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Abstract: We present a phase reconstruction scheme for X-ray near-field holographic imaging
based on a separability constraint for probe and object. In order to achieve this, we have devised
an algorithm which requires only two measurements – with and without an object in the beam.
This scheme is advantageous if the standard flat-field correction fails and a full ptychographic
dataset can not be acquired, since either object or probe are dynamic. The scheme is validated
by numerical simulations and by a proof-of-concept experiment using highly focused undulator
radiation of the beamline ID16a of the European Synchrotron Radiation Facility (ESRF).
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1. Introduction

X-ray near-field holographic imaging (NFH) enables single shot, full-field imaging of specimen
with nanoscale spatial resolution [1, 2]. Sharing the characteristic advantages of high penetration
and quantitative contrast with other x-ray imaging modalities, it can in addition exploit the
advantage of high temporal resolution down to single pulse imaging with synchrotron (SR) and
free electron laser (FEL) radiation [3, 4]. This is for the simple reason, that a full wavefield can
be probed in a single shot without scanning. Figure 1 depicts the setup of NFH using highly
focused SR or FEL radiation. By choice of the source to object distance z1 and the object to
detector distance z2, the geometric magnification M = (z2 + z1)/z1 and the field of view (FOV)
can be tailored to the experimental need.

A major challenge in NFH is the fact that the validity of phase retrieval and hence image
quality depends crucially on the quality of the illumination. Due to the finite source-size, a
number of unwanted effects can arise, such as distortions in the wavefront or a partial coherent
illumination, but also geometrical optical effects such as astigmatism. For example, focusing
by elliptically shaped multilayer mirrors in Kirkpatrick-Baez geometry [5] is accompanied by
unwanted phase distortions in the incoming X-ray probe induced by deviations from the ideal
height profile of the mirrors [6]. After free space propagation to the imaging or detection plane,
the phase errors result in a measurable intensity pattern, which often appears as pronounced
horizontal and vertical stripes due to the two orthogonal mirrors, see Fig. 2 for an example
of an empty beam pattern. In other types of focusing similar distortions arise. Focusing is
required to generate the diverging illumination for high magnification and resolution. Note
that also for parallel beam propagation imaging it is extremely common to implicitly assume
perfect plane wave illumination by performing the conventional flat-field correction [3, 7–11].
In previous studies, we have shown that under these conditions the commonly used standard
flat-field correction, i.e. the division of measured intensities with the specimen in the beam
by measured intensities without specimen in the beam, induces artifacts [12, 13], as illus-
trated in Fig. 2(c). To overcome these problems, the experimentalist can choose between two
principal strategies: (i) corrections by a refined optical system (hardware), or (ii) corrections
by enhanced algorithms (software). The hardware solution can consists in the simplest case by
additional apertures to cut off typical intensity tails in the focal plane. A more sophisticated
solution is the use of x-ray waveguides (WG) [14], which act as coherence and wavefront
filters [15], providing improved illumination schemes for NFH [16–18]. This advantage comes
at the cost of a reduced photon flux, and increased acquisition time. The algorithmic approach
by ptychography, on the other hand, solves the flat-field problem by a precise reconstruction
of the complex-valued illumination. In the language of ptychography the illumination is called
the probe P. To this end multiple exposures of the specimen, or in ptychographic terms of
the object O, are acquired at different transveral positions in the beam. This position scanning
is extensive, since an overlap between 60% to 85% is necessary for proper convergence of
the ptychographic algorithm [19], depending on experimental modalities. This applies for the
far-field [20, 21] case of ptychography and its extensions to NFH [22, 23]. Ptychography can
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Fig. 1. Schematic of an experimental setup for near-field holography. Near-field
holographic images are recorded with detector 1 at distance z2 behind the object O,
mounted on a motorized stage in defocus position z1 behind the focal plane F of a
Kirkpatrick-Baez mirror (KB) system with focal distance f. The dashed box shows
the extension to a parallel acquisition setup. The two measurements |DFr(Ψ) |2 and
|DFr(P) |2 can be acquired in single-shot by the use of a semi-transparent second de-
tector. This Detector 2 is positioned front of O to record the illuminating probe. This
experimental geometry is proposed for single-pulse FEL full field imaging scheme. For
further discussions refer to the main text.

