
Abstract
The manual delineation of vegetation patches or forest stands
is a costly and crucial stage in any land-cover mapping
project or forest inventory based upon photointerpretation.
Recent computer techniques have eased the task of the
interpreter; however, a good deal of craftsmanship is still
required in the delineation. In an effort to contribute to the
automation of this process, we introduce Size-Constrained
Region Merging (SCRM), a recently implemented software tool
that provides the interpreter with an initial template of the to-
be-mapped area that may reduce the manual digitization
portion of the interpretation. In essence, SCRM transforms
an ortho-rectified aerial or satellite image (single or multi-
channel) into a polygon vector layer that resembles the work
of a human interpreter, whom with no a priori knowledge of
the scene, was given the task of partitioning the image into a
number of homogeneous polygons all exceeding a minimum
size. We provide background information on SCRM foundations
and workflow, and illustrate its application on three different
types of satellite images.

Introduction
At the beginning of this century, the advent of very high
resolution civilian remote sensing (RS) satellites, such as
Ikonos and QuickBird brought into crisis traditional pixel-
based image analysis. Pixel-based analysis assumes that
different land-cover classes behave as distinct surfaces
made of recurrent elements that yield a particular joint
reflectance profile (i.e., spectral signature) when observed
at a suitable scale. In addition, it assumes that the area
over which a single measurement is made (i.e., a pixel)
is large enough to include a sufficient number of ele-
ments producing a typical class signature (Woodcock and
Strahler, 1987). Thus, an implicit premise of pixel-based
methods is that “the spatial resolution of the image is
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coarser than the spatial resolution of the classification”
(Goodchild, 1994). The latter may be formally defined as
“the minimum size of the circle, expressed by its diameter,
over which the surroundings of a geographic point have
to be observed in order to define the label at that point”
(Castilla, 2003). Clearly, the above assumption does not
hold true for most high-resolution imagery and land-cover
classes. For example, imagine a natural landscape that has
been partitioned into a set of small, square plots in order
to analyze it. Imagine further that the plots have opaque
walls, so that an observer standing on any plot cannot see
outside. Let us now allot the side of each plot a length of
2.5 m, equivalent to the pixel size of a QuickBird multi-
spectral image. If the above assumption is valid, there
should be enough evidence within each plot so as to cor-
rectly classify it. To test this, imagine that we randomly
place a hypothetical observer inside one of these plots in
an area covered by sparse mixed woodland. Upon analysis,
it would be highly unlikely for the observer to identify this
piece of terrain as belonging to sparse mixed woodland, no
matter the actual position of that plot.

This scenario and other limitations of pixel-based
methods applied to high-resolution imagery (Schiewe et al.,
2001; Hay et al., 2005) have increased the emphasis
on object-oriented approaches (OOA) (Blaschke et al., 2000
and 2004). OOA use objects in addition to classes in order to
model the landscape. Within OOA, an object represents an
individual, unit, or entity, either real or abstract, with
a well-defined role in the problem domain (Booch, 1991).
Any given object is an instance of some particular class.
Conversely, a class is a set of objects that share a common
structure and a common behavior. The class relations
among objects are represented in kind-of hierarchies
(taxonomies) that provide inheritance, and structural
relations among objects are represented as part-of hierar-
chies (partonomies) that provide encapsulation (information
hiding) (Booch, 1991). The OOA is especially suited for
implementing a hierarchical patch model of the landscape
(Woodcock and Harward, 1992; Wu and Loucks, 1995),
where a patch is a landscape object, i.e., a discrete spatial
unit differing from its surroundings in structure or function.
Patches within a given hierarchic level may be composed of
several patches from a lower level, while at the same time
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they may be part of a larger patch at a higher level. Hence,
a patch may be an entity ranging from the area covered
by an isolated tree to an island continent. Additionally,
patches from different levels may overlap in size; however,
the mean size of patches within each level must increase
steadily with the level. Since there are no clear differences
in size between borderline instances from adjacent levels,
an arbitrary size threshold must be established for a given
area to qualify as a patch of a certain level, e.g., contiguous
forested areas less than one hectare are not forests but forest
stands. Such a threshold is analogous to the minimum
mapping unit (MMU) used in cartography to impose the
desired level of generalization over a territory. Once a
hierarchical model is defined by a set of size constraints,
the link between landscape and image can be realized on
the premise that image objects at a given resolution coin-
cide with landscape objects at some hierarchical level
(Castilla, 2003; Hay et al., 2001). Image objects are delim-
ited regions of the image that are internally coherent and
different from their surroundings. According to this prem-
ise, they may represent structural-functional landscape
units at some level of generalization.

Image objects may be obtained manually, through visual
interpretation (i.e., photointerpretation), or using some semi-
automated, object-oriented image classification method. For
decades, photointerpretation has been, and to a good extent is
still the method of choice for producing fine-scale forest and
land-cover maps. However, more recently, innovation in the
RS/GIS market with eCognition® software (Definiens, 2005) has
provided users with the first commercial tools for GEographic
Object-Based Image Analysis (GEOBIA, Hay and Castilla 2008).
The first step in GEOBIA is image segmentation, the partitioning
of the image into a set of jointly exhaustive, mutually disjoint
regions that are more uniform within themselves than when
compared to adjacent regions. These regions are subsequently
used as basic units to form classified objects. Unlike typical
pixel-based classifications, an object-based classification takes
into account not only conventional features such as spectral
signatures, but additional features that cannot be derived for
individual pixels (e.g., size and shape features), and most
importantly, relational features between regions. With such
capabilities, GEOBIA has the potential to supersede not only
conventional pixel-based methods, but also photointerpre-
tation. These prospects are beginning to be recognized by
leading companies in the RS image analysis sector, who
progressively are including segmentation modules in their
recent product releases. However, GEOBIA is still in its infancy.

