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Abstract

Semantic scene completion predicts volumetric occupancy and object category
of a 3D scene, which helps intelligent agents to understand and interact with the
surroundings. In this work, we propose a disentangled framework, sequentially
carrying out 2D semantic segmentation, 2D-3D reprojection and 3D semantic scene
completion. This three-stage framework has three advantages: (1) explicit semantic
segmentation significantly boosts performance; (2) flexible fusion ways of sensor
data bring good extensibility; (3) progress in any subtask will promote the holistic
performance. Experimental results show that regardless of inputing a single depth
or RGB-D, our framework can generate high-quality semantic scene completion,
and outperforms state-of-the-art approaches on both synthetic and real datasets.

1 Introduction

Humans can understand unfamiliar circumstances quickly. For the scene shown in Figure [I} one
can recover the shape of the sofa though some parts of it are occluded by clothes. To endow agents
with this basic but important capability, semantic scene completion [1] is put forward, which predicts
volumetric occupancy and object category of a 3D scene.

Early works on semantic scene completion is limited in visible surface partition [2} 3] and shape
recovery without considering object category or environment context [4,|5]. Recently, [1 6] agree
scene completion and semantic labeling are tightly intertwined and simultaneously generate shapes
and their categories. However, they not only exploit few semantic features, but are highly customized
for a specific sensor. For a more effective and general framework, we present a novel modeling by
borrowing ideas from human perception. The Gestalt psychologists proposed that segmentation,
shape assignment and recognition were ordered serially and hierarchically and lower-level cues form
the substrate for higher-level cues [[7,[8]. Inspired by that, we treat 2D semantic segmentation as
lower-level cues and leverage it to assist higher-level 3D semantic scene completion.

We propose a CNN-based framework to disentangle semantic scene completion. It sequentially
accomplishes two subtasks, i.e., 2D semantic segmentation and 3D semantic scene completion. These
two subtasks are connected by a 2D-3D reprojection layer. Considering that semantic segmentation
is to acquire lower-level information as seeing and semantic scene completion is a higher-level task
as thinking, we name it See And Think Network (SATNet). Figure|1{shows its three modules.

Based on the framework, we provide various implementations. Note that all these implementations
need a depth image, for it is required by the 2D-3D reprojection layer. For a single depth or
RGB-D input, SATNet can finish semantic scene completion efficiently in a single-branch manner.
Moreover, for the RGB-D input, two more effective double-branch implementations will be introduced.
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Figure 1: See And Think Network. It consists of (a) SNet, (b) a reprojection layer, and (c) TNet,
sequentially carrying out 2D semantic segmentation, 2D-3D reprojection and 3D semantic scene
completion. Given an RGB-D or HHA (a kind of depth encoding [9]]) image, it generates the semantic
volume representation of the scene.

Whichever input is given, SATNet outperforms the alternative approaches on both synthetic and real
datasets. The advantages of SATNet are summarized below.

Effectiveness. We demonstrate that explicit semantic segmentation in SATNet boosts semantic
scene completion, as is similar to human perception. Compared with state-of-the-art works, SATNet
yields higher performance by 7% to 18% on the synthetic dataset and 3% to 4% on the real dataset.

Extensibility. The disentangled framework allows us to flexibly fuse different sensors within
SATNet. We can replicate subnetworks as multiple branches according to the number of and the type
of sensors, and then concatenate the corresponding features in SNet or TNet by lazy fusion.

Evolvability. This disentangled framework also taps the potential of evolving SATNet. As the
complex task is partitioned into two easier subtasks and a simple transformation, it will be confirmed
that progress in any subtask can heighten the effect of the entire framework.

2 Related Work

We briefly review related works on semantic segmentation and volume reconstruction, and then
detail semantic scene completion from two perspectives, model fitting based completion and voxel
reasoning based completion.

Semantic segmentation. Semantic segmentation is to acquire pixel-wise class labeling for an
image. Deep learning based semantic segmentation contains two major approaches, i.e., image based
and volume based. The former leverages the dense pixels of images to reach high performance
[[LOH13]], while the latter attempts to tap the potential of geometric information [14-16]. However,
these methods consider pixels and voxels separately, thus not combining the advantages of images
and volumes.