also account for other non ideal states (e.g. lack of coherence) of the probe or object [24, 25].
Associated with longer scanning time is also a larger data set, which has to be acquired by
transversal and/or longitudinal (for the near-field) scans of O in order to generate sufficiently
diverse input data for the simultaneous reconstruction of P and O. The scanning also imposes
a higher dose on O, compared to NFH [26], which can induce radiation damage and lead to
an inconsistent ptychographic dataset. Most importantly, the scanning scheme is incompatible
with time-resolved studies and with ultra-fast (single shot) imaging. Note that some objects
are deliberately destroyed by the first pulse, using the ’diffract-before-destroy’ strategy used
in some schemes of FEL imaging [27–29]. A further problem for ptychography at FEL is the
intrinsic shot-to-shot variation of P, resulting from pulse generation by the SASE process [30].

In this work we seek to make single shot NFH compatible with non-stationary probes
and in particular FEL imaging. To this end, we propose a new algorithmic approach. The
reconstruction of object and probe is based on two intensity recordings: (i, exit wave) of the
object in the beam and (ii, probe) of the empty beam without object. The exit wave Ψ = P · O
is written as separable product of P and O. This implies that the product approximation holds,
this is in general true for thin and especially biological specimen [31]. The proposed algorithm
uses the separability constraint known from ptychography, and an intertwinded update scheme
operating on both images, which we denote by divide&update (d&u), see Fig. 3. We show
by simulation and experimentally that d&u yields an improved reconstruction quality of O
compared to a reconstruction obtained from the same data using the standard flat-field correction
as data preprocessor. The two images can be recorded either sequentially or simultaneously
(parallel recording). As the probe stability was sufficiently high in the SR experiment serving
as proof-of-concept in this work, we have used the sequential recording which is easier since
no special detection scheme is necessary. In the case of parallel recording as required for single
pulse FEL imaging, a semi-transparent detector screen in front of the object (denoted by de-
tector 2 in Fig. 1) could be used, or a beam splitter in front of O to split the XFEL pulse before
it interacts with O [32, 33].
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Fig. 2. Experimental data used for phase retrieval by d&u. (a) Recorded near-field intensity
pattern with the object in the beam, i.e. |DFr(Ψ) |2. (b) Same without object, i.e. |DFr(P) |2.
For comparison we also show (c) the flat-field correction of the object’s hologram as
obtained by dividing |DFr(Ψ) |2 by |DFr(P) |2. The scale bar indicates 5 µm.

For this purpose, a semi-transparent detection screen or beam splitter has to be placed in
front of the object. There are two challenges to consider: Firstly, the sensor resolution has to
sample the probe sufficiently well. Secondly, the heat load for the semi-transparent screen must
be kept at a reasonable level. Both are difficult, if the detection screen is to close to the focal
plane of a nano-focus optic. However, the ’probe detector’ can equally well be placed in the
convergent beam, e.g. directly behind the focusing device where the beam is extended, and
where a field of view of several hundred micrometer could be probed with sufficient spatial
sampling. In this case, the reconstruction requires additional propagation of the wavefields by
Fresnel propagators, as also demonstrated in this work for simulated data in App. A.

The paper is structured as follows: Section 2 details the d&u scheme. Section 3 tests the
algorithm on simulated data, before application to experimental data. The paper closes with
summary and outlook in Sec. 4.

