
Curry-Howard-Lambek Correspondence

Subashis Chakraborty

August 9,2011

List of Tables

1 General Formulation . 2
2 Correspondence between Proof System and Programming Side 2
3 Correspondence between natural deduction and lambda calculus 9

List of Figures

1 Gentzen’s LJ Sequent calculus . 3
2 Axioms and Inference rules . 4
3 Rules for Cut-elimination . 5
4 Rules for Term Formation in λ-calculus . 6
5 Formation Rules in λ̄-calculus . 8

1 Introduction

This paper describes the equivalence of proof sytems (in particular sequent calculi),typed Λ -calculi, and
Cartesian closed categories. This is often called Curry-Howard-Lambek correspondence. In order to do this,
the paper covers the basic material on proof sytems, typed Λ -calculi and Cartesian closed categories. It
defines sequent calculus as the proof system and also gives a short description of natural deduction. Then
the paper defines typed- Λ -calculi. Then it proves the correspondence between sequent calculi and typed Λ
-calculi which is generally known as Curry-Howard correspondence. After that the paper gives the definition
of Cartesian closed category. Then the equivalence of Cartesian closed categories and typed Λ -calculi and
proof sytems is proved.

2 Proof Sytem

The Curry-Howard correspondence,in general, is a correspondence between formal proof calculus and type
systems for models of computation.It can be divided into two correspondences. One at the level of formulas
and types that is independent of which particular system or model of computation is considered, and one
at the level of proofs and programs which, this time, is specific to the particular choice of proof system and
model of computation considered.

At the level of formulas and types, the correspondence says that implication behaves the same as a func-
tion type, conjunction as a ”product” type(this may be called a tuple, a struct,a list, or some other term
depending on the language), disjunction as a sum type(this type may be called a union), the false formula
as the empty type and the true formula as the singleton type(whose sole member is null object). Quantifiers
correspond to dependent products or sums. This is summarized in the following Table1. At the level of
proof systems and model of computations, the correspondence mainly shows the identity of structure, first

1

Logic side Programming side
universal quantification dependent product type
existential quantification dependent sum type

implication function type
conjunction product type
disjunction sum type
true formula unit type
false formula bottom type

Table 1: General Formulation

between some particular formulationsof systems known as Hilbert-style deduction system and combinatory
logic, and , secondly, between some particular formulations of systems known as natural deduction and
lambda calculus.

Logic side Programming side
Hilbert-style deduction system type system for combinatory logic

Natural deduction type system for Λ-calculi
Sequent calculi (Herbelin Version) type system for Λ̄-calculi

Table 2: Correspondence between Proof System and Programming Side

2.1 Natural Deduction

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed
by inference rules closely related to the ”natural” way of reasoning. This contrasts with the axiomatic
systems which instead use axioms as much as possible to express the logical laws of deductive reasoning.

2.2 Gentzen’s LJ Sequent calculus

Natural deduction in its modern form was independently proposed by the German mathematician Gentzen in
1935, in a dissertation delivered to the faculty of mathematical sciences of the university of Gttingen.Gentzen
was motivated by a desire to establish the consistency of number theory, and he found immediate use for his
natural deduction calculus. He was nevertheless dissatisfied with the complexity of his proofs, and in 1938
gave a new consistency proof using his sequent calculus.In proof theory and mathematical logic, sequent
calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The
first sequent calculi, systems LK and LJ, were introduced by Gerhard Gentzen in 1934 as a tool for studying
natural deduction in first-order logic (in classical and intuitionistic versions, respectively).

The main idea in this Gentzen’s Sequent calculus is that, a sequent Γ ` ∆ consists of two finite multi-
sets Γ and ∆ of formula, and that rater than having introduction and elimination rules, we have rules
introducing a connective on the left or on the right of a sequent. A first version of such a system for clas-
sical propositional logic is given next. In this rules Γ and ∆ stand for possibly empty finite multisets of
propositions. The inference rules for this Sequent calculus is giiven in the Figure1.

Note the perfect symmetry of the left and right rules. If one wants to deal with the extended language
containing also ⊥, one needs to add the axiom ⊥,Γ ` ∆.

