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Visual Sentiment Prediction based on

Automatic Discovery of Affective Regions
Jufeng Yang, Dongyu She, Ming Sun, Ming-Ming Cheng, Paul L. Rosin and Liang Wang

Abstract—Automatic assessment of sentiment from visual
content has gained considerable attention with the increasing
tendency of expressing opinions via images and videos online.
This paper investigates the problem of visual sentiment analysis,
which involves a high-level abstraction in the recognition process.
While most of the current methods focus on improving holistic
representations, we aim to utilize the local information, which is
inspired by the observation that both the whole image and local
regions convey significant sentiment information. We propose
a framework to leverage affective regions, where we first use
an off-the-shelf objectness tool to generate the candidates, and
employ a candidate selection method to remove redundant and
noisy proposals. Then a convolutional neural network (CNN) is
connected with each candidate to compute the sentiment scores,
and the affective regions are automatically discovered, taking the
objectness score as well as the sentiment score into consideration.
Finally, the CNN outputs from local regions are aggregated with
the whole images to produce the final predictions. Our framework
only requires image-level labels, thereby significantly reducing
the annotation burden otherwise required for training. This is
especially important for sentiment analysis as sentiment can be
abstract, and labeling affective regions is too subjective and
labor-consuming. Extensive experiments show that the proposed
algorithm outperforms the state-of-the-art approaches on eight
popular benchmark datasets.

Index Terms—Visual sentiment analysis, sentiment classifica-
tion, affective region, convolutional neural networks

I. INTRODUCTION

W ITH the increasing popularity of social networks, more

and more Internet users tend to express their opinions

with different media types [1]. Algorithms to identify senti-

ment can be helpful to understand such user behaviors [2].

In particular, understanding the sentiment in visual media

content (i.e., images, videos) has attracted increasing research

attention. Potential use of approaches developed for visual sen-

timent analysis is broad, including affective image retrieval [3],

aesthetic quality categorization [4], opinion mining [5], com-

ment assistant [6], etc.

Inspired by psychology and the principles of art, researchers

have investigated different groups of hand-crafted features

(e.g., color [7], [8], texture [9], [10], shape [11]) from image

level, with the goal of endowing computers with the capability
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Fig. 1. Images from popular affective datasets: (a) Twitter I [14] and (b)
Twitter II [17]. The bounding boxes indicate the local Affective Regions
labeled by users. As can be seen, sentiments are evoked by the affective
regions as well as the whole image appearance.

of perceiving sentiment in the same manner as humans. Instead

of designing visual features manually, Convolutional Neural

Network (CNN) can automatically learn deep representations

of images [12]. Several researchers have also applied CNN to

image sentiment classification [13]–[16] and demostrated the

superior performance of the deep features against hand-tuned

features for sentiment classification.

Visual sentiment analysis is inherently more challenging

than traditional recognition tasks, since it involves a much

higher level of abstraction and subjectivity in the human

recognition process [18]. Recognizing sentiments evoked by

images from social media is more difficult than many other

visual recognition tasks, e.g., object classification [19], scene

recognition [20], etc. It is necessary to take a rich set of

cues into consideration for visual sentiment prediction. Most

existing methods employing CNNs try to learn sentiment

representations from the global perspective of whole images,

whereas the visual sentiment can also be evoked from the local

regions within images [21]–[23]. Different from detecting

concrete visual objects [24], there are difficulties modeling

the sentiment due to the “affective gap” between the low-level

visual features and high-level sentiment [10].

Little work has paid close attention to the use of local

information for sentiment analysis. Li et al. [23] propose a

context-aware classification model based on a bilayer sparse

representation that simultaneously takes the local and global

context into account. However, this approach is limited by its

heavy dependence on the initial segmentation results to model

appearances of different objects. In addition, they suppose that
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all regions have the same weights for sentiment prediction,

which may go against the human attention theories that the

human vision system selectively processes parts of an image

in detail [25]. You et al. [22] try to match local image regions

with the descriptive visual attributes, aiming to discover the

specific-attribute regions, but lack generalization ability for

sentiment analysis.

