel, a land cover proportion of 57 percent would mean
that 57 sub-pixels were allocated to that class. Second, these
sub-pixels are allocated randomly within each pixel. Once
allocated, only the spatial arrangement of the sub-pixels can
vary, not the actual attribute values. Furthermore, the number
of sub-pixels allocated within each pixel remains fixed.
However, this is not a constraint in the sense of the HNN
algorithm; the proportions at the pixel level cannot vary.

Given the above random initialization, the objective is to
vary the spatial arrangement of the sub-pixels in such a way
that the spatial correlation between neighboring sub-pixels
(both within and, perhaps more importantly, between pixels)
is maximized given that the pixel-level proportions cannot
vary. There are many possible approaches. The one adopted
here is described below, and it is comprised of three basic
steps.

First, for every sub-pixel the attractiveness Ai of a pixel
i is predicted as a distance-weighted function of its j � 1,2,
. . . , J neighbors:

(2)

where z(xj) is the (binary) class of the jth pixel at location xj,
and �ij is a distance-dependent weight predicted as:

(3)

where hij is the distance between the location xi of pixel i
for which the attractiveness is desired, the location xj of a
neighboring pixel j, and a is the non-linear parameter of the
exponential model. The exponential weighting function
chosen here is essentially arbitrary, and several alternatives
such as a simple inverse distance weighting function or the
Gaussian model could be used instead. The choice of a non-
linear parameter and the number of nearest neighbors are
both important considerations, and will be revisited in the
discussion.

Second, once the attractiveness of each sub-pixel loca-
tion has been predicted based on the current arrangement of
sub-pixel classes, the algorithm ranks the scores on a pixel-
by-pixel basis. For each pixel, the least attractive location at
which the sub-pixel is currently allocated to a “1” (i.e., a “1”
surrounded mainly by “0”s) is stored:

(4)

Similarly, the most attractive location at which the pixel
is currently allocated to a “0” (i.e., a “0” surrounded mainly
by “1”s) is also stored:

(5)

Third, sub-pixel classes are swapped on the following
basis. If the attractiveness of the least attractive location is
less than that of the most attractive location, then the classes
are swapped for the sub-pixels in question:

(6)
z(xi) � 0
z(xj) � 1

f if  Ai � Aj .

candidate B � (xj  : Aj � max(A) 0z(xj) � 0).

candidate A � (xi : Ai � min(A) 0z(xi) � 1).

lij � expa�hij

a
 b

Ai � a
j

j�1
lij z(xj)

If it is more attractive, no change is made.
The above three-stage process is repeated such that

a solution is approached iteratively. The process can be
stopped either at a fixed number of iterations or when the
algorithm converges on a solution. The algorithm is simple
and fast. The basic steps involved in the algorithm are given
below:

1. Allocate sub-pixels to classes based on the pixel-level
proportions.

2. For each iteration:
a. For each pixel:

i. For each sub-pixel within the pixel:
1. For each neighboring sub-pixel within a

window
a. calculate A per sub-pixel.

2. Find minimum attractiveness Ai for all sub-
pixels currently allocated to 1 (i.e., (Ai
� min(A)|z(xi) � 1)).

3. Find maximum attractiveness Aj for all
sub-pixels currently allocated to 0 (i.e., (Aj
� max(A)|z(xj) � 0)).

ii. If Ai � Aj
1. Swap the single pair of sub-pixel allocations.

Data
Four data sets were used to evaluate the proposed algorithm,
and are described in this section.

Simple Targets
To test the performance of the algorithm two 35 sub-pixel by
35 sub-pixel target images of simple geometric shapes (circle
and linear feature) were simulated using the Splus™ soft-
ware. These shapes are shown in Figure 1a and Figure 2a.
These images were aggregated into pixels of size 7 sub-pixels
by 7 sub-pixels to form pixel-level images of 5 pixels by
5 pixels (Figure 1b and Figure 2b). These images of propor-
tions were used to simulate (i.e., used in place of) real soft-
classified remotely sensed images of land cover proportions.
These images represent the sole input to the algorithm.