Volume reconstruction. Volume reconstruction can be finished by 3D convolution. With the help
of large-scale 3D model repository like ShapeNet [17]], a large number of works have been developed
for exploiting the object shape prior [18-23]]. By using large-scale 3D scene repository like SUNCG
[1]], learning based scene volume reconstruction is gradually tapped [6} 24].

Model fitting based completion. One effective approach to shape completion and semantic label-
ing is to fit 3D mesh models according to the observed surfaces [25H27, 12, [3]]. Evidently, it is mainly
limited in the capacity of the 3D model library. A large library can provide numerous models, but at
the penalty of long time retrieval. A small library is very efficient, but may produce bad matching. To
address the issue, [28H30] simplify 3D model fitting to 3D bounding box representation. Nevertheless,
these methods sacrifice the details of objects for the speed of reconstruction.

Voxel reasoning based completion. Another popular approach is to complete and label voxels
directly in the voxel space. By extracting features and integrating context, [31433] use physical
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structure priors or conditional random field to reconstruct the unobserved part, but they are empirical
or time-consuming. [34}35] focus on multiview reconstruction and segmentation for outdoor scenes
and [36}137]] manage to merge 2D semantic labels into 3D reconstructed surface via semantic visual
SLAM. Obviously, multiview images are required in these approaches. Recently, [1] formulates
the joint task of volumetric completion and semantic labeling as scene semantic completion, and
proposes SSCNet to accomplish the task end-to-end. However, it takes a single depth image as input
and does not take advantage of rich features of RGB. Afterwards, [6}24] attempt to add RGB features
into the network. Overall, in the aspect of task solving, these networks introduce a tight coupling
between RGB and depth so that their extensibility and evolvability are constrained.

3 See And Think Network

SATNet is to attain higher-level semantic scene completion with the help of lower-level semantic
segmentation. It contains three modules: first, a 2D semantic segmentation subnetwork which
estimates the semantic by a single RGB or depth image (Sec. [3.1)); second, a 2D-3D reprojection
layer which transforms the 2D semantic into 3D space so as to complete the 3D scene (Sec. [3.2));
third, a 3D semantic scene completion subnetwork that processes the voxels for semantic completion
of the whole scene (Sec. @ Finally, the double-branch RGB-D fusion in SNet or TNet is discussed
(Sec. [3.4). Our source code is available athttps://github.com/ShiceLiu/SATNet.

3.1 SNet: 2D Semantic Segmentation

The first issue we need to address is how to acquire semantic segmentation of the scene. Under the
condition of the same memory consumption, images have higher resolution than volumes. In addition,
2D convolutions cost less time than 3D convolutions. Hense, we intend to tackle this subtask in 2D
image space. The network of 2D semantic segmentation is named SNet.

For a better semantic segmentation result, we utilize an encoder-decoder architecture with skip
connections to maintain the features under various receptive fields. The encoder is ResNet-101 [38]],
responsible for extracting multiscale features, and the decoder contains a series of dense upsampling
convolutions [39]. As shown in Figure[2] the dense upsampling convolution outputs a feature map
according to four feature maps of inputs, enabling details to be learned directly and avoiding the
inaccuracy of interpolation.

The input of SNet is an H x W image I, which can be an RGB image .o, € R3>*#*W or a depth
image Igepin € R>HXW Egpecially for the depth image input, it should be transformed to a three-
channel HHA image I, € R***>*" mentioned in the method [9], for the purpose of keeping

more effective information. SNet outputs D-channel semantic feature maps SNet (1) € RP*HxW
which will be fed into the next module, the 2D-3D reprojection layer.
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3.2 2D-3D Reprojection Layer

Allowing for shape recovery in 3D space, the 2D-3D reprojection layer is a vital bond for mapping
ample 2D semantic features to their corresponding 3D spatial positions. Provided the depth image
Lgeptn, the intrinsic camera matrix K € R3*3 and the extrinsic camera matrix [R|t] € R34, each

pixel p, , (homogeneous coordinates are [u, v, 1]T) in the image can be reprojected to an individual

3D point p, , . (homogeneous coordinates are [X,Y, Z, 1}T) easily by camera projection equation
Puw = K [R|t] ps,y.~, as shown in Figure 3| After discretizing the 3D scene space into a volume
whose size is Sx x Sy x Sz, we can establish the mapping M between 2D pixels and 3D voxels,
and transform the image to the volume of scene surface.