2. Algorithm

As in other ptychographic approaches, the d&u algorithm uses the separability constraint
in the plane of O. Figure 3 shows a principle sketch of d&u and Algorithm 1 details
the algorithmic approach. In conventional NFH, when dealing with distorted probes the
approximative hologram of O [12] is recovered by flat-field correction and then used as input
for a phase reconstruction algorithm. In contrast to this standard approach we make use of
the two available measurements in an iterative reconstruction scheme, cf. Fig. 3. Following
the separability idea of ptychography we use amplitude adapted version ̂Pn = Π

P
M

(Pn−1),
̂Ψ analogously, to yield updates for Pn and On in a cross-over manner (middle) by use of
constraints for O in the plane of the object. With the new Pn and On we generate the updated
exit wave Ψ and start a new iteration.

The projection on the measurements ΠX
M

(•), withX being either |DFr(Ψ) |2 or |DFr(P) |2, i.e.
the respectively measured near field pattern, is given by the standard magnitude projector

ΠX
M (•) ≡ DFr−1

(

X1/2 · exp
(

i · arg [DFr(•)]
)

, (1)

applied to the respective iterate of P or Ψ. The propagation to the detection plane is performed
by the Fresnel free space propagator

DFr(•) = F −1
[

F [•] exp
(

(−iπ)/(2 Fr)(k2
x + k2

y )
)]

, (2)

where kx = 2 nx/Nx and ky = 2 ny/Ny are spatial frequencies in Fourier space with nx ,y ∈
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next
iteration

Fig. 3. Sketch of the algorithmic scheme of divide&update (d&u. The algorithm uses
the two measurements |DFr(Ψ) |2 and |DFr(P) |2 as inputs. An iteration starts with the
projection of the guesses for P and Ψ on the measured intensities using the projectors ΠP

M

and ΠΨ
M

(left). After projection, the output fields ̂P and ̂Ψ are used in a cross-over manner

to update P and O in ΠO
S

and ΠP
S

(middle), which are then multiplied to form the Ψ for the
next iteration (right).

[

−Nx ,y/2 ... Nx ,y/2
]

, Nx ,y are the dimensions of the image, F the Fourier transformation and
Fr is the Fresnel number with respect to one pixel (px).

Algorithm 1 Divide and Update algorithm
1: O0 ← 1Nx ×Ny

� Initialization
2: P0 ← 1Nx ×Ny

3: for n = 1 ... nmax do
4: ̂Pn ← ΠP

M
(Pn−1) � Carry out amplitude adaption

5: ̂(Ψ)n ← ΠΨ
M

((Ψ)n−1)
6:

7: Compute ΠO
S

:

8: O′
n ← ̂(Ψ)n/̂Pn � Divide for O, i.e. enforce separability

9: On ← ΠO

(

O′
n

) � and apply constraints
10:

11: Compute ΠP
S

:

12: P′
n ←

(

̂(Ψ)n
On
+ ̂Pn

)

/2 � Divide for P

13: Pn ← ΠP

(

P′
n

) � and apply constraints
14:

15: (Ψ)n ← Pn · On � New exit wave
16: end for

The details of the cross-over update are given in pseudo code in Algorithm 1 in lines 7-13,
the corresponding projectors ΠO

S
and ΠP

S
are detailed below. The operator ΠO

S
is used to update

the iterate for O. First the fields are separated by division (line 8), enforcing separability. Next,
the projector ΠO is used to enforce the constraints on O, i.e. pure, negative phase and support
constraint.

ΠO (•) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
(

i · arg (•)) for pixel ∈ S

exp(i · 0) for pixel � S ∨ arg (•) > 0
(3)
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Fig. 4. Phantoms used for the simulation. (a) Phases of the object (pure phase contrast)
with φ ∈ [−0.2 0] rad. (b) Phases of the probe. (c) Amplitudes of the probe. The gray
values of the input images are scaled to match phases φ ∈ [−0.4 0.4] rad and amplitudes
A ∈ [0.8 1.2]. Amplitude and phase phantom images have been frequency filtered by a
Gaussian with FWHM of 5 px. In addition, the amplitudes are multiplied with a Gaussian
of 354 px FWHM to simulate an intensity decay. The scale bar indicates 50 px.

Here the support S is assumed to be known, but additional refinements as shrink-wrap can be
easily implemented to refine S. In practice, the support is easily generated from the conventional
approach of empty beam correction, followed by holographic reconstruction. Note, that any
other known constraint on O can be incorporated as well.