To address these problems, we propose to leverage local

details as well as the global information for visual sentiment

analysis. We introduce a new notion named Affective Regions

(ARs), which contains two distinguishing characteristics:

1) an AR is a salient region and probably contains one or

more objects, which can attract people’s attention, and

2) an AR conveys significant sentiments.

Fig. 1 shows some ARs in popular datasets [14], [17]. As can

be seen, the visual sentiment can be induced from the ARs

within images. For example, in the fourth image of (a), the

sentiment is mostly evoked from the region of the bleeding

hand, while in the second image of (b), the beautiful leaf

rather than the gray stone conveys the positive sentiment.

However, manually labeling the ARs of images for training

the detector is too subjective and labor-consuming. This paper

proposes a framework that only requires the image-level label

to discover AR automatically, thereby significantly reducing

the annotation burden.

In detail, we first use an off-the-shelf tool to generate

bounding box candidates along with their objectness score

for the input image, which is inspired by the strong co-

occurrence relationships between objects and sentiment [26].

Then a candidate selection method is employed to remove the

redundant proposals while preserving several valuable ones.

The deep CNN is connected with each candidate and used to

compute sentiment score. The objectness score and sentiment

score are combined to calculate the AR score, based on which

the top-K ARs are discovered by re-ranking the candidate

regions considering both the objectness score as well as the

sentiment score. Finally, the CNN outputs from the global

and local views are aggregated through alternative fusion

operations (i.e., max pooling, sum pooling and concatenation)

to produce the final predictions.

Our contributions are summarized as follows:

• We propose a deep framework for automatically discov-

ering the affective regions of images which are likely

to evoke significant sentiment information. Our frame-

work is independent of object categories and requires no

bounding box annotation, which is more general than the

existing methods.

• We build a visual sentiment prediction model using a deep

CNN, which utilizes the holistic and local information

from both the global image and the local regions. The

final representation is effective for visual sentiment clas-

sification, and outperforms the state-of-the-art approaches

on the affective datasets.

• Experimental results show that our proposed framework

can be generalized to the small-scale benchmarks with

the help of transfer learning.

This journal paper extends our earlier work [27] in four

aspects. (1) The framework is improved by adding the candi-

date selection module to suppress the possibly noisy proposals

and reduce computational load. (2) Three alternative fusion

operations are employed to combine the holistic representation

with the affective regions, which aim to capture the local

information in different ways. (3) More implementation details

are provided and extensive experimental results on both large-

scale and small-scale datasets are presented, where the hyper-

parameters are determined in a systematic way. (4) The consis-

tency of the discovered affective regions and the ground truth

is evaluated on the EmotionROI benchmark [21], showing that

our proposed method can automatically find high-quality ARs

without human annotations.

The rest of this paper is organized as follows. Sec. II

summarizes the related work on visual sentiment analysis

and deep learning. Sec. III introduces the proposed method

of discovering affective regions and our deep framework for

sentiment prediction. In Sec. IV and V, we present and

visualize the experimental results on the popular benchmark

datasets. And finally, Sec. VI concludes this paper.

II. RELATED WORK

Numerous methods for visual sentiment analysis have been

developed based on still images [10], [17] and videos [28],

[29]. In this section, we review the methods for affective image

prediction and region-based CNNs that are closely related to

this work.

A. Affective Image Prediction

Previous methods on affective image prediction can be

roughly divided into dimensional approaches and categorical

ones. The dimensional approaches represent sentiment in

the two dimensional (2-D) valence-arousal coordinate space

[30] or a three dimensional space [31]. Hanjalic [32] repre-

sents human affective response using three basic dimensions,

i.e., valence, arousal and control (dominance), where there

is a corresponding value for every affective state. Zhao et

al. [33], [34] propose to predict the personalized emotion

perceptions of images in the valence-arousal space using

shared sparse regression as a learning model. Meanwhile,

the categorical approaches map sentiment into one of the

representative categories. There is also some work predicting

the discrete probability of different sentiment categories [35]–

[39]. Since categorical approaches make it easier for a human

to understand, we target categorical sentiment prediction in

this work.