In the period of forward propagation, the semantic feature vector value, , € RP for each pixel is
assigned to its corresponding voxel via the mapping M, while zero vectors are assigned to the empty
foreground and the occluded areas in the scene. In this way, we obtain a volume 7 (SNet (I)) €
RDP*Sx xSy xSz reflecting volumetric occupancy and semantic labeling of the 3D scene surface.
In the period of backward propagation, only the gradients of voxels on the surface of the scene
are propagated to SNet (I), whereas the gradients of the voxels filled with zero vectors are not
propagated. Overall, the propagation is so simple in either period that it can be regarded as reshaping
feature maps. Accordingly, it takes little time to accomplish.

Furthermore, we rotate the scene volume to align with gravity based on the Manhattan assumption
[40]. On one hand, it avoids tilted ground, walls or tables and provides better visual appearance. On
the other hand, the shapes of objects will be simple due to not considering the angle of pitch or yaw.
In practice, this rotation is implemented as an additional item in the extrinsic camera matrix.

3.3 TNet: 3D Semantic Scene Completion

Following the 2D-3D reprojection layer, TNet is proposed to accomplish higher-level semantic scene
completion by the volume of lower-level semantic scene surface 7 (SNet (1)) € RP*Sx xSy xSz,
As is shown in Figure f] TNet completes a 3D scene step-by-step.

TNet is composed of two residual blocks [38]], two atrous spatial pyramid poolings (ASPP) [13]] and
two 1 x 1 convolutions. The first four components compute semantic features of each voxel step-by-
step. Then the four groups of feature maps are concatenated for the final category assignment by the
two 1 x 1 convolutions. In the meantime, the residual block benefits quick convergence while ASPP
aggregates multiscale features to enhance the capability of shape recovery. Thus, we successfully
obtain the semantic completed scene volume V = T'Net (7 (SNet (I))) € RE*5x x5y x5z where
C denotes the number of categories we predict.



In SSCNet [1]], the scene surface without semantic information is encoded into a volume for com-
pletion and all the convolutions have fixed receptive fields. Unlike SSCNet, TNet takes advantage
of semantic scene surface and leverages multiscale feature extractors to yield better performance.
Additionally, we will demonstrate these two measures are effective indeed.

3.4 Double-branch RGB-D Fusion

Not only can the three modules in SATNet cooperate with each other for accurate completion results,
but also the modular framework of SATNet itself can make it easier to extend branches for fusing
various sensors. As is shown in Figure[5] we introduce two double-branch fusion ways, SNetFuse
and TNetFuse, to fuse RGB and depth.

SNetFuse. One double-branch fusion way is to fuse RGB and depth at the end of the SNet. The
feature maps output by the color branch and by the depth branch are concatenated and then the
concatenated feature maps will be reprojected to 3D space. The branches of RGB and depth share the
same architecture but their parameters are not tied, enabling two branches to extract useful features
for semantic segmentation respectively. Furthermore, it will be confirmed in the next section that
better semantic segmentation is of great benefit to the final semantic scene completion.

TNetFuse. Another double-branch fusion way is to fuse RGB and depth at the end of the TNet,
which integrates the two semantic scene completion results generated respectively by RGB and depth
for a better one. Such a fusion manner can be regarded as boosting in the ensemble learning. Each of
the two branches consists of SNet, 2D-3D reprojection layer, and TNet, but their parameters are not
tied. Compared with SNetFuse, TNetFuse can achieve better completion results but at the expense of
larger memory and time consumption.