Image understanding is a complex cognitive process
for which we may still lack key concepts. In particular, most
image segmentation methods have been developed heuristically
without a deeper examination of the semantic implications
of the segmentation process. Therefore, to ensure a strong
foundation, research in this field needs to focus on a deeper
understanding of the relationship between image objects and
landscape objects, rather than exclusively in the development
of new techniques tailored for specific applications. Our work
is partly devoted to fill this conceptual gap.

Since significant research remains until fully auto-
mated image interpretation is achieved, we suggest that
the general approach to GEOBIA should be a pragmatic one.
As such, the short-term goal, rather than trying to replace
human interpreters, would be to support them in generating
more timely, consistent and accurate products (Leckie et al.,
1998). This is relevant as on-screen digitization is the
mainstay of today’s photointerpretation. Furthermore, many
consulting companies customarily use proprietary software
or COTS (commercial off the shelf products) that create
topology while digitizing, and display on-demand ancil-
lary information to ease label allocation. Notwithstanding

these advances, interpretation accuracy, consistency, and
speed/cost are recurring concerns (Hall, 2003). Therefore,
new and or better tools are required that produce incremen-
tal improvements in these areas. They need not provide
final solutions or 100 percent correct results; they simply
need to be tools that are useful and that can be easily cor-
rected when they go awry. Specifically, they must be simple
to apply, not require expensive equipment, not substantially
alter the mapping workflow, nor involve inordinate fine-
tuning by the interpreter (Leckie et al., 1998). In order to
facilitate these requirements, we introduce Size-Constrained
Region Merging (SCRM). Essentially, SCRM transforms an
ortho-rectified aerial or satellite image (single or multi-
channel), into a polygon vector layer. This layer resembles
the work of a human interpreter, whom without a priori
knowledge of the scene was given the task of partitioning
the image into a specific number of relatively homogeneous
polygons all exceeding a minimum size. This layer may then
be used as an initial template in the task of the interpreter,
who just needs to aggregate (and sometimes correct) pre-
delineated regions by simple drag-and-click operations. We
note that SCRM results are only meant to be an intermediate
imperfect aid for the work of the interpreter, since (a) SCRM
only considers radiometric features for the segmentation,
and (b) the correspondence between radiometric similarity
and semantic similarity is not straightforward. We also note
that although the SCRM sequence includes procedures other
than region merging, we named the algorithm after this
condition because it is the most influential step.

The objective of this paper is threefold. First, we provide
conceptual foundations that underlie the SCRM approach
to image segmentation. Such foundations constitute an
unprecedented contribution underpinning GEOBIA, and
therefore are treated in depth. Second, we briefly describe
the SCRM workflow and illustrate with examples how it may
be used as an automated delineation aid for computer-
assisted photointerpretation. We then discuss its strengths
and limitations, and summarize relevant points and future
work.

Background SCRM Algorithm Foundations
The conceptual foundation, software development, and
implementation of SCRM were initially conducted by the first
author (Castilla, 2003). Since then, it has been tested and
refined with the aid of others (Castilla et al., 2004; Hay
et al., 2005). SCRM has been inspired and or influenced by
a number of important contributions, which are described in
the following sections. In the Limitations of then Algorithms
section, we highlight their major limitations, and in the
following sections, we expound upon the conceptual
foundations of our approach.

Beaulieu and Goldberg’s Algorithm
The stepwise optimization algorithm of Beaulieu and
Goldberg (1989) begins by considering single pixels as the
initial regions of analysis. At each iteration, the two adjacent
regions that show the highest similarity or degree of fitting
are merged. That is, the pair of adjacent regions merged at
each iteration is the one showing the least distance in the
feature space from which similarity is quantitatively esti-
mated. Merging proceeds sequentially in this way until there
is no pair with a dissimilarity distance below a user-defined
threshold (i.e., merging tolerance). The final partition is
optimal regarding the minimization of the internal hetero-
geneity of regions, but the procedure is too slow, since it
allows only one merge per iteration. In addition, it leads to
an uneven growth of regions between areas of smooth and
coarse texture. As a result, areas marked by coarse texture
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will consist of many small regions (often individual pixels),
whereas smooth uniform areas will be segmented into
large regions.

Woodcock and Harward’s Algorithm
Based on Beaulieu and Goldberg’s (1989) work, Woodcock
and Harward (1992) introduced a faster algorithm that
allowed multiple merges per iteration and included size
constraints. At each iteration, a list of candidate pairs is
prepared. Each candidate pair consists of two adjacent
regions where both are the nearest neighbor (in feature
space) of the other. Then, all candidate pairs whose dis-
similarity distance is less than the current merging toler-
ance (Tpass) are allowed to merge, providing neither region
has previously merged during this iteration. After each
iteration, the new value of Tpass is computed automatically
from (a) the current histogram of dissimilarity distances to
nearest neighbors, and (b) a user-defined merge coefficient
(0 � Cm � 1), where the latter is roughly the proportion
of regions that merge at each iteration. In this way Tpass
increases monotonically until it reaches a user-defined
maximum tolerance (Tglob). The idea behind this procedure
is to keep the order of the merging sequence as similar
as possible to the single merge per iteration strategy,
since segmentation quality is highly sensitive to that order.
Therefore, the smaller the Cm, the closer the results are to
the optimal ones, but also the slower the algorithm.

As these authors noted, the global threshold alone leads
to a great disparity in size of output regions. The cause of
that difference is the variety of textures usually found in
remote sensing images. Size disparity is a problem mainly
for two reasons. First, output regions (if used as basic units
in an automated classification procedure) should represent
landscape objects of the same hierarchic level, therefore
their size should be in the same order of magnitude. Second,
for cartographic purposes, regions smaller than the mini-
mum mapping unit are a hindrance. Therefore, Woodcock
and Harward (1992) supplemented their algorithm with
size constraints that prevented excessive growing in smooth
areas during normal merging; and once the global thresh-
old was reached, they forced the development of regions
exceeding the minimum required size in areas with coarse
texture.