Polygonal Target
The most obvious application for the algorithm presented
(i.e., spatial clustering of a binary field) is target detection in
remotely sensed images. To test the algorithm beyond the
simple shapes described above, a more realistic irregular
polygon shape was created using the locator command in
Splus™ (Figure 3a). This shape might correspond to a real
feature (e.g., a large complex building or an asphalt parking
lot) in a remotely sensed image (e.g., Landsat Thematic
Mapper image with a spatial resolution of 30 m by 30 m).
Furthermore, it represents a more complex geometry than the
circle and linear features. In particular, it has two concave
sides that make the feature more difficult to recreate using
the algorithm. The image of the irregular polygon (Figure 3a)
was degraded to a coarser spatial resolution to create an
image of proportions (hypothetically of some target) with
pixels of 7 sub-pixels by 7 sub-pixels (Figure 3b).

Ikonos Imagery
An Ikonos multispectral image with a spatial resolution of 4 m
acquired on 30 August 2000 of Chandler’s Ford and Eastleigh
in Hampshire, UK was used to evaluate the algorithm. A small
sub-image of 256 pixels by 256 pixels was extracted from the
original image, representing an agricultural area just north
of Chandler’s Ford. The sub-image was classified using a
maximum likelihood classifier trained using large regions of
interest (polygons) of training data on three classes: cereals,
grassland, and woodland. For the present purpose, the cereals
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Figure 1. Sub-pixel mapping of a circle: (a) test image,
(b) image of proportions input to the algorithm, (c)
random initial allocation to sub-pixels, (d) solution after
four iterations, (e) solution after 8 iterations, (f)
solution after 12 iterations, and (g) solution after 16
iterations.

Figure 2. Sub-pixel mapping of a linear feature: (a) test
image, (b) image of proportions input to the algorithm,
(c) random initial allocation to sub-pixels, (d) solution
after three iterations, (e) solution after six iterations,
(f) solution after nine iterations, and (g) solution after 12
iterations. (Used with permission by Springer Europe NL)

and grassland classes were amalgamated into one class (non-
woodland). The resulting image is shown in Figure 4a.

The classified image was filtered (7 pixel by 7 pixel
majority filter) to reduce local mis-classification error. The
image was then spatially degraded by a zoom factor of 8 to
a spatial resolution of 32 m by 32 m (approximately equal to
that of Landsat Thematic Mapper imagery, that is, 30 m by
30 m). At the coarser spatial resolution of 32 m by 32 m, the

contribution of each sub-pixel was summed to obtain a
pixel-level proportion for each class (Figure 4b). These pixel
proportions then formed the input to the sub-pixel mapping
algorithm. Two advantages of the above approach are (a)
the ability to evaluate the sub-pixel mapping exhaustively
because the target image is known, and (b) the ability to
focus on the mapping algorithm rather than the soft classi-
fier that would in practice predict the class proportions.
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Figure 3. Sub-pixel mapping of an irregular polygon:
(a) test image, (b) image of proportions input to the
algorithm, (c) random initial allocation to sub-pixels,
(d) solution after five iterations, (e) solution after 10
iterations, (f) solution after 15 iterations, and (g) solution
after 20 iterations.

Figure 4. Sub-pixel mapping applied to a classified
Ikonos image of Chandler’s Ford, Hampshire spatially
degraded to a spatial resolution of 32 m: (a) test image
(spatial resolution of 4 m), (b) image of proportions input
to the algorithm (spatial resolution of 32 m), (c) random
initial allocation to sub-pixels (spatial resolution of 4 m),
(d) solution after 50 iterations (spatial resolution of
4 m), and (e) hard classification for comparison (spatial
resolution of 32 m).

Analysis
Simple Targets
Given the two input images of pixel-level proportions, the
algorithm initially allocated each sub-pixel to a binary hard
class randomly, such as to maintain the original pixel propor-
tions (Figure 1c and Figure 2c). Thereafter, the algorithm made
a maximum of one swap per-pixel for each iteration. The

number of nearest neighbors used was 2 (i.e., the clique was
second-order), and the non-linear parameter of the exponential
model a was set to 5 pixels. For each of the simple images
shown in Figure 1 and Figure 2 less than ten iterations was
sufficient to achieve convergence.

For the circle, the overall accuracy of the predicted image
increased with each iteration of the algorithm until conver-
gence. The overall accuracy of the final predicted image
(Figure 1g) was 100 percent (i.e., perfect reconstruction),
compared to an overall accuracy of 88 percent for the initial
random allocation (Figure 1c). This result is comparable to
that of Tatem et al. (2001a). The circle is the most compact
two-dimensional shape and, thus, it is the easiest for the
algorithm to reproduce.