3.5 Implementation Details

Data Preprocessing. Data preprocessing contains three parts. (1) Generation of volumetric labels:
the size of the output volume is 4.8m (horizontally) x2.88m (vertically) x4.8m (in depth) and the
volume is discretized with grid size 0.08m, resulting in a 60 x 36 x 60 volume. The generation of
scene volumetric labels is time consuming, so we prepare all the data offline. (2) Data balance: as
the number of non-occupied voxels is much more than the occupied voxels, we randomly sample
N occupied voxels and 2N non-occupied voxels for training. (3) 2D-3D reprojection mapping
calculation: we calculate the mapping M between 2D pixels and 3D voxels in advance.

Training Paradigm. We implement our framework in PyTorch. The training procedure consists
of two steps. We first train 2D semantic segmentation with supervision. Then we initialize the
weights of SNet and train SATNet end-to-end. We use cross entropy loss and SGD to optimize with a
momentum of 0.9, a weight decay of 0.0001 and a batch size of 1. In addition, the learning rate of
SNet and TNet is 0.001 and 0.01, respectively. It takes us around a week to accomplish the training
period on GeForce GTX 1080Ti GPU.

4 Evaluation

4.1 Evaluation Basis
4.1.1 Datasets

We evaluate our framework on two benchmark datasets, including the popular NYUv2 dataset [41]
and the large-scale 3D scene repository SUNCG dataset [[1]].

NYUv2. The NYUv2 dataset, a real dataset, is composed of 1449 RGB-D images and is standardly
partitioned into 795 training samples and 654 testing samples, each associated with an RGB and
depth image. Due to no ground truth of volumetric occupancy and semantic labels in NYUv2 dataset,
we follow [42] and [43] to attain the ground truth. NYUV2 is a challenging dataset, for it unavoidably
has measurement errors and unmeasured areas in the depth images collected from Kinect. Inspired
by [1]], we pretrain the network on SUNCG before finetuning it on NYUv2 for better performance.

SUNCG-D and SUNCG-RGBD. The SUNCG dataset, a synthetic dataset, is composed of 45622
indoor scenes and one can acquire RGB-D images and semantic scene volumes by setting different



Table 1: Semantic scene completion results on NYUv2 dataset.

Scene completion Semantic scene completion
method prec. recall IoU | ceil. floor wall win. chair bed sofa table tvs. furn. objs. avg.
Lin 585 499 364 00 117 133 141 94 290 240 60 7.0 162 1.1 120
Geiger 657 580 444|102 625 19.1 58 85 406 277 70 6.0 226 59 19.6
Song [T] 593 929 566 | 151 946 247 108 173 532 459 159 139 31.1 126 305
Guedes [6]' 625 823 543 - - - - - - - - - 27.5
Garbade [24] | 69.5 827 60.7 | 129 925 253 20 1 161 563 434 172 10.4 33.0 143 310
Depth 66.8 86.6 606 [206 913 270 92 195 569 547 169 152 371 157 33.1
RGBD 692 812 595|225 870 300 211 179 524 445 151 195 360 173 330
SNetFuse 67.6 859 60.7 | 222 910 286 182 192 562 512 162 122 370 174 336
TNetFuse 673 8.8 606|173 921 280 166 193 575 538 17.7 185 384 189 344
NoSNet 673 844 595[19.8 945 281 07 154 508 432 157 11.0 319 7.7 290
GTSNet 644 925 613|223 945 320 276 227 584 589 248 280 494 298 408

! Guedes et al. did not provide class-wise results.
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Figure 6: Qualitative Results on NYUv2 Dataset. We show the qualitative results generated by
double-branch TNetFuse on NYUv2 Dataset. Compared with the results of SSCNet [[I]], SATNet
gives more accurate semantic scene completions such as the windows and pictures on the wall.

camera positions. Song et al. [T]] has provided a subset of SUNCG, made up of depth images and
their volumes, so we call it SUNCG-D. Besides, we generate another subset SUNCG-RGBD, made
up of RGB-D images and their volumes. SUNCG-D consists of 139368 training samples and 470
testing samples, while SUNCG-RGBD consists of 13011 training samples and 499 testing samples.