Baatz and Schape’s Algorithm
An alternative strategy for tackling size disparity is that
followed by the segmentation algorithm of Baatz and
Schape, (2000), which is embedded in eCognition®.
Similar to Woodcock and Harward’s (1992) method, it
starts with individual pixels as the initial regions, but
instead of using a stepwise increase of the dissimilarity
threshold, at each iteration it distributes the candidate
pairs as far as possible from each other over the image.
The actual way this distribution takes place is proprietary,
although according to the authors it is devised to allow for
repeatability. In any case, it achieves a uniform growth of
regions throughout the image, so that the final regions all
have a similar scale (size). Since a conservative (small)
threshold permits fewer merges than a greater one, the
mean size of segments will increase with the value of the
threshold. For this reason it is called the scale parameter.
A particularity of this algorithm is the optional inclusion
of a form heterogeneity factor in the overall dissimilarity
between two adjacent segments. In this case, dissimilarity
is measured as a linear combination of radiometric hetero-
geneity (expressed by the mean of the variance in each
band of pixels within the segment) and form heterogeneity
(expressed by the ratio between the actual edge length of
a segment, and the edge of a square with the same number

of pixels as the segment). In this way, the segmentation
favors the construction of regions with smooth edges and a
more or less compact form. Although such an approach to
tackling the fractal nature of landscape yields visually
appealing results, it is conceptually moot, as it uses a
dissimilarity metric that combines two incommensurable
features, color and shape. Another disadvantage is that the
scale parameter, being a unitless threshold that is image
dependent, has no functional relationship with the number
of output regions and therefore with their size. Hence,
users need to find useful segmentation levels in a trial and
error basis, even if they can optionally impose some size
constraints at the outset as in the previous method
(Blaschke and Hay, 2003).

Limitations of these Algorithms
We suggest that the previous three segmentation methods
bear a number of limitations. First, they start the merging
with individual pixels. Apart from being computationally
expensive, the result is very sensitive to the merging order
at early stages of the segmentation, when a single pixel still
has a considerable weight in the features of a small region.
Second, the control of region growth, when exerted, is made
through somewhat arbitrary means, such as the merging
coefficient in Woodcock and Harward’s (1992) method, and
the heuristic spatial distribution of candidate pairs in Baatz
and Schape’s (2000) algorithm. Third, they require the user
to set parameters that are non-intuitive, such as the scale
parameter in eCognition®. And fourth, they are conceptually
inconsistent with the object-oriented approach (OOA): an
underlying hypothesis of any segmentation method is that
there is a correspondence between radiometric similarity
in the image and semantic similarity in the imaged land-
scape. Thus, it is expected that image objects (segments)
coincide with landscape objects (patches). However, if this
is so, object boundaries should correspond to some disconti-
nuity on the ground. Pixels can be thought of as arbitrarily
delimited square plots; therefore, single pixels can hardly
correspond to landscape objects. So starting the segmenta-
tion with single pixels is inconsistent with the OOA.

Blobs: The Basic Perceptual Units
SCRM lacks the incongruity of the other approaches starting
with individual pixels, because it begins the region merging
process with a fine partition made of primal regions or blobs
derived from image morphology (see the Image Smoothing
section for details). A blob is a perceptual concept that
refers to a tiny homogeneous region in the image, darker,
brighter or of different hue than its surroundings. Being
internally homogeneous and different from its exterior, a
blob may be also viewed as the basin of attraction of a
perceptual attractor, where all pixels within that basin may
be perceived as forming a distinct single entity. Under this
view, blobs are the basic perceptual units, just as pixels
are the physical basic units. Perceptual attractors may be
associated to local minima in a transformed image where the
value (DN) of pixels is proportional to the difference with
adjacent pixels in the original image. Thus, blobs can be
formally defined as the basins of attraction of local minima
in a gradient magnitude image derived from the original one
through some dissimilarity metric. This definition enables
us to establish a powerful innovative link between catastro-
phe theory, graph theory, and morphological image analysis
(for additional detail, see Castilla, 2003).

Linking Catastrophe and Graph Theories
Thom’s (1975) topological theory of attractors, also known as
catastrophe theory, may be interpreted, when applied to
image perception, as a dividing of the image into regular
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pixels (those belonging to some basin of attraction) and
singular pixels (those separating the basins). According to
this theory, every object in an image can be represented as
an attractor of a dynamical system on a space of internal
variables. Thus, an object may be recognized only when the
corresponding attractor is stable. The stability is attained by
a process, called morphogenesis. This consists in the disap-
pearance of the attractors representing the initial unstable
forms, and their replacement (i.e., capture) by the attractors
representing the final forms, which is the observable state of
the object(s). An attractor can be thought of as the centroid
of an object, so that pixels belonging to the object are more
attracted to it than to the centroid of neighboring objects.
However, in the boundaries between objects, this attractive
force becomes unstable and an infinitesimal move in one or
another direction may produce a change of attractor: these
are the singular pixels (i.e., edges or boundaries) that define
the spatial structure of the image.