Next, P is updated using ΠP
S

. The new On is used to separate Pn taking alsôPn into account

(line 12). In a general setting, we can only use the information from ̂P and the division of
̂(Ψ)n/On . However, in contrast to the general setting, one often has quite powerful constraints

at hand on P, depending on the experimental situation, for example smoothness or small
distance with respect to a temporal averaged probe, which would of course further improve
convergence. The smoothness of P is generated by the blurring of free-space propagation.
It can be estimated from the power spectral density to choose a suitable full width at half
maximum (FWHM) value of a Gaussian filter. The filter is respectively applied on the phases
and amplitudes of P. Afterwards the filtered amplitudes and phases are recombined. In the pres-
ence of strong fluctuations in P multiple recordings |DFr(P) |2 can be combined to an averaged
P. By comparing the current iterate of P with the average P it is possible to discriminate
variations larger than a given threshold and set these to the average value. These constraints can
be additionally enforced as part of ΠP on P′

n(line 13). The updated exit wave (Ψ)n is calculated
by multiplying Pn and On (line 15). The Matlab implementation of the algorithm is provided
in Code 1 (Ref. [34]).

3. Results

3.1. Simulated data

Figure 4 shows the phantoms used for testing the algorithm. A sketch of two cells (a) [35] serves
as pure phase phantom of the object. For the probe phantom, a mandrill test image (b), and
Dürer’s Melancholia I (c), serve to define phases and amplitudes, respectively. Both images are
Gaussian low-pass filtered with a filter of FWHM of 5 px diameter to simulate the smoothing of
a probe by propagation. To simulate the finite size of the illumination the amplitudes have been
multiplied by a Gaussian window of a FWHM with 354 px. The images have size of 512 × 512
px2 embedded in Nx × Ny = 2048× 2048 px2 for propagation. Only the central parts (512× 512
px2) of the images are shown in this and the following figures.

The simulated measurements are depicted in Fig. 5 i.e. (a) |DFr(Ψ) |2 and (b) |DFr(P) |2 for a
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Fig. 5. Simulated input data for the simulations at Fr = 10−3 with µ = 200 ph/px, using the
phantoms from Fig. 4. The measurements of (a) |DFr(Ψ) |2 and (b) |DFr(P) |2. The scale bar
indicates 50 px. (c) The approximated hologram |DFr(Ψ) |2/|DFr(P) |2. (d) Relative error
of (c) to the real hologram |DFr(O) |2. The scale bar indicates 100 px.

Fresnel number of Fr = 10−3. Afterwards, Poissonian noise for a fluence µ = 200 photons/pixel
(ph/px) has been added to the measurements. |DFr(Ψ) |2 does not show a visible imprint of the
propagated object, due to the comparative small, but for biological specimen reasonable [35]
phase shift. The approximated hologram is obtained by the standard flat-field correction i.e.
|DFr(Ψ) |2/|DFr(P) |2 and is shown in (c). This reveals the small contrast range of the imprint.
The relative per pixel error of the approximated to the ideal hologram

δ =
(|DFr(Ψ) |2 / |DFr(P) |2 − |DFr(O) |2)

|DFr(O) |2 (4)

is shown in (d). The absolute error is
(

∑

∀pixels

∣

∣

∣|DFr(Ψ) |2 / |DFr(P) |2 − |DFr(O) |2
∣

∣

∣

2
)1/2
= 13.9.