1) Shallow modeling methods: Most previous methods on

affective image prediction employ traditional low-level fea-

tures. Machajdik et al. [10] define a combination of rich

hand-crafted features based on art and psychology theory,

including composition, color variance and image texture, etc.

Lu et al. [11] investigate how shape features in natural

images influence sentiments aroused in human beings, and

provide evidence for the significance of roundness-angularity

and simplicity-complexity for predicting sentiment content.

Zhao et al. [8] introduce more robust and invariant visual
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Dataset GT-Box Positive Negative Sum

IAPSa [43] N 209 186 395
Abstract [10] N 139 89 228
ArtPhoto [10] N 378 428 806
Twitter I [14] N 769 500 1,269
Twitter II [17] N 463 133 596
EmotionROI [44] Y 660 1,320 1,980
Flickr&Instagram [16] N 16,430 6,878 23,308
Flickr [17] N 435,798 48,424 484,222

Fig. 2. Statistics of the available affective datasets. Most datasets developed
in this field contain no more than two thousand samples, mainly due to the
subjective and labor intensive labeling process. Note that the Flickr dataset is
weakly-labeled and none of these datasets except EmotionROI provide ground
truth bounding box (GT-Box) corresponds to affective regions.

features designed according to art principles. These hand-

crafted visual features are proven to be effective on several

small datasets, whose images are selected from a few specific

domains, e.g., abstract paintings and art photos [10].

To bridge the “affective gap” between low-level features

and high-level sentiment, Borth et al. [17] model a mid-

level concept, i.e., Adjective Noun Pairs (ANPs), which are

used to detect image concepts instead of expressing senti-

ments directly. Li et al. [40] further compute the weighted

sum of the textual sentiment values of ANPs describing the

image and take the textual sentiment into account. Yuan et

al. [41] propose the Sentribute, an image-sentiment analysis

algorithm based on 102 mid-level attributes, which are easier

to interpret and ready to use for high-level understanding.

Furthermore, Zhao et al. [42] combine features of different

levels including low-level features from elements-of-art, mid-

level features from principles-of-art and high-level features

from a semantic concepts detector in a multi-graph learning

framework. Chen et al. [26] build object detection models to

recognize six frequent objects including car, dog, dress, face,

flower and food, and propose a new classification model to

handle attributive and proportional similarity between visual

sentiment concepts. In contrast, our algorithm concentrates

on whether a selected region contains objects or not, which

is independent to object categories and more robust for real

applications.

2) Deep modeling methods: In recent years, CNNs have

been incorporated into a number of visual recognition systems

in a wide variety of domains [45], [46]. The strength of these

models lies in their ability to learn discriminative features from

raw data inputs using the back propagation algorithm [47],

in contrast to more traditional recognition pipelines which

compute hand-engineered features on images as an initial

preprocessing step [48].

Several recent methods exploit deep CNNs for image sen-

timent prediction. Based on their previous work [17], Chen et

al. [49] adapt deep networks for constructing DeepSentiBank,

a classification model for visual sentiment concepts, which

shows significant improvements in both annotation accuracy

and retrieval performance. Also, some methods incorporate

the model weights learned from a large-scale general dataset

[50], and further fine-tune the CNNs for the task of visual

sentiment prediction [13], [15]. In [13], two types of ac-

tivations from CNNs are used as image-level features for

classification, namely the 4096-dimensional output from fc7

and the 1000-dimensional output from fc8. You et al. [14]

employ a progressive strategy to train a CNN making use of

half a million images that are labeled with the website meta

data, and further perform benchmarking analysis on the Flickr

and Instagram (FI) dataset. In [22], a method based on the

attention model is developed in which local visual regions

induced by sentiment related visual attributes are considered.