We have translated this account into graph theory by
considering the image as the initial state of a planar dynamic
network consisting of triangular meshes made up of nodes
(pixels) connected through links through which the nodes
interact. This interaction consists of quantitative luminance
exchanges between the nodes. The intensity of the interaction
is regulated by proximity in feature space, decreasing rapidly
with dissimilarity distance, and it is formalized through a
weight allocated to each link. A link may be active, if there
is some noticeable interaction through it, or inactive if its
weight is nearly zero. To simulate morphogenesis, we allow
the network (i.e., image) to evolve through several cycles
in which the state of a node is dependent on the state of
adjacent nodes in the previous cycle, according to the above
interaction mechanism. During this process, some nodes
interact more strongly between themselves, while some others
stop interaction. This induces a coherent behavior of nodes
within local groups. Eventually, some inactive links may
become active, opening paths between nearby groups, so
that small groups are captured by larger ones. After relatively
few cycles, the network reaches a steady state far from
equilibrium (where equilibrium would represent a uniform
distribution of luminance across the network, i.e., a flat image).
Thus, the network evolves towards a piecewise constant image
in which the pixels within each local group have roughly
the same value. Each local group has a node that acts as an
attractor in feature space, i.e., a node whose basin of attraction
is the local group itself. Then, the remaining attractors within
the network are the stable attractors, and their respective basins
of attraction coincide with blobs. As a result, this evolution
can be viewed as a self-organization of the image into percep-
tual units (Castilla, 2003). The practical implementation of
this process is a non-linear diffusion filtering, as explained
in the Image Smoothing section.

Linking Gradient Watersheds and Morphogenesis
The set of singular pixels demarcating the stable basins
of attraction is obtained using the watershed algorithm, a
morphological segmentation method commonly used in
computer vision and biomedical imaging (Meyer, 2001). This
algorithm extracts the network of ridges (watersheds, or
drainage divides) that exist in the input image (usually a
gradient magnitude image) when it is considered as a Digital
Elevation Model (DEM). In our method, since the filtered
image (i.e., the final state of the above network; see the
previous section) is a quasi-piecewise constant, its corre-
sponding gradient magnitude image resembles a DEM from a
lunar plain full of craters of different shape and size. Here,
each crater is the basin of attraction of a local gradient
minimum, which is located at the bottom of the crater.
Now, the concept of attractor becomes more evident by

introducing an analogy with gravity. For example, if a
basketball is dropped at any location within a crater, it will
be attracted towards the bottom and eventually come to rest
there. The event of the ball getting trapped in some pit (i.e.,
an unstable attractor) near the bottom is precluded by
filtering, which smoothes out the crater surface. However, at
the very top of the crater, the attractive force exerted by the
base of the crater becomes unstable, as any small shift may
result in the ball falling in or out. Therefore, ridges may be
defined as the set of singular pixels bounding the basins of
attraction, which conveniently also happen to be the pixels
that the watershed algorithm foregrounds as boundaries of
catchment basins.

When blobs are viewed in this way, it becomes apparent
that the watershed algorithm is more than just another
segmentation method: it is the tool for applying Thom’s
(1988) semiophysics to image analysis (Castilla, 2003). The
merit of Thom’s work is that it provides a link between the
quantitative physical theory of the world and our qualitative
daily experience (Smith, 1995). Our claim, which we believe
is an important contribution to this field, is that this link
can be realized using gradient watersheds when we observe
the world through images. We further suggest that within
Marr’s (1982) definition of vision, this algorithm provides a
first step in the transformation of a numerical representation
(a digital image) of a territory into a shape-oriented repre-
sentation (a thematic vector layer).

Simplifying the Watershed Partition
Watersheds alone are not sufficient to derive a meaningful
map. Users are typically interested in structures larger than
blobs. Indeed, the profuse number of watershed regions
is normally regarded as a disadvantage known as over-
segmentation. Therefore, the watershed partition has to be
further simplified. There are three common ways of achiev-
ing this: (a) embedding the watersheds in a linear scale-
space framework, (b) thresholding the flood dynamics of
watershed arcs (see below), and (c) merging of catchment
basins according to a similarity criterion. The first two
methods are discarded for reasons explained below, and the
third is treated in the Methodology: SCRM section.

The first method (Jackway 1996; Olsen and Nielsen
1997; Gauch 1999) consists in creating a family of increas-
ingly blurred images from the original one. This family forms
a scale-space representation (Lindeberg, 1994; Hay et al.,
2002), in which the scale of each image is given by the width
of the Gaussian filter used to smooth it. As a result of this
blurring, successive images are simpler, meaning that there
are less gradient minima. Next, the watershed partition is
computed at each scale, and the resulting catchment basins
are linked across scales, yielding a hierarchical partition.
However, there are limitations with this method: first, it is
computationally intensive; and second, the linkage is not
as straightforward as one might think. Gaussian blurring
deforms the structure of the original image, not only annihi-
lating but also displacing both edges and gradient minima.
Therefore, there may be situations where the assignment of
previous regions to new ones cannot be clearly established.
These matching ambiguities between successive images,
which also occur for image-pyramids (a stack of images of
increasingly larger pixel size), are known as the correspon-
dence problem in computer vision (Cox, 1993).

The second method uses the concept of geodesic saliency
of watershed contours (Najman and Schmitt, 1996). This
procedure registers the height of the water table at which
overflow between adjacent catchment basins takes place.
Since ridges usually do not follow contour lines, water will
begin to overflow from saddle points (passes across the
ridges). Therefore, a hierarchical partition can be obtained
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Figure 1. Overview of the SCRM workflow.

using the altitude of these saddle points as an index to flood
dynamics of watershed arcs. This approach is convenient
if the goal is to foreground the most contrasted objects within
an image, but not to obtain a partition where the size distri-
bution of regions is bounded and to a degree controlled
by the user. As a point of fact, successive partitions corre-
sponding to increasing thresholds of watershed dynamics
will show an increasing disparity in size, with many small
high-contrast regions littered throughout larger regions, and
this is not convenient for a photointerpretation template.
Then, the only remaining method to reduce the number of
watershed segments is region merging, a common segmenta-
tion technique with a long history in image processing.