One might be puzzled and even concerned about the presence of the contraction rule. Indeed, one might
wonder whether the presence of this rule will not cause provability to be undecidable. This would certainly

2

A,Γ ` ∆, A
A,A,Γ ` ∆
A,Γ ` ∆

contL
Γ ` ∆, A,A
Γ ` ∆, A

contR

A,B,Γ ` ∆
A ∧B,Γ ` ∆

∧L
Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B
∧R

A,Γ ` ∆ B,Γ ` ∆
A ∨B,Γ ` ∆

∨L
Γ ` ∆, A,B

Γ ` ∆, A ∨B
∨R

Γ ` ∆, A B,Γ ` ∆
A ⊃ B,Γ ` ∆

⊃L
A,Γ ` ∆, B

Γ ` ∆, A ⊃ B
⊃R

Γ ` ∆, A
¬A,Γ ` ∆

¬L
A,Γ ` ∆

Γ ` ∆,¬A
¬R

Figure 1: Gentzen’s LJ Sequent calculus

be quite bad, since we are only dealing with propositions! Fortunately, it can be shown that the contraction
rule is redundant for classical propositional logic. But then, why include it in the first place? The main
reason is that it cannot be dispensed with in intuitionistic logic, or in the case of quantified formula. Since we
would like to view intuitionistic logic as a subsystem of classical logic, we cannot eliminate the contraction
rule from the presentation of classical systems. Another important reason is that the contraction rule plays
an important role in cut elimination. Although it is possible to hide it by dealing with sequents viewed as
pairs of sets rather than multisets, we prefer to deal with it explicitly.Finally, the contraction rule plays a
crucial role in linear logic, and in the understanding of the correspondence between proofs and computation,
in particular strict versus lazy evaluation.

2.3 Herbelin LJT Sequent calculus

2.3.1 Formulas and sequents

Definition 2.1. The set of formulas is an inductive structure defined by the following grammar where X
ranges over VF .

A ::= X|A −→ A

We use the letters A,B,C, ... to denote formulas.

Definition 2.2. An environment is a set of formulas. It may occur several times the same formula in an
environment but each time with a different associated name.

We use the letters Γ,∆,Ω, ... to denote sets of named formulas.

Definition 2.3. In a sequent, written under the form Γ;Π ` A, the place on the right of the semicolon is
called the stoup. The stoup may be either empty or containing a single formula. Π is such a notation to
express ”nothing or a formula”.

Thus, there are two kinds of sequents in LJT. Those with an empty stoup and those with a non empty
stoup.The inference rules of LJT are given in the Figure 2.

The cut elimination rules for Herbelin LJT Sequent calculus is given in Figure3.

3 Typed λ -Calculus

The λ -calculus was one of the first descriptions produced of computable functions. It grew out of an attempt
by Alonso Church to provide a foundation for mathematics using functions as a basic building block. The

3

• The axioms and inference rules of the system:

Γ;A ` A Ax
Γ, A;A ` B
Γ, A;` B Cont

Γ;` A Γ;B ` C
Γ;A −→ B ` C IL

Γ, A;` B
Γ;` A −→ B

IR

Γ;Π ` A Γ;A ` B
Γ;Π ` B CutH

Γ;` A Γ, A; Π ` B
Γ;Π ` B CutM

• Extension to disjunction,injections and the case operator:
Γ;` A

Γ;` A ∨B
∨r1

Γ;` B
Γ;` A ∨B

∨r2

Γ, A;` C Γ, B;` C
Γ;A ∨B ` C

∨l

• Extension to conjunction,pair,projections and the splitting operator:
Γ;` A Γ;` B

Γ;` A ∧B
∧r

Γ, A;` C
Γ;A ∧B ` C

∧l1

Γ, B;` C
Γ;A ∧B ` C

∧l2
Γ, A,B;` C
Γ;A ∧B ` C

∧l0

Figure 2: Axioms and Inference rules

atempt failed due to a form of Russell’s paradox(which gave fixed point combinators). Church decided to
extract a part of the calculus which worked perfectly well even if it did not achieve his original objective.

The λ -calculus is an algebra with a binary ”application” operation and an ”abstraction” operator. The
application is sometimes written f •x (pronounced ”f applied to x”) when we wish to emphasize the presence
of a binary operation.A typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote
anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are
assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below).
From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calcu-
lus but from another point of view, they can also be considered the more fundamental theory and untyped
lambda calculus a special case with only one type.

Typed lambda calculus are foundational programming languages and are the base of typed functional pro-
gramming languages such as ML and Haskell and, more indirectly, typed imperative programming languages.
Typed lambda calculi play an important role in the design of type systems for programming languages; here
typability usually captures desirable properties of the program, e.g. the program will not cause a memory
access violation. Typed lambda calculus are closely related to mathematical logic and proof theory via the
CurryHoward isomorphism and they can be considered as the internal language of classes of categories, e.g.
the simply typed lambda calculus is the language of Cartesian closed categories (CCCs) (via Curry-Howard-
Lambek correspondence).

The terms in the λ -calculus are formed by the rules given in Figure4.

3.1 The λ̄-calculus

3.1.1 The λ̄-expressions

λ̄-expressions are comprised of λ̄-terms and lists of λ̄-terms. Actually, lists of λ̄-terms mean lists of arguments.
These are dependent to each other.