The measurements have been then used for two simulations: First we have used the
approximated hologram as input for an alternating projection algorithm [35], here we have
implemented Relaxed Averaged Alternating Reflections (RAAR) [36]. The iterates of RAAR
for the wavefield Ψ under reconstruction are given by

Ψn+1 =
βn
2

(RO (RM (Ψn )) + Ψn ) + (1 − βn )PM (Ψn ) , (5)

where RO/M (•) = 2ΠO/M (•) − • denotes a (mirror) reflection by a given constraint set and n
the iteration index. ΠM and ΠO are defined as above in Eq. (1) and Ep. (3), respectively. The
parameter βn controls the relaxation. It follows the function

βn = exp
(

− (n/βs )3
)

β0 +
[

1 − exp
(

− (n/βs )3
)]

βmax , (6)

where β0 denotes the starting value, βmax the final value of βn and βs the iteration number
when the relaxation is switched. This relaxation strategy follows [36] Eq. (37). The parameters
have been set to β0 = 0.99, βm = 0.75, βs = 500 for the reconstructions using RAAR.

Second have we used the two simulated holograms as input for d&u. We used the same
constraints on O as described in Sec. 2. P is constrained by the magnitude projection and the
separability. Additionally a smoothness constraint has been applied inΠP . Amplitude and phase
of P′

n are filtered with a Gaussian with FWHM of 1 px. Both algorithms were executed for 4000
iterations, starting from a amplitude 1, phase 0 initialization over the whole reconstruction area.
Figure 6 summarizes the results.

By comparison of (a) and (b), the improved reconstruction quality of d&u is clearly evidenced.
The background of (b) shows less distortions and small phase differences are reconstructed with
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Fig. 7. Fourier ring correlation of the reconstructions of O shown in Fig. 6 with respect to
the phantom Fig. 4(a).
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better contrast, see for example the center region of the lower cell. The ringing artifacts at the
edges of the object, which are observed in the standard flat-field correction scheme, disappear.

In addition to the object and in contrast to the standard scheme, d&u can recover P, at least
to some extent, as shown in Fig. 6(c) and (d). The phases (c) show a good recovery of the
edges compared to Fig. 4(b), but the low frequencies seem not recovered as well which is
evidenced by the reduced contrast as compared to the original. Further, the amplitudes (d) are
not as well recovered as the phases, some larger structures are recognizable as the cube left
and the sitting angel on the right. Further below, we will discuss remedies which improve
probe reconstruction, by slightly changing the setting. Since only one measurement for P is
used and no additional constraints on phase or amplitude, the reconstruction suffers from twin
image artifacts and missing spatial frequency information. Figure 7 shows the results for the
Fourier ring correlation (FRC) [37, 38] on the object reconstructions of Fig. 6(a) and (b) and
the phantom Fig. 4(a). The flat field (blue) and d&u (red) reconstruction do not drop below the
1/2-bit threshold (yellow), this means both reconstructions have resolution down to the pixel
level. The FRC yields more insight, it shows that the d&u reconstruction, while slightly lacking
for frequencies in the range [0.02, 0.15] 1/px, has a superior recovery of frequencies beyond
0.25 1/px. The normalized Frobenius norm

Δ =
1

Nx Ny

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

∀ pixels

∣

∣

∣arg(phantom) − arg(reconstruction)
∣

∣

∣

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/2

(7)

is for the flat-field reconstruction Δ = 4.58 · 10−5 and for d&u Δ = 2.45 · 10−5.

3.2. Experimental data

In addition to the simulations, we present reconstructions obtained from experimental data,
recorded at ESRF beamline ID16a using a photon energy of 17.05 keV, at instrumental settings
described in [39]. The object consisted of spheres of different diameters 595 nm (SiO2), 3 and
7 µm (polysterene). It was placed at a defocus distance of z1 = 13.79 mm. A FReLoN 2k
(Nx × Ny = 2048 × 2048 px2) detector was used for recording the data with a pixel size
of 845 nm, placed at a defocus distance of z2 = 435.56 mm. The exposure time was 1 s, 2
exposures have been acquired, one with and one without object in the beam. The exposures have
been corrected for dark current, lens distortions and scintillator impurities. The images have
been then normalized by their corresponding mean intensity value. The resulting normalized
intensity distributions have been used as input for the reconstruction algorithms. Figure 2 shows
the preprocessed input for (a) the measurement |DFr(Ψ) |2, (b) the measurement |DFr(P) |2 and
(c) the flat-field correction obtained from (a) divided by (b). The effective object pixel size is
26.7 nm, given by the detector pixel size and the geometric magnification M = z2/z1 ≈ 31.5.
After transformation to a parallel beam (effective) geometry using the Fresnel scaling theorem,
the (effective) Fresnel number is Fr = 7.3 · 10−4.