For the linear feature (Figure 2) the result was also
acceptable visually. Again, the overall accuracy increased
with each iteration until convergence. The overall accuracy of
the final predicted image (Figures 2g) is 99 percent, compared
to an overall accuracy of 86 percent for the initial random

03-090.qxd  2/13/05  11:21 AM  Page 843



844 J u l y 2005 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

allocation (Figure 2c). It is worth noting that the edge effect
apparent in Tatem et al. (2001a) did not occur here because
the algorithm was coded to ignore the boundary. Thus, it
appears that the simple algorithm is capable of producing
excellent results, at least for simple geometric shapes.

Polygonal Target
The algorithm was applied to the image of proportions shown
in Figure 3b. Initially, the proportions per-pixel were used to
allocate hard binary classes to the sub-pixels within each
pixel (Figure 3c). Then, the algorithm proceeded iteratively to
converge on a solution. Convergence was reached in around
15 iterations. This time the differences between the predicted
image and the target image were more obvious. This is ref-
lected in the overall accuracy which does not increase to as
large a value as for the simple shapes. Nevertheless, a large
increase in accuracy relative to the initial random allocation
was achieved (96 percent compared to 84 percent). Thus,
even for this more complex shape, the algorithm does result
in an increase in per-sub-pixel accuracy.

Application to Ikonos Imagery
The pixel-swapping algorithm was applied to the 32 pixel by
32 pixel degraded Ikonos image of class proportions (Fig-
ure 4b). Initially, the sub-pixels within each pixel were
allocated to one of the two classes as previously described
(Figure 4c). The non-linear parameter of the exponential
model was set to five pixels and the bandwidth was set to five
pixels. The algorithm was run for 50 iterations. The resulting
sub-pixel map is shown in Figure 4d. The per-sub-pixel
accuracy of the sub-pixel map was 98.4 percent, which is very
high in a remote sensing context (Foody, 2002). In compari-
son, the overall accuracy of the initial random allocation was
93.2 percent, 5.2 percent less than the sub-pixel map. This dif-
ference, while small, is large when viewed relative to the
amount of mis-classification (i.e., a 5.2 percent increase in
accuracy relative to a 6.8 percent classification error amounts
to a 76 percent reduction in mis-classification).

For comparison with the sub-pixel map, a hard classifi-
cation was simulated from the proportions image by allocat-
ing each pixel to the class with the largest cover proportion
(Figure 4e). This image can be thought of as analogous to
the output from a hard (e.g., maximum likelihood) classifier
applied at the pixel-level. The per-sub-pixel accuracy of the
hard classified image (Figure 4e) was 94.9 percent. The
increase in accuracy achieved by sub-pixel mapping is
readily apparent from a visual comparison of Figure 5d
and Figure 5e. The hard classified image has an unnatural
blocky appearance, and some features are mis-represented.
Moreover, certain small features that exist in the target
image (Figure 4a) are represented well in the sub-pixel map,
but are absent from the hard classified image.

Discussion
Limitations
The proposed algorithm produced excellent results for a
set of simple simulated shapes and a real classified Ikonos
image. However, there are certain conditions under which the
algorithm would not be expected to perform accurately. First, it
is assumed that the classes found in the scene can be well
represented as a crisp set. That is, the boundaries in the scene
to be predicted from imagery are sharply defined. If a fuzzy
set more appropriately represents the classes in the scene,
such that mixed pixels arise through vagueness (rather than
ambiguity), then the algorithm proposed in this paper would
be inappropriate. Second, the algorithm attempts to maximize

the spatial correlation between neighboring sub-pixels. No
information on the direction of variation is used, so that the
algorithm tends to produce compact convex shapes. The
algorithm, at least as presented here, is not appropriate for
features that do not fit this description (e.g., linear features
such as roads and waterways). Third, the algorithm requires
some spatial correlation between pixels. This implies that the
proposed algorithm is suitable only for mapping objects that
are larger than a pixel. Where multiple small objects are
present within a pixel, the algorithm will incorrectly predict a
single larger object by coalescing the smaller objects. To map
objects that are smaller than a pixel, an alternative algorithm
must be defined.