Although the SUNCG dataset is synthetic, the evaluation on the SUNCG dataset is quite significant.
Considering that the limited number of models in the NYUv2 dataset might result in memorizing
models, experiments in the large-scale 3D scene repository, i.e. SUNCG-D and SUNCG-RGBD,
could relieve this issue to some degree.

4.1.2 Metric

‘We mainly evaluate our framework with intersection over union (IoU) between our predictions and
ground truth, and two tasks are considered: scene completion and semantic scene completion. For the
former, we treat all voxels as binary predictions, i.e., occupied or non-occupied. For the latter, we pay
attention to IoUs of each class and average them to get the mean IoU of semantic scene completion.

4.2 Experimental Results

4.2.1 Comparison to Alternative Approaches

Comparison on NYUv2 dataset. Table [I] presents the semantic scene completion results on
NYUv2 dataset with comparison to some alternative approaches. Lin et al. [29] uses 3D bounding
boxes to approximate objects, while Geiger et al. [26] retrieves 3D models to find the best matching
to represent the object. Song et al. [[1]] proposes SSCNet to predict volumetric occupancy and class
labels simultaneously by a single depth image. Guedes et al. 6] utilizes two SSCNets for RGB and



Table 2: Semantic scene completion results on SUNCG-D dataset.

Scene completion Semantic scene completion
method prec. recall IoU | ceil. floor wall win. chair bed sofa table tvs. furn. objs. avg.
Song [1] 763 952 735963 849 568 282 213 560 527 337 109 443 254 464
Depth 80.7 965 785|979 825 577 585 451 784 723 473 457 671 552 643

Depth (w/oi) | 77.7 95.1 749|972 809 527 444 336 69.6 625 340 255 490 393 535
Depth (w/oa) | 80.9 953 780 | 97.8 821 568 574 411 726 713 457 440 603 519 619
NoSNet 792 945 758|975 808 567 294 330 615 650 344 288 502 380 523

Table 3: Semantic scene completion results on SUNCG-RGBD dataset.

Scene completion Semantic scene completion
method prec. recall ToU | ceil. floor wall win. chair bed sofa table tvs. furn. objs. avg.
Song [1] 435 907 415]649 60.1 576 252 255 404 379 231 298 457 47 377
Depth 523 927 502625 578 486 585 244 465 504 269 411 40.7 202 434
RGBD 49.8 943 483 | 59.0 450 460 50.6 249 420 490 268 40.8 46.6 224 412
SNetFuse 56.7 917 539|655 60.7 503 564 26.1 473 437 30.6 372 449 30.0 448
TNetFuse 539 952 526|606 573 532 527 274 468 533 28.6 41.1 44.1 290 449

Depth (w/o 1) 492 938 47.6 | 454 573 480 384 203 369 366 182 267 366 152 345
RGBD (w/oi) | 50.7 94.6 494 | 475 552 50.1 413 225 413 444 228 337 407 161 378
Depth (w/oa) | 50.9 928 49.0 | 65.7 462 483 585 254 470 469 258 342 388 20.1 415
RGBD (w/oa) | 483 948 47.1 | 641 51.0 451 488 237 41.1 425 201 41.7 344 243 397
NoSNet 50.8 928 48.8 | 66.6 56.7 41.7 30.6 227 47.1 364 221 252 307 134 357
GTSNet 534 950 520|637 556 480 61.8 339 513 574 380 436 485 288 482

depth respectively and combines the outputs of two SSCNet branches by concatenation. However,
[6]] directly processes low-resolution RGB scene surface in 3D space, resulting in losing lots of
details. Garbade et al. [24] processes RGB by a series of 2D convolutions which is similar to our
SNet, but directly follows SSCNet for depth. For SATNet, we experiment with four implementations:
single-branch for depth input (Depth), single-branch for RGB-D input (RGBD), double-branch
SNetFuse for RGB-D input (SNetFuse) and double-branch TNetFuse for RGB-D input (TNetFuse).
Besides, we further do some ablation studies and discuss them in Sec. [4.2.2]