Definition 3.1.

4

Γ, A;` B
Γ;` A −→ B

IR
Γ;` A Γ;B ` C
Γ;A −→ B ` C IL

Γ;` C CutH LJT−−−−→

Γ;` A Γ, A;` B
Γ;` B CutM Γ;B ` C

Γ;` C CutH

Γ, A;` B
Γ;` A −→ B

IR Γ;A −→ B ` A −→ B
Ax

Γ;` A −→ B
CutH LJT−−−−→

Γ, A;` B
Γ;` A −→ B

IR

Γ, B;B ` A
Γ, B;` A Cont Γ, B;A ` C

Γ, B;` C CutH LJT−−−−→

Γ, B;B ` A Γ, B;A ` C
Γ, B;B ` C CutH

Γ, B;` C Cont

Γ;` D Γ;B ` A
Γ;D −→ B ` A IL Γ;A ` C

Γ;D −→ B ` C CutH LJT−−−−→
Γ;` D

Γ;B ` A Γ;A ` C
Γ;B ` C CutH

Γ;D −→ B ` C IL

Γ;A ` A Ax Γ;A ` C
Γ;A ` C CutH LJT−−−−→ Γ;A ` C

Γ;` A
Γ, A;A ` C
Γ, A;` C Cont

Γ;` C CutM LJT−−−−→
Γ;` A

Γ;` A Γ, A;A ` C
Γ;A ` C CutM

Γ;` C CutH

Γ, B;` A
Γ, A,B;B ` C
Γ, A,B;` C Cont

Γ, B;` C CutM LJT−−−−→

Γ, B;` A Γ, A,B;B ` C
Γ, B;B ` C CutM

Γ, B;` C Cont

Γ;` A
Γ, A,B;` C

Γ, A;` B −→ C
IR

Γ;` B −→ C
CutM LJT−−−−→

Γ, B;` A Γ, A,B;` C
Γ, B;` C CutM

Γ;` B −→ C
IR

Γ;` A
Γ, A;` B Γ, A;C ` D

Γ, A;B −→ C ` D IL

Γ;B −→ C ` D CutM LJT−−−−→

Γ;` A Γ, A;` B

Γ;` B
CutM

Γ;` A Γ, A; C ` D

Γ; C ` D
CutM

Γ; B −→ C ` D
IL

Γ;` A Γ, A;B ` B Ax

Γ;B ` B CutM LJT−−−−→ Γ;B ` B Ax

Figure 3: Rules for Cut-elimination

The set of λ̄-expressions are defined by

Term: t := (x l)|(λx.t)|(t ◦ l)|((t/x) . t)
Lists of arguments: l := []|[t :: l]|(l @ l)|l • [x := t]

Here the letters t, u, v, ... are used for terms and the syntactic expressions l, l′, ... are used for argument
lists. [] stands for the empty argument list. and [t :: l] stands for the term t to the list of arguments l, while
(l@l′) stands for the explicit concatenation of the lists l and l′ of arguments.

If we consider case operator, disjunction , injection , conjunction, pair, projections and the splitting op-
erator in this calculus then the new set of terms are defind by

Term: t := (x l)|(λx.t)|(t ◦ l)|((t/x) . t)|σ1(t)|σ2(t)|〈t, t〉
Lists of arguments: l := []|[t :: l]|(l @ l)|l • [x := t]|[〈(x)t|(x)t〉]|[〈x, x〉t]|[π1 :: l]|[π2 :: l]

The argument list [〈(x)t|(y)u〉] stands for a case operator. If we see it as the applicative context (.[〈(x)t|(y)u〉]),
then we can adopt the more expressive notation

5

x V ariable
x Term

Var

M Term N Term
MN Term

app

M Term x V ariable
λx.M Term

abst

Figure 4: Rules for Term Formation in λ-calculus

case . of

{
σ1(x) −→ t
σ2(y) −→ u

3.1.2 Reduction rules

• General rules:

(λx.u [v :: l]) r−−→ (((v/x) . u) l)
(λx.u []) r−−→ λx.u

((x l) l′) r−−→ ((x (l @ l′))
[u :: l] @ l′

r−−→ [u :: (l @ l′)]
[] @ l′

r−−→ l′

(v/x) . (x l) r−−→ (v l • [x := v])
(v/x) . (y l) r−−→ (y l • [x := v])

(v/x) . (λy.u) r−−→ λy.((v/x) . u)
[] • [x := v] r−−→ []

[u :: l] • [x := v] r−−→ [((v/x) . u) :: l • [x := v]]

• Extension to disjunction,injections and the case operator:

(inj1(t) [〈(x)u|(y)v〉]) r−−→ ((t/x) . u)
(inj2(t) [〈(x)u|(y)v〉]) r−−→ ((t/y) . v)