Due to the expensive manual annotation of sentiment labels,

the existing affective datasets, including IAPSa [43], ArtPhoto

[10], Abstract Paintings [10], Twitter I [14], Twitter II [17]

and EmotionROI [44] typically contain less than two thousand

images (see also Fig. 2). This is far from the required scale

for training robust deep models. The Flickr dataset [17] is

weakly-labeled with 2 categories using the meta-data provided

by the up-loaders. Moreover, only the EmotionROI dataset has

provided ground truth affective regions. Note that in this paper

we focus on the binary sentiment (i.e., positive and negative)

prediction problem, for which a variety of benchmark datasets

with reliable ground-truth can be employed to validate the

effectiveness of the proposed algorithm.

B. Region-based CNNs

We trace the roots of our approach to region-based CNN

(R-CNN) [46], an algorithm applying deep CNN to bottom-

up generate region proposals in order to localize and seg-

ment objects. It has been proved that when labeled training

data are scarce, supervised pre-training for an auxiliary task,

followed by domain-specific fine-tuning, boosts performance

significantly [51]. Girshick [52] shows that it is possible

to further reduce training and testing time, while improving

detection accuracy and simplifying the training process, us-

ing an approach called Fast R-CNN. Fast R-CNN reduces

detection time excluding region proposal computation to 50–

300ms per image, depending on network architecture. Ren et

al. [24] introduce a fully-convolutional network version that

simultaneously predicts object bounds and objectness scores at

each position. Meanwhile, R-CNN has been applied to various

tasks, e.g., pedestrian detection [53], action detection [54], [55]

and semantic segmentation [56].

Different from the traditional methods on region based

CNNs for finding salient objects in an image, our work aims

to automatically identify the ARs that evoke sentiment and

use the local information as the supplementary sentiment

representation. This requires us to analyze not only the regions

containing objects but also the surrounding background [21],

which may have affective influence on the selected regions.

Moreover, R-CNN based methods require ground truth bound-

ing box annotations for training, but it is time- and labor-

consuming to label affective regions manually. In this paper,

we employ an off-the-shelf tool to generate object proposals

as candidate affective regions and propose to select the AR

considering the low-level as well as the affective-level content.

Compared with the methods requiring accurate segmenta-

tion [23] or concrete category information [26], it is much

easier to acquire object proposals in the preprocessing stage,

and will better generalize to other datasets.
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Discovering Affective Regions

Input

Convolutional Neural Networks for 

Affective Image Classification

Fusion

Operation

Output

Sentiment

Prediction

Fig. 3. Pipeline of the proposed approach. Given the input image, thousands of candidates along with the objectness scores are generated, and the candidate
selection method is applied to remove the candidates which are overlapped and less important. The sentiment score of each proposal is roughly computed
through CNN, which is then combined with the objectness score to discover affective regions. Finally, the sentiment label is predicted by fusing the local
information with the holistic representation using several alternative operations.

III. METHODOLOGY

In this section, we aim to develop an algorithm to auto-

matically discover ARs carrying significant sentiments and

combine the standard holistic representation with a local

representation for image sentiment analysis. Fig. 3 shows

the pipeline of our proposed framework. We use an object

detection technique, i.e., Edgeboxes [57], to produce the

candidate windows guiding the search for ARs, and then apply

the candidate selection method to reduce redundant and noisy

proposals. Thus, the sentiment content of each proposal is

estimated at both the low-level and affective-level for the ARs

detection. Finally, the deep representation of the detected ARs

is combined with the holistic representation through three

alternative fusion strategies, i.e., max pooling, sum pooling

and concatenation, to generate the final predictions.