Methodology: SCRM
Proprietary (to the author G. Castilla) SCRM source code is
written in IDL, and can be run either within the commercial
remote sensing software ENVI® (RSINC, 2005b) as a user
extension or stand-alone in conjunction with the IDL Virtual
Machine (RSINC, 2005a). A freeware version may be
downloaded from the ITTVIS Code Contribution Library
(www.ittvis.com/codebank). In order to use SCRM, four
parameters must be specified: (a) the desired mean size of
output polygons (DMS, in hectares), (b) the minimum size
required for polygons, or minimum mapping unit (MMU, in
hectares), (c) the maximum allowed size (MAS, in hectares),
and (d) the minimum distance between vertices in the vector
layer, or minimum vertex interval (MVI, in meters). MVI is an
indication of the positional accuracy of boundaries and is
internally used to define the working pixel size (i.e., spatial
resolution). SCRM workflow is as follows (Figure 1). The input
image (previously ortho-rectified to some cartographic projec-
tion) is (if necessary) resampled to a suitable pixel size, and
then filtered with Gradient Inverse Weighed Edge Preserving
Smoothing (GIWEPS; Castilla, 2003). The output of this step is
an almost piecewise constant image, from which the gradient
magnitude is computed. This gradient magnitude image is
then searched for local minima, and the area of influence of
each minimum is contoured and labeled with the watershed
algorithm. The resulting regions are aggregated iteratively by
increasing dissimilarity until they all exceed the size of the
minimum mapping unit (MMU). Then, the labeled image
containing the final partition is converted into a vector layer.

We note that a segmentation sequence consisting of
image smoothing and/or gradient magnitude simplification,
followed by a watershed algorithm and region merging is
not new in image analysis (e.g., Haris et al., 1998; Weickert
1998; Fjørtoft et al., 1998; Bleau and Leon, 2000; Chen et al.,
2004). However, to the best of our knowledge, no other
has explicitly linked gradient watersheds to the theory of
attractors. Furthermore, except for the watershed transform,
the techniques proposed here are original, and our method
is grounded on a solid conceptual basis (Castilla, 2003), an
asset that many segmentation algorithms lack.

Image Resampling
The default minimum vertex interval (MVI) is double
the pixel size of the input image, since this is the spline
interval that is applied to interpolate the centers of water-
shed pixels (see the Vectorization section). If the final
product is intended to depict the theme of interest at a
coarser scale, then segmentation should be performed at
a resolution that matches this cartographic requirement
in the same way interpreters should not zoom beyond a
certain visualization scale while digitizing arcs. On the
one hand, too fine a scale often overwhelms the operator
(be it man or machine) with too much detail and limited
context. Conversely, as a consequence of the fractal nature

of landscapes, the length of arcs increases indefinitely as
the resolution increases. Thus, the finer the pixel size,
the more intricate the arcs (Figure 2). Therefore, in this
case, the input image should be up-scaled to a resolution
balancing edge simplicity and accuracy. This is done by
resampling the image to half MVI by simple pixel averaging.
When the user is unsure about what minimum vertex
interval fits their application, they may set MVI equal to
the boundary positional accuracy required for the final
product, as it will on average be better than this value.

Image Smoothing
A consequence of hierarchical patchiness in landscapes is
the presence of areas of coarse texture in all types of remote
sensing imagery, irrespectively of spatial resolution. Coarse
texture, or high local variance, is mainly due to the existence
of recurrent elements that are large enough to produce some
variation in the image, but too small to be resolved by the
sensor, such as individual trees in a Thematic Mapper image.
Since no information can be retrieved about their individual
shape, they cannot be included individually in a shape-
oriented representation of the scene derived from that image.
Therefore, they have to be captured within the larger element
they are a part of (e.g., a forest stand). On the other hand,
coarse texture areas are characterized by a high density of
local luminance extrema that produce a considerable amount
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Figure 2. Two automated delin-
eations of a burn scar at two
different resolutions, 1 m and
10 m; the latter is smoother.
The larger image shows a zoom
on the northeast corner of the
scar. A color version of this
figure is available at the ASPRS
website: www.asprs.org.

of spurious minima in the corresponding gradient magnitude
image. Following the discussion in the background section,
these minima may be regarded as perceptually unstable
attractors, which we remove by processing the image with a
non-linear diffusion filter that simulates the aforementioned
morphogenesis. Non-linear diffusion is an iterative process
where diffusivity (the rate of luminance exchange between
adjacent pixels) changes according to the evolution of the
local gradient (difference in brightness for single channel
images, or dissimilarity for multichannel images between
each pixel and their immediate neighbors). Unlike linear
diffusion schemes, such as the iterative Gaussian filter used
in Scale-Space, non-linear filters produce minimal blurring
and displacement of edges. Rather, they only act only upon
the unresolved elements that lead to coarse texture while
preserving larger structures and their edges (Weickert, 1997).

Our implementation, called Gradient Inverse Weighted
Edge Preserving Smoothing (GIWEPS) has as precursors the
filters by Wang et al. (1981) and by Perona and Malik (1990).
In GIWEPS, the new digital number (DN) of a given pixel is the
weighted mean of the current DNs of its eight neighbors. The
weight of each neighbor is proportional to its Euclidean
distance (in the feature space) to the pixel under examina-
tion, and the proportion is governed by an arbitrarily fixed
diffusivity parameter. The filter is applied iteratively, until
the difference between consecutive output images is negligi-
ble, which typically occurs in a few iterations. Further
details can be found in Castilla (2003).

Gradient Magnitude Image
If one considers a given grey-level image as a Digital Eleva-
tion Model (DEM), then the gradient magnitude image is the
slope map that corresponds to that DEM. Thus, at each pixel
of a grey-level image, the gradient magnitude is the slope
of the steepest descent line crossing that pixel. In the case
of multi-band images, the slope describes the variations in
similarity of adjacent pixels across the image. The dissimilar-
ity measure used here is the Euclidean distance between
points (pixel signatures) in the feature space. At each pixel

of the image, the gradient magnitude is computed as the
square root of the sum of squared dissimilarity distances
between the East and West neighbors, and the North and
South neighbors, respectively. Note that the gradient minima
are those pixels whose value is lower than that of their eight
neighbors in the gradient magnitude image.