(v/z) . inj1(t)
r−−→ inj1((v/z) . t)

(v/z) . inj2(t)
r−−→ inj2((v/z) . t)

[〈(x)u|(y)v〉] • [z := w] r−−→ [〈(x)((w/z) . u)|(y)((w/z) . v)〉]
[〈(x)u|(y)v〉] @ l′

r−−→ [〈(x)(u ◦ l′)|(y)(v ◦ l′)〉]

• Extension to conjunction,pair,projections and the splitting operator:

(〈t, u〉 [π1 :: l]) r−−→ (t ◦ l)
(〈t, u〉 [π2 :: l]) r−−→ (u ◦ l)

(〈t, u〉 [< x, y > v]) r−−→ ((u/y) . ((t/x) . v))
(v/z) . 〈t, u〉 r−−→ 〈((v/z) . t), ((v/z) . u)〉

[π1 :: l] • [z := v] r−−→ [π1 :: l • [z := v]]
[π2 :: l] • [z := v] r−−→ [π2 :: l • [z := v]]

[〈x, y〉v] • [z := v] r−−→ [〈x, y〉(v[z := v])]
[π1 :: l]@l′ r−−→ [π1 :: l@l′]
[π2 :: l]@l′ r−−→ [π2 :: l@l′]

[〈x, y〉v]@l′ r−−→ [〈x, y〈(vl′)]

6

• Extension to quantifiers and to product and sigma operators:

(λr.u[a :: l]) r−−→ (u′l)
(〈a, t〉 [〈r, x〉u]) r−−→ (u l)

(λr.u)[z := v] r−−→ λr.(u[z := v])
〈a, t〉 [z := v] r−−→ 〈a, t [z := v]〉
[a :: l][z := v] r−−→ [a :: l[z := v]]

([〈r, x〉u])[z := v] r−−→ [〈r, x〉(u[z := v])]
[a :: l]@l′ r−−→ [a :: (l@l′)]

[〈r, x〉u]@l′ r−−→ [〈r, x〉(ul′)]

4 The assignment of proofs in LJT by λ̄-expressions

Definition 4.1. A declaration, written under the form x : A is the pair of a term variable name and a
formula.

Definition 4.2. Here the word environment is kept, to denote a sequence of declarations and we use the
same letters Γ,∆,Ω as before to denote them.

Definition 4.3. An applicative context is a list of arguments written under the form (.l) where . is a
special notational symbol. Also, We call hole declaration a formula written under the form . : A.

Definition 4.4. A judgement is something of the form Γ;Π ` t : A. In this writing Π is either nothing,
in which case t is a term, or a hole declaration in which case t is an applicative context.

The formation rules for λ̄-calculus are defined in Figure5.

5 Curry-Howard correspondence

The Curry-Howard correspondence is the direct relationship between computer programs and proofs in
constructive mathematics. It is a generalization of a syntactic analogy between systems of formal logic and
computational calculus that was first discovered by the American mathematician Haskell Curry and logician
William Alvin Howard.

At the very beginning, the Curry-Howard correspondence is

1) the observation in 1934 by Curry that the types of the combinators could be seen as axiom-schemes
for intituitionistic implicational logic.

2) the observation in 1958 by Curry that a certain kind of proof system, referred to as Hilbert-style de-
duction systems, coincides on some fragment to the typed fragment of a standard model of computation
known as combinatory logic.

3) the observation in 1969 by Howard that another, more ”high-level” proof system, referred to as nat-
ural deduction, can be directly interpreted in its intutionistic version as a typed variant of the model of
computation known as lambda calculus.

In-other words, the Curry-Howard correspondence is the observation that two families of formalisms which
had seemed unrelated-namely, the proof systems on one hand, and the models of computation on the other-
were, in the two examples of Curry and Howard, infact structurally the same kinds of objects.

If one now abstracts on the pecularities of this or that formalism, the immediate generalization is the

7

•Applicatiive context formation rules

Γ; . : A ` (. []) : A Ax

Γ;` u : A Γ; . : B ` (. l) : C
Γ; . : A −→ B ` (.[u :: l]) : C

IL

Γ; . : C ` (. l) : A Γ; . : A ` (. l′) : B
Γ; . : C ` (. (l @ l′)) : B

CutH

Γ;` u : A Γ, x : A; . : C ` (. l) : B
Γ; . : C ` (. l • [x := u]) : B

CutM

•Term Formation rules

Γ, x : A; . : A ` (. l) : B
Γ, x : A;` (x l) : B Cont

Γ, x : A;` u : B
Γ;` λx.u : A −→ B

IR

Γ;` u : A Γ; . : A ` (. l) : B
Γ;` (u ◦ l) : B

CutH

Γ;` u : A Γ, x : A;` v : B
Γ;` (u/x) . v : B

CutM

•Extension to disjunction,injections and the case operator:

Γ;` u : A
Γ;` σ1(u) : A ∨B

∨r1

Γ;` v : B
Γ;` σ2(v) : A ∨B

∨r2

Γ, x : A;` u : C Γ, y : B;` v : C
Γ; . : A ∨B ` ∆; (.[〈(x)u|(y)v〉] : C

∨l

• Extension to conjunction,pair,projections and the splitting operator:

Γ;` u : A Γ;` v : B
Γ;` 〈u, v〉 : A ∧B

∧r

Γ, . : A;` (.l) : C
Γ; . : A ∧B ` ∆; (.[π1 :: l]) : C

∧l1

Γ, . : B;` (.l) : C
Γ; . : A ∧B ` ∆; (.[π2 :: l]) : C

∧l2

Γ, x : A, y : B;` u : C
Γ; . : A ∧B ` ∆; (.[〈x, y〉u]) : C

∧l0

Figure 5: Formation Rules in λ̄-calculus

8

Intutionistic implicational natural deduction Lambda calculus rules

Γ1,α,Γ2`α
Ax

Γ1,x:α,Γ2`x:α

Γ,α`β
−→ I Γ,x:α`t:β

Γ`λx.t:α−→β

Γ`α−→βΓ`α
Γ`β

−→ E Γ`t:α−→βΓ`u:α
Γ`tu:β

Table 3: Correspondence between natural deduction and lambda calculus

following claim: a proof is a program, the formula it provides is a type for the program. Most informally,
this can be seen as an analogy that states that the return type of a function (i.e., the type of values returned
by a function) is analogous to a logical theorem, subject to hypotheses corresponding to the types of the
argument values passed to the function; and that the program to compute that function is analogous to
a proof of that theorem, this sets a form of logic programming on a rigorous foundation: proofs can be
represented as programs, and especially as lambda terms, or proofs can be run.

The correspondence has been the starting point of a large spectrum of new research after its discovery,
leading in particular to a new class of formal systems designed to act both as a proof system and as a typed
functional programming language.

Definition 5.1. The set of formulas is an inductive structure defined by the following grammar where X
ranges over VF .

A ::= X|A −→ A

We use the letters A,B,C, ... to denote formulas.

The converse direction is to use a program to extract a proof, given its correctness - an area of research
which is closely releated to proof-carrying code. this is only feasible if the programming language the program
is written for is very richly typed: the development of such tyep systems has partly motivated by the wish
to make the Curry-Howard correspondence practically relevant.

5.1 Correspondence between natural deduction and lambda calculus

After Curry emphasized the syntactic correspondence between Hilbert-style deduction and combinatory
logic,Howard made explicit in 1969 a syntactic analogy between the programs of simply-typed lambda calcu-
lus and the proof of natural deduction. Below, the left-hand side formalizes intutionistic natural deduction as
a calculus of sequents(the use of sequents is standard in discussions of the Curry-Howard isomorphism as it
allows the deductioin rules to be stated more cleanly) with implicit weakening and the right hand side shows
the typing rules of lambda calculus. in the left-hand side,Γ, Γ1 and Γ2 denote ordered sequences of formulas
while in the right hand side, they denote sequences of named formulas with all names different.The corre-
spondence between Intutionistic implicational natural deduction and lambda calculus are shown in Table3.

To paraphrase the correspondence, proving Γ ` α means having a program that, given values with the
types listed in Γ,manufactures an object of type α. An axiom corresponds to the instroduction of a new
variable with a new, unconstrained type, the −→ I rule corresponds to function abstraction and −→ E rule
corresponds to function application. Observe that the correspondence is not exact if the context Γ is taken to
be a set of formulas as e.g., the λ -terms λx.λy.x and λx.λy.y of type α −→ α −→ α would not be distinguished
in the correspondence.

Example 5.1. Proof and Program correspondence: Here a proof of (β −→ α) −→ (γ −→ β) −→ γ
−→ α in natural deduction and show how it can be interpreted as the λ - expression λa.λb.λg.(a(bg)) of type
(β −→ α) −→ (γ −→ β) −→ γ −→ α.