Comparison to spatial simulated annealing
The algorithm presented in this paper is simple and effi-
cient. However, there are several important differences
between its implementation here and the implementation of
spatial simulated annealing (SSA) algorithms (Deutsch and
Journel, 1998; van Groenigen, 1999).

First, the SSA-type algorithm is based on the random
selection of two sites and their swapping, if the value of some
objective function is increased as a result of the swap. In the
present algorithm the entire image of some distance weighted
function is calculated, and the two most eligible (in terms of
A(�)) sites are swapped, conditional upon the swap resulting
in an increase in spatial correlation between sub-pixels. This
difference makes the present algorithm process very fast.

Another important difference between the present
algorithm and SSA is that the present algorithm has no
stochastic element (the random initialization aside). A
consequence of this may be that for larger, more complex
shapes, there is a greater likelihood of falling into local
minima. However, it is believed that the likelihood of this
occurring is low because (a) only one sub-pixel swap is
made per pixel per iteration, and (b) the swaps are limited
to pixels (cannot be made between pixels) such that the
solution is already somewhat constrained. For the features
shown in Figures 1 through 3, several runs (with different
initial sub-pixel allocations) resulted in the same predicted
images, but this may not be the case for more complex
shapes. In the future, SSA-type algorithms will be imple-
mented and compared to the present algorithm.

Choice of Parameters
Several parameters (including the choice of distance-weighted
function) needed to be set by the investigator, and of these,
the most important was the number of neighbors and the
non-linear parameter of the exponential function. The number
of neighbors was initially set to one to increase the speed of
the algorithm, but this was found to produce unsatisfactory
results. The number of neighbors was set to two for the
simulated images (Figures 1 through 3) and five for the
Ikonos image (Figure 4). An important consideration is that
the number of neighbors should not be so large that a given
sub-pixel is attracted to other sub-pixels that it cannot neigh-
bor (e.g., belonging to a feature that exists in a pixel that its
own pixel does not neighbor). Thus, the maximum non-linear
parameter should always be, at most, one sub-pixel less than
the number of sub-pixels along a pixel side.

The zoom factor represents another important parameter
that must be set by the investigator. The zoom factor is the
relative increase in spatial resolution from the pixel-level
image of proportions to the sub-pixel level image of hard
land cover classes. In the examples presented in this paper,
the zoom factor was equal to seven (or eight for the Ikonos
image). This number was chosen because it has been used
previously by Tatem et al. (2001a), and because it allowed
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rapid development of the algorithm. However, any zoom
factor, including larger factors, could have been chosen. The
results of Tatem et al. (2001a) suggest that larger zoom
factors increase the precision of prediction.

Potential Applications in Remote Sensing
The algorithm implemented here has great potential for
detecting targets in remotely sensed imagery. For example,
potential applications include prediction of flood envelopes
(i.e., delineation of flood boundaries) from remotely sensed
imagery, mapping of ice flows in relatively coarse spatial
resolution imagery, and mapping of vehicles and buildings
using high spatial resolution imagery.

Conclusions
Sub-pixel mapping, as embodied in the algorithm intro-
duced in this paper, represents an important step from soft
classification. The output from a soft classification is a map
of land cover proportions defined at the pixel-scale. Sub-
pixel mapping takes that output and transforms it into a
map of hard land cover classes defined at the sub-pixel
scale. The results are more informative, easier to interpret,
and more accurate (on a per-sub-pixel by per-sub-pixel
basis) at no extra data cost.

A simple, efficient algorithm has been presented as
an alternative to the HNN algorithm for sub-pixel target map-
ping in remotely sensed imagery. The HNN algorithm is not
particularly accessible to the remote sensing practitioner,
whereas the algorithm demonstrated here can be coded
readily in any scientific computing language. In its present
form, it allows the mapping of hard binary land cover (target,
non-target) classes at a finer spatial resolution from soft
land cover proportions at an original spatial resolution. The
algorithm was demonstrated to produce excellent results for
three simple images and one complex image.

Additional research is necessary to define an algorithm
for mapping objects that are smaller than a pixel, to extend
the current algorithm to handle multiple land cover classes
simultaneously, and to define alternative algorithms (e.g.,
SSA-type algorithms) for sub-pixel mapping.
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