Watershed Partition
The application of the topographic concept of watershed
to the field of image analysis was introduced by Beucher
and Lantejoul (1979) and later implemented into an effi-
cient algorithm by Vincent and Soille (1991). In the SCRM
workflow, the idea is to consider the gradient magnitude
image as a DEM. The goal is to find the drainage divides,
or watersheds, of that virtual territory, which is achieved
by simulating a gradual immersion of the DEM. In the
output partition, watershed (boundary) pixels are set to zero,
whereas non-zero pixels have as DN the numeric label of the
region (blob) to which they belong.

Region Merging
In this step, the regions of the watershed partition (i.e.,
blobs) are aggregated until all regions in the partition are
larger than the specified minimum size (MMU). The merging
sequence is such that the homogeneity of the resulting
regions is maximal given the size constraints. The dissimi-
larity measure used as merging criterion is the Euclidean
distance in a feature space, where each dimension corre-
sponds to a channel of the image. Thus, the signature of a
region, from which dissimilarity to its adjoining neighbors
is computed, corresponds to the coordinates of the region
centroid in the feature space. That is, a signature is an 
n-component vector where each component is the mean
value in each of n channels of pixels belonging to the
region. After a merge, the signature of a new region is the
weighted (by size) mean of the signatures of the two merged
regions. In this way, region signatures are computed from
the original image only once, at the beginning of the proce-
dure. The same can be said about the adjacency table (an
array returning the list of neighbors of any given region),
which is first computed from the watershed partition and
then updated using Boolean algebra. From this adjacency
table (AT) and the signature list (SL), the identification of
the most similar neighbor (MSN) to each region is trivial.

The table-based updating of both signatures and adja-
cency, which was first implemented in a recent version
(Castilla, 2004), is much faster than our former image-based
updating. This fact enables us to adopt the optimal single
merge per iteration strategy, which otherwise would be too
slow. Consequently, in each iteration the two adjacent
regions that merge are those best fitting, (i.e., those having
the least dissimilarity distance from the set of candidate
pairs). Next, the AT, SL, and MSN arrays are updated, the new
best fitting candidate pair is identified, and a new iteration
proceeds. During the first several hundred iterations, the list
of candidate pairs consists of every pair of adjacent regions
in the image. As the merging proceeds, smooth low contrast
areas become occupied by increasingly larger regions, and
the maximum size constraint (MAS) comes into play. At a
given iteration, if the best fitting pair consists of two regions
both exceeding MAS, then it is not allowed to merge. Fur-
thermore, this pair is permanently withdrawn from the
candidate list, and the second best fitting pair is selected for
merging. The merging continues this way until the sum of
(a) the number of regions currently larger than the minimum
allowed size MMU, plus (b) the expected number of final
regions that may result from the area currently occupied by
regions smaller than MMU, is less than the expected number
of final regions (i.e., the image area divided by DMS). This is
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a partial stop criterion that guarantees that the final mean
size of regions will be close to DMS. Thereafter, the candi-
date list is restricted only to those pairs where at least one
of both regions is smaller than MMU. In this way, homoge-
neous regions are formed first, and then dissimilar regions
smaller than MMU are progressively incorporated to the
former until all regions are larger than MMU.

The actual merging of two regions involves replacing
the numeric label of one of them (arbitrarily the lowest one)
with the label of the other in the final label list (FLL). FLL
is an array of length equal to the number of regions (blobs)
in the initial (watershed) partition. At any point during
the merging process, there is a link that keeps track of blobs
composing each new region, so that FLL can be easily
updated. Once the merging is completed, a new image (the
SCRM partition) is created from the watershed partition by
replacing the DN of pixels inside each blob with the new
label registered in the corresponding position of FLL. Finally,
watershed pixels lying in the interior of final regions are
filled with the numeric label of the corresponding region.

Vectorization
The last step in the workflow is to convert the SCRM
partition into a polygon vector layer and save it as an
ESRI shapefile. In order to proceed, the centers of bound-
ary (zero-valued) pixels are considered the initial vertices
forming the vector layer. This is analogous to consid-
ering boundary pixels as a transition zone between
patches that can be represented by its medial axis. Then,
nodes (junctions connecting arcs) are the centers of those
boundary pixels having more than two non-diagonal
neighbors that are boundary pixels. Arcs on the other
hand correspond to chains of boundary pixels that start
and end by a node. Finally, vector units (polygons) are
delimited by the set of arcs bounding the corresponding
region. In order to give a natural appearance to arcs, a
spline interpolation is applied to the centroid of each
three consecutive vertices within the arc. The smoothed
arc is further simplified with a proprietary implementa-
tion of the Douglas-Peucker (1973) algorithm, which
deletes redundant vertices using a tolerance of half the
pixel size (Figure 3). These results are then saved as a
shapefile, and the associate database file (.dbf) is filled
with radiometric statistics about each polygon (i.e., min,
max, mean DN, and standard deviation).

Results
In this section, we present results from three different types
of remote sensing images, and note that the third image
(Figure 6) illustrates how a SCRM output vector layer may be
used as an initial template for computer assisted photointer-
pretation. SCRM may be applied to any kind of RS imagery
(in Geotiff, jpeg, or ENVI® format), of any size (images larger
than two Megapixels at working resolution are subject
to tiled processing) and any number of channels. Typical
processing time (using an Intel Pentium IV, 2.3 GHz with
1 GB of RAM) is less than three minutes per Megapixel.
Before proceeding, the user should have a sense for how
broken up the scene needs to be. For example, if we are
interested in delineating forest stands with a 10 ha average
size, a suitable Desired Mean Size (DMS) would be some 2.5
ha. In this way, we would generate sufficient units to avoid
excessive manual digitization in a latter stage. The Maxi-
mum Allowed Size (MAS) could be set to 10 ha, so that
units larger than 20 ha would be rare, or left blank, if this
is not a concern. The minimum mapping unit (MMU) of
the final product must be known in advance, or the user
must recognize that any region below the default size will
not be retained in the output partition no matter how
distinct the region is. The last SCRM input parameter, the
Minimum Vertex interval (MVI), can also be set intuitively. If
there is no formal requirement, a good rule-of-thumb is the
recommended digitizing visualization scale. For example, for
a visualization scale of 1:10 000, a reasonable MVI would be
5 m, and 50 m for 1:100 000.