Compared to the other approaches in Table[I] the SATNet variants have the overall highest accuracy.
For a single depth input, our approach produces more accurate predictions (Depth 33.1% vs. Song et
al. [[L] 30.5%). For RGB-D input, our approach gets even higher IoU by double-branch TNetFuse
(TNetFuse 34.4% vs. Garbade et al. [24] 31.0%). In addition, for each category, we also acquire
generally higher IoUs. Thus, 2D semantic segmentation for depth or RGB can promote the final
completion. Figure [6] shows the qualitative results, where we complete six different scenes via
double-branch TNetFuse and compare the results with SSCNet. Well as SSCNet works for many
cases, it fails in the objects which are hard to distinguish from depth. For instance, SSCNet mistakes
the television as another object in the second row of Figure[6] and fails to complete the pictures on
the wall in the third row. In contrast, SATNet leverages RGB to overcome this difficulty.

Comparison on SUNCG dataset. Table[2]and Table [3|presents the quantitative results on SUNCG-
D and SUNCG-RGBD dataset respectively. We mainly compare our framework with the benchmark
approach Song et al. [1]], because other approaches do not provide source data on SUNCG or source
code. It can be seen that for the depth input, SATNet yields higher IoU for both SUNCG-D and
SUNCG-RGBD datasets by 17.9% and 5.7% respectively, and the effect will be more prominent
for the RGB-D input. Besides, the less noisy measurement on SUNCG dataset accounts for more
accurate scene completions and higher mean IoU of semantic scene completion on SUNCG dataset
than on NYUv2 dataset. We further do a lot of extra ablation studies which are detailed in Sec. £.2.2]

4.2.2 Ablation Study

Is disentangling semantic segmentation helpful? [1] has proved that the semantic will help scene
completion. Moreover, we intend to demonstrate that disentangling semantic segmentation is much
more helpful for semantic scene completion, by means of presenting several ablation studies. Firstly,
to exclude the effect of different inputs, we compare with [1]] for the single depth input and compare
with [6}24] for the RGB-D input. Whatever input is provided, SATNet has better performance on both
NYUv2 and SUNCG dataset. Secondly, to exclude the effect of the network structure, we maintain
the same structure with SATNet but do not initialize SNet (represented as (w/o 1)) with the weights
trained on the semantic segmentation task. We examine in two single-branch situations, where SNet
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Figure 9: The corrections made by the TNet.

is provided with a depth image (Depth (w/o 1)) or an RGB image (RGBD (w/o i)). As shown in Table
[2]and Table[3] the network with initialization has higher performance than that without initialization.
Thirdly, we find the explicit semantic segmentation could accelerate the speed of convergence. Figure
shows the loss of completion with 2D semantic segmentation initialization descends faster than
that without initialization. Finally, to demonstrate disentangling semantic segmentation is helpful,
Table [T and Table 3] show the groundtruth semantic segmentation (GTSNet) could generate better
completions than RGB or depth semantic segmentation, and much better than those without semantic
segmentation (NoSNet).

What is the effect of SNet? By reason that disentangling semantic segmentation is helpful, SNet
plays an important role in generating semantic segmentation from various inputs. Moreover, in this
part, we intend to probe to what extent the semantic segmentation benefits semantic scene completion.
Figure|[8]shows the relationship of the average IoU and the segmentation accuracy. While the accuracy
of semantic segmentation is improved, the average IoU of semantic scene completion is bumped
up. When the accuracy of segmentation reaches 60%, other parts instead of SNet would become
the bottleneck and the average IoU of completion suffers slow growth. Whatever, better semantic
segmentation always results in better semantic scene completion.

What is the effect of TNet? Fed with semantic scene surfaces, TNet generates semantic scene
completions. For the purpose of accurate completions, TNet is supposed to not only leverage semantic
segmentation to assist completion, but also correct the mistakes made in the segmentation. Table
M) indicates the number and the ratio of correct/wrong completed voxels vary with correct/wrong
segmented pixels (the pixels correspond to the voxels on the surface of the scene by the 2D-3D
reprojection layer). As Tabled]shows, when the segmentation is correct, the probability of correct
completion is 79%. When the segmentation is wrong, TNet is able to correct 55% mistakes occurred
in the segmentation. To make the process of correction clear, Figure[9]shows some sensible corrections
made by the TNet.