9

a : β −→ α, b : γ −→ β, g : γ ` a : β −→ α

a : β −→ α, b : γ −→ β, g : γ ` b : γ −→ β a : β −→ α, b : γ −→ β, g : γ ` g : γ

a : β −→ α, b : γ −→ β, g : γ ` b g : β

a : β −→ α, b : γ −→ β, g : γ ` a (b g) : α

a : β −→ α, b : γ −→ β ` λg.a (b g) : γ −→ α

a : β −→ α ` λb.λg.a (b g) : (α −→ β) −→ γ −→ α

` λa.λb.λg.a (b g) : (β −→ α) −→ (α −→ β) −→ γ −→ α

5.2 Correspondence between Herbelin LJT Sequent calculus and λ̄-calculus

5.2.1 Correspondence between Cut elimination and reduction rules

Each cut elimination rule corresponds to the reduction rules described in the λ̄-calculus. The first cut
elimination rule is

Γ, A;` B
Γ;` A −→ B

IR
Γ;` A Γ;B ` C
Γ;A −→ B ` C IL

Γ;` C CutH LJT−−−−→

Γ;` A Γ, A;` B
Γ;` B CutM Γ;B ` C

Γ;` C CutH

After assignemnt of proofs in calculus:

Γ, a : A;` t : B

Γ;` (λa.t) : A −→ B
IR

Γ;` t1 : A Γ; . : B ` (.l) : C

Γ; . : A −→ B ` (.[t1 :: l]) : C
IL

Γ;` (λa.t)[t1 :: l] : C
CutH LJT−−−−−→

Γ;` t1 : A Γ, a : A;` t : B

Γ;` t[a := t1] : B
CutM

Γ; . : B ` (.l) : C

Γ;` (t[a := t1]l) : C
CutH

After assigning of proofs in calculus, it corresponds to the first reduction rule described in the 3.1.2.

(λx.u [v :: l]) r−−→ (u[x := v] l)

10

5.2.2 Proof Example

A,A −→ B,B −→ C;A ` A Ax

A,A −→ B,B −→ C;` A Cont
A,A −→ B,B −→ C;B ` B Ax

A,A −→ B,B −→ C;A −→ B ` B IL

A,A −→ B,B −→ C;` B Cont

A,A −→ B,B,B −→ C;B ` B Ax

A,A −→ B,B,B −→ C;` B Cont
A,A −→ B,B,B −→ C;C ` C Ax

A,A −→ B,B,B −→ C;B −→ C ` C IL

A,A −→ B,B,B −→ C;` C Cont

A,A→ B,B −→ C;` C CutM

A −→ B,B −→ C;` A −→ C
IR

5.2.3 Proof Example with Type Assignment

a : A, x : A −→ B, y : B −→ C; . : A ` .[] : A
Ax

a : A, x : A −→ B, y : B −→ C;` a[] : A
Cont

a : A, x : A −→ B, y : B −→ C; . : B ` .[] : B
Ax

a : A, x : A −→ B, y : B −→ C; . : A −→ B ` [a[]] : B
IL

a : A, x : A −→ B, y : B −→ C;` x[[a]] : B
Cont

a : A, x : A −→ B, b : B, y : B −→ C; . : B ` .[] : B
Ax

a : A, x : A −→ B, b : B, y : B −→ C;` b[] : B
Cont

a : A, x : A −→ B, b : B, y : B −→ C; . : C ` .[] : C
Ax

a : A, x : A −→ B, b : B, y : B −→ C; . : B −→ C ` [b[]] : C
IL

a : A, x : A −→ B, b : B, y : B −→ C;` y[b[]] : C
Cont

a : A, x : A −→ B, y : B −→ C;` ((x[a[]]/b) . (y[b[]])) : C
CutM

x : A −→ B, y : B −→ C;` λa.((x[a[]]/b) . (y[b[]])) : A −→ C
IR

11

6 Cartesian closed categories

Definition 6.1. A category G is called a cartesian closed category if it satisfies the following:

[CCC-1] There is a terminal object 1.

[CCC-2] Each pair of objects A and B of C has a product A × B with projections p1 : A × B −→ A and
p2 : A×B −→ B.

[CCC-3] For every pair of objects A and B, there is an object [A −→ B] and an arrow eval: [A −→ B]× A
−→ B with the property that for any arrow f : C ×A −→ B, there is a unique arrow λf : C −→ [A
−→ B] such that the composite

C ×A
λf×A // [A −→ B]×A

eval //B

is f.

Example 6.1. The example of a cartesian closed category is the category of sets. For any sets A and B, [A
−→ B] is the set of functions from A to B, evalBA is the evaluation or apply function. In the case of Set,[A
−→ B] is HomSet(A,B).

7 Curry-Howard-Lambek correspondence

Joachim Lambek showed in the early 1970s that the proofs of intuitionstic propositional logic and the com-
binators of typed combinatory logic share a common equitional theory which is the one of cartesian closed
categories. The three way isomorphism between intuitionistic logic, typed lambda calculus and cartesian
closed category is called Curry-Howard-Lambek correspondence.

Given a typed λ -calculus L, the objects of the category C(L) are the types of L. An arrow from an object
A to an object B is an equivalence class of terms of type B with one free variable of type A (which need not
actually occur in the terms).