Figure 8 shows the reconstruction results after 20000 iterations for different reconstruction
schemes applied on the same input data, as shown in Fig. 2. The reconstruction obtained by a
standard iterative phase reconstruction algorithm scheme is shown in (a) and (b). As input the
flat-field corrected single distance measurement was used, cf. Fig. 2(c). The reconstructions (c)
and (d) obtained by d&u used the measurements shown in Fig. 2(a) and (b) as input. The phase
retrieval for Fig. 8(a) and (b) was carried out with RAAR, using the same set of constraints
(pure phase shifting sample as well as the support constraints) as in the numerical experiment.
This is to be compared with the reconstructions of O using d&u, shown in (c) and (d), which
both exhibit improved reconstruction quality compared to (a) and (b), in particular an improved
suppression of the P induced artifacts stemming from the KB aberrations. Also the resolution
is improved, as judged from inspection of the smallest spheres, see also (e) for a zoom on
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Fig. 8. Object phase reconstructions obtained by different reconstruction schemes applied
to the same input data, shown in Fig. 2. (a) Reconstruction obtained by RAAR using the flat-
field corrected input data after 20000 iterations. (b) same as (a) with shearlet supression. (c)
The d&u reconstruction shows significantly reduced artifacts. (d) same as (c) with shearlet
supression. All reconstructions shown are after 20000 iterations and the color bar applies
to all panels. The scale bar indicates 5 µm for (a) to (d). (e) Detail on the left large sphere
for (a) to (d) from top to bottom, respectively. The scale bar indicates 1 µm.

the left of the large spheres. All reconstructions shown impose the same constraints on O,
i.e. combined support and pure-phase constraint (cf. Eq. 3). In addition for (c) and (d) the
physically correct formulation of the separation of complex valued wavefields instead of the
flawed flat-field division [12, 13] is used. In the reconstruction of (b) and (d), an additional
constraint in form of a shearlet suppression was applied in ΠO

S
which for (d) further enhanced

the reconstruction quality. For (b) the same set of shearlets has been suppressed as in (d) but with
a negative effect on reconstruction quality. For this constraint, a shearlet decomposition [40–42]
was used to identify components which appear both in P and the reconstructed O. These shared
components are then removed from the object, as detailed in App. B. In (d) even the small
spheres beneath the large sphere on the left become distinguishable. Still we note remaining
structures which can be accounted to drift in P, i.e. inconsistency due to the fact that the object
and empty beam recordings were not simultaneous, as proposed in the FEL illumination scheme
sketched in Fig. 1. All reconstruction parameters are tabulated in Tab. 1.

The reconstructed phases and amplitudes of the probe are shown in Fig. 9 (a) and (b),
respectively. The probe’s phase does not show a visible imprint of the object, contrary to the
object where we observe remains of the probe. The amplitudes show no imprint, but we observe
a decay of intensity towards the edge of the field of view, as we expect from a finitely extended
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Table 1. Summary of the parameters for the experiment.

Parameter Value
Detector pixel size 845 nm

z1 13.79 mm
z2 435.56 mm

Magnification 31.5
Effective pixel size 26.7 nm

Fr 7.3 · 10−4

Iterations(simulation) 4000
Iterations(experiment) 20000
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Fig. 9. Reconstructed probe P, obtained simultaneously with the object shown in Fig. 8(c).
Phases and amplitudes are shown in (a) and (b), respectively. The scale bar indicates in all
panels 5 µm.