Is aggregating multiscale features useful? As ASPP has attained great success in semantic seg-
mentation, we intend to confirm that there is also its place in semantic scene completion. Hence,



SNetFuse TNetFuse

The result of semantic scene completion

time for training (s/iter) 0.9 1.3

Correct Wrong time for testing (s/iter) 0.2 1.3

The result o  COTTECt 445514 (19%) 119445 (21%) memory for training (GB) 73 137
semantic memory for testing (GB) 2.2 3.5
SCEMENLON Wrong 109636 (55%) 89272 (45%) storage of parameters (GB) 1.1 1.2

Table 4: The number and the ratio of cor- Table 5: Time and memory consumption
rect/wrong completed voxels vary with the cor-  for two double-branch fusions (SNetFuse and
rect/wrong segmented pixels. TNetFuse).

we compare the results with and without ASPP (represented as (w/o a)) in SATNet. Similarly, we
examine on both depth input (Depth (w/o a)) and RGB-D input (RGBD (w/o a)). On SUNCG-D
dataset, ASPP boosts IoUs in every class overall and yields 2.4% performance improvement averagely.
On SUNCG-RGBD dataset, ASPP also brings 1.9% and 1.5% performance improvement for depth
input and RGB-D input, respectively.

Is there any difference for different inputs? Although the mean IoU of single-branch RGB-D
input and depth input on NYUv2 dataset are approximately equal, we find SATNet has different
preferences in terms of two types of inputs. For the real scene dataset NYUv2, the IoU of each
category differs. RGB-D inputs promote completing objects with unique colors and textures, such as
windows and televisions; while depth inputs promote completing objects with clear shapes, such as
beds and sofas. For the synthetic dataset SUNCG, due to the inauthentic RGB images, objects with
large contrast will be overwhelmingly better, such as furniture and objects. Furthermore, the result
of double-branch SNetFuse is better than single-branch RGB-D or depth input on both datasets, on
account of more accurate semantic segmentation by RGB-D than by a single RGB or depth.

Is there an absolutely best fusion way? To answer this question, we take some extra metrics into
account. Table [5| presents time and memory consumption for two fusions. They have approximately
equal number of network parameters, but TNetFuse is much slower than SNetFuse. In fact, the
time-consuming 3D convolutions account for the slow speed of TNet and numerous 3D feature maps
account for its large memory consumption. Hence, we should choose the fusion approach that suits
the actual demands, even though TNetFuse achieves higher performance indeed.

Is it possible to evolve SATNet? In order to demonstrate the evolvability of SATNet, we improve
SATNet by individually enhancing the two subtasks. (1) Progress in SNet. Figure [§] shows what
will happen if SNet produces more accurate segmentation. And the improvement in semantic
segmentation will boost semantic scene completion to different extent. (2) Progress in TNet. In
the previous discussion, we have shown that ASPP benefits semantic scene completion, which is an
example that more effective components in TNet account for higher performance on completion.

Limitations. We do not discuss how the volumetric resolution influences semantic scene com-
pletion, owing to much larger memory requirement for large 3D volume. Intuitively speaking,
low-resolution volumes might make some objects appear strange and restrict the effect. Moreover, to
some extent, disentangling semantic segmentation from semantic scene completion is a recommen-
dation given by us. It might be more effective and valuable to allow the network to spontaneously
decide what subtasks it should disentangle.

5 Conclusion

In this paper, we propose SATNet, a disentangled semantic scene completion framework. It consists
of SNet for 2D semantic segmentation, a 2D-3D reprojection layer, and TNet for semantic scene com-
pletion. We provide single-branch and double-branch implementations within the SATNet framework,
which demonstrates the SATNet framework is effective, extensible and evolvable. Experimental
results show SATNet outperforms the state-of-the-art approaches.
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