The equivalence relation is the least reflexive, symmetric,transitive relation induced by saying that two
such terms ∅(x) and ψ(y) are equvalent if ∅ and ψ are both of the same type, x and y are both of the same
type, x and y are both of the same type, x is substitutionable for y in ψ, and ∅(x) ={x} ψ(x), where ψ(x) is
obtained from ψ(y) by substituting x for every occurence of y.

The reason we need equivalence classes is that any two variables of the same type must correspond to
the same arrow, the identity, of the object to itself. If λxεAx : 1 −→ [A −→ A] is to name of the identity arrow
of A for any variable xεA, as is intuitively evident, then the arrow corresponding to a variable x of type A
must be the identity of A.

The equivalence relation of also akes two terms containing a variable fo type 1 equivalent(because of TL-10),
thus ensuring that 1 will be a terminal object of the category.

Suppose ∅ is a term of type B with at most one free variable x of type A and ψ is a term of type C
with atmost one free variable y of type B. Note that by replacing, if necessary, x by a variable that is not
bound in ψ, we can assume that ∅ is substitutable for y in ψ. We then define the composite of the corre-
sponding arrows to be the arrow which is the equivalence class of the term ψ(∅) obtained by substituting ψ
for x in ψ.

12

Example 7.1. Here a calculation can be exhibited that verifies one of the properties of a cartesian closed
category as an example of how the definition of C(L) works.

Let L be a typed λ-calculus. Define

Λ : HomC(L)(C ×A −→ B) −→ HomC(L)(C −→ [A −→ B])

as follows: for [∅(u)] : C ×A −→ B (so that u is a variable of type C ×A), Λ([∅(u)]) = λx∅((z, x)),where z is
a variable of type C and x is a variable of type A. Define

Γ : HomC(L)(C −→ [A −→ B]) −→ HomC(L)(C ×A −→ B)

as follows: for [ψ(z)] : C −→ [A −→ B],Γ([ψ(z)]) = ψ(proj1u)‘proj2u, where u is a variable of type C × A.
Then λ and Γ are inverse functions.

Here is one direction of the verification. The following calculation uses TL-18 and the fact that x does
not occur in ∅(z) because by definition of arrow in C(L), ∅(z) contains only one variable and that is not x.

λ(Γ(ψ(z))) = Λ(ψ(proj1u)‘proj2u) = λx(ψ(proj1(z, x))‘proj2(z, x)) =X λxψ(z)‘x =X ψ(z)

Theorem 7.2. Let C be a cartesian closed category with internal language L. Then C(L) is a category
equivalent to C.

They define what it means for languages to be equivalent and show that if you start with a typed λ
-calculus, construct the corresponding category, and then construct the internal language, the language and
the original typed λ -calculus are equivalent. They state this in a more powerful way in the language of
adjunctions.

7.1 The cartesian closed category generated by a typed λ-calculus

To show that the functor L(typed λ-calculus) is an equivalence of categories we shall obtain a functor C in
the opposite direction.

Given a typed λ-calculus L, we construct a cartesian closed category C(L) with weak natural numbers
object as follows:

• Object The objects of C(L) are the types of L.

• Arrow The arrows A −→ B of C(L) are (equivalence classes of) pairs (xεA, φ(x)),with x a variable of
type B with no free variables other than x. (Think of function x 7→ φ(x).)

Equality of arrows is defined by: (xεA, φ(x)) = (x′εA, ψ(x′)) if and only if φ(x) x= ψ(x) holds , where
x= abbreviates

{x}
= .

• Identity The identity arrow A −→ A is the pair (xεA, x)

• Composition The composition of (xεA, φ(x)) : A −→ B and (yεB, ψ(y)) : B −→ C is given by (xεA, ψ(φ(x))) :
A −→ C,ψ(x) having been substituted for y in ψ(y)

The cartesian closed structure of C(L) is obtained as follows:

©A ≡ (xεA, ∗),

13

πA,B ≡ (zεA×B, π(z)),

π′A,B ≡ (zεA×B, π′(z)),

(zεC, φ(z)), (zεC, ψ(z)) ≡ (zεC,< φ(z), ψ(Z) >),

(zεA×B,χ(z))∗ ≡ (xεA, λyεBχ(< x, y >)),

εC,A ≡ (yεCA ×A, εC,A(π(y), π′(y))).

C(L) has a weak natural numbers object:

0 ≡ (xε1, 0),

S ≡ (xεN, S(x)),

IB ≡ (wε(B ×BB)×N, I(π(π(w)), π′(π(w)), π′(w)))

It is easy to make C into a functor λ-Calc −→ CartN . Indeed, suppose φ : L −→ L′ is a translation, define
C(φ) : C(L) −→ C(L′) as follows:

If A is an object of C(L), that is , a type of L,C(φ)(A) = φ(A) is the corresponding type of L′, hence
an object of C(L′).