illumination. Overall the separation of P and O works very well. The reconstruction was
carried out as in the case for simulated data. However, a larger number of iterations is required,
compared to simulated data. Inspection of the object reconstruction after 4000 iterations shows
that the object has ’holes’ which fill up with more iterations. Therefore a much higher number
of iterations nmax = 20000 was used. The convergence rate can further be quantified by the
error metric ΔX as a function of iteration n, as shown in Fig. 10. ΔX calculates the per pixel
error of the reconstructed intensity IX with respect to the measurements MX ,

ΔX =
∑

all pixels

| IX − MX |2 /N. (8)

4. Discussion and outlook

Both simulation and experiment validate the proposed approach for simultaneous probe
and object reconstruction in the optical near field, using a miniumum of data, i.e. one
recording with and one without the object (empty beam). In practice the two recordings
can be acquired sequentially, as in the present experimental realisation, or simultaneously,
if a second semi-transparent detector screen is used in front of the object, see Fig. 1. This
is to be compared to established near-field ptychographic schemes, which are based on
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Fig. 10. Error measure Δ as function of the iteration number for the exit wave’s Ψ (blue)
and probes P (red) reconstructed intensity.

lateral [43, 44] and/or longitudinal translations of the object [22, 45]. Hence, the standard
approaches require sequential recordings and significantly more input data. In particular, they
are neither compatible with time-dependent imaging nor with non-stationary illumination
(probe). Unwanted probe fluctuations are particularly problematic in FEL imaging using
stochastic SASE pulses, with considerable pulse-to-pulse fluctuations.

The price for relaxing the need of a stationary probe is a stronger set of constraints.
Here we have used the constraints of a pure phase object and a support for the object and
smoothness for the probe. Additionally we have employed a shearlet decomposition to identify
and remove artifacts stemming from the probe. This is not a severe restriction for holography of
biological (from cells to tissues) and soft matter samples at the nano scale, since total absorption
is significantly reduced compared to macroscopic phase contrast imaging. For example the
model protein H50C30N9O10S [35,46] has at an energy of 17.5 keV an attenuation coefficient of
1.38·10−7 nm−1.

Further, extended samples could possibly also be used in this scheme if the probe is fully
captured by the detector, including the beam tails. Therefore, we anticipate that the presented
scheme is ideally suited for single pulse full field FEL imaging even in the presence of strong
pulse-to-pulse fluctuations. Using nano-focused illumination and high geometric magnification
M as recently realized with SR [17], sub-50 nm resolution and typical FOV in the range of
several 10 micrometers are realistic.

Finally, we want to briefly address probe reconstruction. The results of the probe
reconstruction shown in Fig. 6 (simulated data) is still quite flawed, in particular concerning
the amplitudes. This can be avoided if the empty beam and the object recordings are carried out
in two different planes, which is not the actual geometry realized in the present experiment at
ID16a, but the geometry proposed in Fig. 1 for future FEL work. As shown by further simulation
in App. A, recording P and Ψ in two different planes already stabilizes the reconstruction. We
also stress that the Mandrill-Dürer probe is certainly an extreme case and could be replaced
by an ’easier’ setting with a smooth probe, for example a probe where more constraints can be
applied from prior knowledge, e.g. from recording a data stream of typical probe fluctuations. A
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machine learning algorithm could then identify a lower dimensional space of ’allowable’ probes.
This issue is left for future investigation.

In summary, combination of common constraints with separability of P and O yields a
minimalistic implementation of ptychography and a significant improvement in resolution,
phase sensitivity and reduced probe artifacts as compared to reconstructions using flat-field
corrected data. The divide and update scheme (d&u) presented here could also be extended to
far-field imaging (coherent diffractive imaging) in a straightforward way. Finally, we want to
point out the advantages of d&u also for the case of imaging with stationary probes. Conven-
tional probe and object retrieval by multi-plane detection or multi-object translations requires
substantial recording time. Contrarily, single distance recordings are preferred in particular for
tomographic scans. The present scheme reconciles such single distance recordings with proper
treatment of an aberrated (non-ideal) probe.