Figure 4 represents a 5 km � 3.3 km area of agricul-
tural land (near Barrax, Spain) that shows the results of
applying SCRM to a Normalized Difference Vegetation
Index (NDVI) multitemporal image derived from three
Landsat ETM� images (resampled to 25 m) acquired
respectively on 20 May (displayed as the red channel), 28
June (green) and 16 July 2000 (blue). The input parameters
were DMS � 25 ha, MMU � 2 ha, and MVI � 50 m (no MAS
restriction was enforced). Figure 5 shows SCRM results
(DMS � 2.5 ha, MMU � 0.5 ha, MAS � 5 ha, MVI � 5 m) on
a 1.25 km � 0.82 km sub-scene from a pan-sharpened 2.5
m pixel SPOT5 multispectral image (displayed as RGB bands
3, 2, 1) acquired on May 2005 near Sant Boi de Llobregat,
Catalonia, Spain. Figure 6 represents a 1.4 km � 0.92 km
sub-scene from a semi-natural landscape centered on
Muskilda Hill, a 50 ha forest near Estella (Navarra, Spain)

Figure 3. Vectorization sequence in a sample partition: (a) raw vector, (b) vector after
spline interpolation, and (c) final vector after Douglas-Peucker simplification. The
vertices of arc AB are highlighted.
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Figure 6. A 1.4 km � 0.92 km QuickBird (02) RGB
432 sub-scene showing Muskilda Hill, a 50 ha oak
forest that requires digitizing. A color version of
this figure is available at the ASPRS website:
www.asprs.org.

Figure 5. SCRM sample result in a SPOT5 multispectral
(RGB 321) image (dimensions: 1.25 km � 0.82 km).
A color version of this figure is available at the
ASPRS website: www.asprs.org.

covered by Quercus faginea trees and shrubs, and sur-
rounded by vineyards, pastures, and ploughland. The
color composite (RGB bands 4, 3, 2) is a 2.8 m pixel
QuickBird-2 multispectral image acquired in September
2004. This is the base image we will use in Figures 7
through 9 to illustrate how SCRM may be used for photoint-
erpretation.

Figure 7 shows SCRM results for DMS � 1.5 ha, MMU
� 0.5 ha, and MVI � 10m (no MAS restriction). Imagine we
want to compile a forest map with a minimum mapping unit
of 2 ha. The partition produced from Figure 7 SCRM-inputs
would be too profuse for this purpose. In addition, it has
units, like the 1.4 ha rectangular patch of scrub to the left of
the forest, that even if they were densely populated by trees,
would not qualify as forest in this map. Figure 8 illustrates
SCRM results for DMS � 6 ha, MMU � 2 ha, and MVI � 10m
(no MAS restriction). Here, the aforementioned scrub no
longer constitutes a separate unit, as it is smaller than
the MMU. Also, some regions now form part of a different
aggregate than in the previous partition, like the small area
marked with an “X” in the right side of the forest in
Figures 7 and 8. In Figure 7, this region had as its most
similar neighbor, the scrub located below it. However, in
Figure 8, the bright barren area surrounding it has previ-
ously merged with some slightly darker agricultural fields,
lowering the average brightness of the aggregate, while at the
same time the scrub has merged with the (also darker)
forest, so that now the most similar neighbor is the barren
area instead of the scrub.

The partition of Figure 8 is better suited than that
of Figure 7 as an initial template to delineate our forest
map, as it has no unit smaller than the specified 2 ha MMU.
Therefore, the basic operation is to manually merge con-
nected regions that in our opinion are forests. In this
example, this would be done in a few seconds (in any GIS
with editing capabilities) by hold-clicking and dragging
with the left mouse button over the polygons we want to
merge as to select them, and then right clicking to confirm
the merge. The rectangle shown in Figure 8 represents an
instance of such movement that would produce the merging
of the eight polygons within Muskilda Hill. Next, we would
need to correct several small areas along the perimeter of the
newly formed polygon that look similar to the forest but that
are actually scrub with less trees than would qualify as
forest (Figure 9). This is the case of the two patches lying at

Figure 4. SCRM sample result in a NDVI multitempo-
ral image derived from Landsat ETM (dimensions: 5
km � 3.3 km). A color version of this figure is
available at the ASPRS website: www.asprs.org.

Figure 7. SCRM results applied to Muskilda Hill
(Figure 6) using DMS � 1.5 ha, MMU � 0.5 ha, and
MVI � 10 m. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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Figure 8. SCRM result used as template for the
example in Figure 9 (DMS � 6 ha, MMU � 2 ha, and
MVI � 5 m). A color version of this figure is
available at the ASPRS website: www.asprs.org.

both extremes of the lower half of Muskilda, and also of its
northeast corner. Finally, there is a gravel pit surrounded by
a thin corridor of trees in the upper right half of Muskilda
that we have decided not to retain within the forest because
of the narrowness of the corridor. All these operations can
be done with a stream digitizing tool that manually splits
the undesired parts into separate polygons, where the latter
would be subsequently merged to the surroundings using
the above standard procedure. Figure 9 illustrates how
Muskilda forest would look in the final map. In this exam-
ple, less than ten percent of the polygon (those arc segments
that appear labeled) has been delineated manually.