If f = (xεA, ϕ(x)) is an arrow A −→ B in C(L), that is, ϕ(x) is a term of type B in L,C(φ)(f) =
(φ(x)εφ(A), φ(ϕ(x))) is the correspondence arrow φ(A) −→ φ(B) in C(L′).

Proposition 7.3. C is a functor from λ-Calc to CartN .

Instead of adjoining an indeterminate arrow x : 1 −→ A to the cartesian closed C(L), one may adjoin a
‘parameter’ x of type A to the language L. To be precise , if L is a typed λ-calculus and x is a variable of
type A, one may form another language L(X) by adjoining the parameter x as follows:

L(x) has exactly the same types as L and also the same terms , except that x is no longer counted as
a variable. In other words, the closed terms of L(x) are terms φ(x) in L which contain no free variables

other than x. In the same spirit, x= in L(x) means
X∪{x}

= in L : just make sure that x is not in X.Some
dictionaries define a ‘parameter’ as a ‘varibale constant’. For us it is a variable kept constant.

Proposition 7.4. C(L)[x] ∼= C(L(x))

Proof. We show that C(L(x)) has the universal property of C(L)[x]

C(L)

F

��

Hx

zzuuuuuuuuu

C(L(x))
F ′

//____ A

The intermediate x : 1 −→ A is defined by (yε1, x). Hx is C of the inclusion of L into L(x), which may
necessitate some relabelling of variable.Suppose F : C(L) −→ A is any cartesian closed functor preserving
the weak natural numbers object, and given arrow b : 1 −→ F (A) in A, we claim that there is a unique such
functor F ′ : C(L(x)) −→ A such that F ′Hx = F and F ′x = b.

Indeed, put F ′(B) = F (B) for each object B of C(L), that is type in L. Suppose f = (yεB, ϕ(x, y)) is
any arrow B −→ C in C(L(x))toA,that is, ϕ(x, y) is any term of type C in L with free variables xεA and
yεB. Define F ′(f) : F (B) −→ F (C) in A as follows:

14

First note that ϕ(x, y) = ψ(y)ox holds, where ψ(y) is λxεAψ(x, y). Thus

f = εC,A < g, x ©B >

where g = (yεB, ψ(y)) : B −→ CA in C(L). Now define

F ′(f) = εF (C),F (A)〈F (g), b ©F (B)〉

.
That this definition has the right property is easily seen. Moreover it is clearly forced upon us, dince

F ′(g) = F (g) and F ′(x) = b.

We are going to establish the main theorem:

Theorem 7.5. The categories λ-Calc and CartN are equivalent, in fact CL ∼= id and LC ∼= id.

Proof. (i) Consider the natural transformation ε : CL −→ id defined for each A in CartN by ε(A) : CL(A)
−→ A as follows:

An object of CL(A) is a type of L(A), that is, an object of A. Put ε(A)(A) = A.

An arrow B −→ C in CL(A) has the form f = (yεB, ϕ(y)), where ϕ(y)εC in L(A). Put ε(A)(f) = the
unique arrow g : B −→ C such that gy

y
= ϕ(y), using functional completeness.

It is easily verified that ε(A) is an arrow in CartN . Moreover, in view of functional completeness, it establishes
a one-to-one correspondence between HomCL(A)(B,C) and HomA(B,C). Thus ε(A) is an isomorphism.

(ii) Consider the natural transformation η : id −→ LC defined for each L in λ-Calc by η(L) : L −→ LC(L) as
follows:

η(L)(A) ≡ A

η(L)(ε(x1, ..., xn)) ≡ (zε1, ε(x1, ..., xn))inC(L(x1, ..., xn))

Note that we have identified C(L)[x1, ..., xn] with C(L(x1, ..., xn)) as is justified by proposition 8.2. It
is easily verified that η(L) is an arrow in λ-Calc. To see that η(L) is an isomorphism, construct its inverse,
which sends (zε1, φ(z)) onto ϕ(∗)

References

[1] Hugo Herbelin, A λ-calculus structure isomorphic to sequent calculus structure,Computer science logic:
8th workshop, CSL ’94, Kazimierz, Poland, (September,1997).

[2] http : //en.wikipedia.org/wiki/Curry −Howardcorrespondence.

[3] J.Lambek and P.J.Scott, Introduction to higer order categorical logic.

[4] Michael Barr and Charles Wells, Category Theory For Computing Science,Third Edition(1992).

[5] Jean Gallier, Constructive Logics.Part 1: A Tutorial on Proof Systems and Typed Λ-calculi(May,1991).

15