Appendix A: Simulation for parallel data acquisition scheme

The proposed setup for parallel data acquisition Fig. 1 has been validated by simulation. The
reference plane for P has been set at Fr = −1 · 10−3 in front of the plane of O. This way we
can simulate effects of a propagated probe at the object plane. Starting from the plane of O we
have simulated measurements of Ψ for FrΨ = 1 · 10−3 and P for FrP = −5 · 10−3 (in front of O).
Poissonian noise corresponding to 2000 ph/px has been added to the measurements. Figure 11
shows the reconstructions of O (a) and P (b,c) after 4000 iterations of d&u without shearlet
constraint. Inspecting the reconstructions shows, that the amplitudes of P (c) are recovered
much better than in Fig. 6. The second measurement distance for P breaks the twin image
symmetries(complex conjugates) and eliminates these artifacts. The remaining artifacts in P
stem from the incomplete separation of O. Note, a smaller FrP yields a better reconstruction of
P. The reconstruction of O is spoiled by some low frequency artifacts as compared to Fig. 6.
Using shearlets to identify unseparated contributions in O can improve the reconstruction.

Appendix B: Details of the shearlet suppression

For enhancing the reconstruction a shearlet suppression has been applied in each iteration step.
The shearlet transformation has been calculated using ShearLab 3D v1.1 [40, 47]. A shearlet
system with 4 scales and {1, 1, 2, 2} shears per respective scale. This results in a system
redundancy of 49 shearlets. Starting with the reconstruction of O shown in Fig. 8(b) and
P in Fig. 9, the phases of these wavefields have been decomposed in the shearlet basis. In
order to find the shearlets with the largest contribution, the shearlets intensity, i.e. the sum
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the respective shearlet coefficients for P and O. (right) The coefficient matrices of O and P
for the shearlets with index #8 and #33.

of the shearlet’s coefficients as function of the shearlet index is shown in Fig. 12(left). The
blue and red curve show the shearlet’s intensities for O and P(left), respectively. These curves
have basically the same, but shifted functional form. The shift results from the fact, that we
have assumed for |O(x , y) | = 1, while P is allowed to have spatially varying intensity values
≥ 1. The sensitivity of the shearlets to structures in the reconstruction is exemplarily shown
on the right. To exemplify this, shearlets with large contribution for vertical and horizontal
structures are shown, respectively #8 and #33. To gain further inside we have calculated the
correlation of O and P for each shearlet coefficient. This has been achieved by using the Matlab
function norm2xcorr. The yellow curve shows the correlation of the P and O shearlets, for
zero-shift. Certain shearlets show only a weak correlation and visual inspection shows indeed
that these are the shearlets describing the horizontal and vertical stripes on different scales
in the reconstruction. The first approach, to threshold all shearlets below a certain correlation
value yields only poor image quality, since some of the removed shearlets carry important
resolution information, e.g #{29, 34, 39}. After visual inspection, the shearlets SVI with indices
#{3, 8, 15, 30, 31, 33, 38} have been suppressed, which has yielded the best reconstruction
shown in Fig. 8(c). The supression has been carried out by multiplying the whole coefficient
matrix corresponding to a shearlet by a factor θ, in this case θ = 0.8. The shearlet suppression
was applied in each iteration of the reconstruction run for the result shown in Fig. 8(c), providing
additional constraint as part of ΠO

S
. Contrarily, Figure 13 illustrates the effect of (a) applying

the shearlet suppression as mere post-processing image filter compared to (b) incorporating
the suppression in the algorithm. This shows that the additional computational effort yields an
improved reconstruction.

This scheme is a first approach to incorporate the shearlet decomposition in phase retrieval to
enhance separability of P and O it can be further extended: The shearlet components extracted
from O can be ’transplanted’ in the corresponding coefficients of P. The suppression parameter
θ can be relaxed, in order to boost artifact removal at the beginning of the reconstruction and
later to find a stable solution. Multiplying the complete coefficient matrix with θ is rather harsh,
since the shearlets give highly localized information, one could look for areas in the image,
where the variation is strong and apply there locally the suppression. Finally we want to note,
that the separation of P and O shows similarities to image separation problems [40, 48].
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