Discussion
SCRM Strengths
After having applied SCRM to many different images, none
of the output partitions produce a visual impression of a
bad segmented image. This is to say that for most poly-
gons, there seems to be some sense of cohesiveness through-
out the area enclosed within the polygon, and contrariwise,

some sense of discontinuity across the boundary between
the polygon and its neighbors. Also, since our vectorization
scheme leaves no trace of jagged pixel boundaries, the
general impression the vector arcs provide is that of a
human-made delineation. Well-defined regions in the image
are invariably cleanly delineated, providing they are larger
than the specified MMU. If one considers only radiometric
aspects and neglects semantic ones, then there are very
few segmentation errors; and, those that apparently are
errors can be explained after changing the image enhance-
ment settings used for display. This is due to the fact that
perceived chromatic differences are not isometric to the
(Euclidean) distance employed within SCRM, which in turn
is provoked by the differential sensitivity of the human
eye to different wavelengths and luminance (Kaiser and
Boynton, 1996). With regards to the level of cartographic
generalization applied to the image (be it expressed by the
size distribution of polygons or the edge complexity) which
can be easily and explicitly controlled through SCRM input
parameters.

SCRM Limitations
Notwithstanding the above strengths, SCRM results are not
perfect neither are they intended to provide a final solution
for manual digitization. SCRM uses only one criterion, i.e.,
radiometric distance between region centroids (mean value
of inner pixels), whereas the interpreter uses a wide-ranging
suite of criteria, and resorts to external information (experi-
ence and ancillary data). An underlying premise of any
segmentation method is that radiometric similarity and
semantic similarity go hand in hand. Wherever this assump-
tion is invalid, segmentation results will go awry. When-
ever the interpreter unconsciously uses Gestalt principles
(e.g., proximity, good continuation, etc.) to complete a
polygon, the corresponding automated delineation will, in
all likelihood have to be redrawn. The same can be said of
fiat (imposed) boundaries separating continua in transitional
zones. In short, the rationale of using SCRM segmentation as
a guiding template for photointerpretation is that it can save
time. The automated polygons must require little adjustment
for time savings to occur. Depending on both the complexity
of the imaged landscape, and the degree of fit between
radiometry and semantics, there will be parts of the scene
where the interpreter would have digitized polygons very
akin to those generated by SCRM; whereas in other parts
the automated polygons may even be a hindrance. If both
situations are spatially segregated, then the automated vector
layer is still worthwhile, as one can easily discard automatic
results in complex areas, by adopting the described manual
merging procedure. If this is not the case and bad and good
polygons are jumbled, the point at which vetting of the
automated polygons requires more time than the standard
manual delineation is an important consideration that will
certainly be addressed in future research.

We also have some concerns regarding robustness and
consistency. There are three user-independent choices that
are somewhat arbitrary and that impact these two issues:
namely (a) the filter diffusivity parameter and convergence
criterion, (b) the dissimilarity measure, and (c) the inter-
mediate stop criterion. The first affects the initial water-
shed partition, and the other two influences the merging
order. In general, the shape of high contrasted regions does
not suffer significant changes by varying these internal
criteria, and the same can be said for strong edges. But
weak edges are combined in very different ways, produc-
ing disparate regions. A similar situation would occur also
for human interpreters, whose individual interpretations
of low contrasted areas are likely to differ too. Although
this problem is common to any segmentation method

Figure 9. Final delineation of Muskilda forest. Only
arc segments AB, CD, EF, and GH have been
digitized manually. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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(e.g., Baatz and Schape, 2000), it deserves further research.
In the end, such inconsistencies actually arise because
a given scene may be represented in many different ways,
and often, none of them can be said to be strictly preferred
to the others. Perhaps for this reason, visual verification
remains the basic evaluation procedure for newly devel-
oped algorithms, although there are some empirical
methods (Zhang, 1996) that try to mitigate the inevitable
subjectiveness of the evaluation. Since each individual and
institution has different interests, conceptions and meth-
ods, they may hold different views of the same scene.
Therefore, we concur with Openshaw (1978) in rejecting
the premise of objectivity in the design of zoning systems
of the like of thematic maps.

Conclusions and Future Work
In this paper, we have introduced Size Constrained Region
Merging (SCRM), a novel segmentation method that may
be used for computer-assisted photointerpretation. SCRM
transforms a single or multi-channel ortho-image into
a polygon vector layer (shapefile) that may be used by
the interpreter as an initial template. After having applied
SCRM to many images, none of the output partitions
produce a visual impression of a bad segmented image.
Furthermore, compared to other segmentation algorithms
embedded in already available commercial software, SCRM
is less demanding computationally, only requires intuitive
user parameters explicitly related to the size of output
regions and the accuracy of their boundaries, and tackles
the fractal nature of landscape and its hierarchical struc-
ture in a conceptually coherent manner. Moreover, SCRM is
grounded on a solid conceptual basis (Castilla, 2003), an
asset that many segmentation algorithms lack. Notwith-
standing, a thorough comparison with other segmentation
methods is desirable in order to fully evaluate the pros and
cons of our procedure. In particular, the usability of SCRM
vectors (with regard to time savings during the interpreta-
tion process) needs to be confirmed by additional empirical
studies, which we will address in future work. In addition,
we intend to investigate new filtering options where
diffusivity is self-controlled by the evolving spatial struc-
ture of the image. Also, we will test new dissimilarity
distances that include (a) some boundary saliency metric,
so that the merging of similar regions separated by a strong
edge (like a narrow road separating two fields with the
same crop) is precluded, and (b) some measure of the
internal texture of regions, possibly at different scales.
Finally, we intend to embed SCRM in a multi-scale frame-
work, and note that Multi-scale Object Specific Segmenta-
tion (MOSS; Hay et al., 2005) is a first attempt that has
produced encouraging results. In MOSS, SCRM parameters are
automatically derived from the original image and their
subsequent upscale versions using a proprietary procedure
of the second author (Hay and Marceau, 2004). The result
is a family of increasingly generalized representations of
the imaged scene that may have utility in multi-scale
habitat mapping studies.
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