A. Producing Candidate Proposals

1) Generating: Detecting concrete visual objects like dogs

and cars has been researched extensively in computer vi-

sion [56], [58]. However, modeling abstract emotional con-

cepts like amusement and excitement is very challenging. The

difficulty comes from the “affective gap” that lies between

low-level visual features and high-level sentiment. Previous

methods [17], [26] have proved that associating adjectives with

concrete objects can make the combined visual concepts more

detectable and tractable for visual sentiment analysis. Inspired

by the strong co-occurrence relationships between objects and

sentiment, we suggest that object proposals can be used as the

potential sentiment regions.

Since our framework takes the object proposals as inputs

and obtains the final prediction by fusing the prediction of

each affective region with the holistic representation, the

performance of the proposed framework largely depends on

the quality of the candidate regions. However, an effective

candidate extraction approach is challenging since the affective

region detection needs to capture not only objects but also

regions of the background that may evoke sentiment. There are

two criteria that should be satisfied. First, the proposed frame-

work is based on the assumption that the candidate proposals

can cover the objects in the affective images as well as parts

of the background, which requires a high detection recall rate.

Second, since the selected affective region proposals are then

fed into the CNN, only a limited number of candidates should

be produced so as to allow for efficiency whilst maintaining

accuracy.

During the past decades, many object proposal methods

have been proposed to tackle the object detection problem.

According to [59], [60], EdgeBoxes [57] and BING [61]

are faster than methods such as Selective Search [62] and

Objectness [63], while EdgeBoxes achieves better quality

of proposals compared to BING. Considering the balance

between the speed and quality, this paper uses EdgeBoxes to

generate a set of candidate windows as it provides the best

trade-off. Such an off-the-shelf tool can generate thousands

of candidate boxes in a fraction of a second, from which a

subsequent refinement step based on object boundary estimates

is applied to improve localization. For a given image I ,

a set of candidate bounding boxes with objectness score

B = {bi;Obj scoreIi }
n
i=1

is produced by EdgeBoxes.

2) Selecting and filtering: To achieve high recall for object

detection, Zitnick et al. [57] employ a bottom-up strategy,

generating thousands of proposals in each image. However,

most of the candidate proposals are heavily overlapped and
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redundant for predicting sentiment. It is necessary to filter

out the noisy region proposals carrying little sentiment, and

removing noisy proposals at the initial stage of the algorithm

can greatly reduce the computation time of the subsequent

steps. To address this problem, we introduce the candidate

selection module to select proposals from the affective region

candidates inspired by [64].

EdgeBoxes generates thousands of proposals in each image

that can achieve high recall for object detection. However,

since it still generates a large number of original object win-

dows for the CNN to process, following [65], we first check the

same geometric characteristics (i.e., the area and height/width

ratio) of candidate bounding boxes. We empirically filter out

the regions with small areas (< 800 pixels) or with high

height/width (or width/height) aspect ratios above a threshold

(> 6), since objects which are either too small or too long are

unlikely to attract people’s attention. Thus, a much smaller

number of proposals can be fed into the candidate selection

method. Following previous algorithms [64], [66], we build

the affinity matrix W ∈ R
n×n for each image, in which

each element denotes the intersection-over-union (IoU) scores

between any pair of the bounding boxes and n denotes the

number of candidates:

Wij =
|bi ∩ bj |

|bi ∪ bj |
, (1)

where | · | is used to measure the numbers of pixels. We then

apply the normalized cut algorithm [67] to group the candidate

bounding boxes into m clusters. In detail, the normalized

graph Laplacian matrix L = D−
1

2 (D−W )D−
1

2 is computed

where D ∈ R
n×n is a diagonal matrix with Dii =

∑n

j=1
Wij .

Then the eigenvector matrix V = [v1, · · · , vm] ∈ R
n×m is

constructed where {v1, · · · , vm} are the m smallest eigenvec-

tors of L. Finally the k-means clustering algorithm is used to

obtain m cluster labels where each row of V is the feature of

the corresponding sample [67]. As shown in Fig. 4, the bound-

ing boxes are first filtered out to reduce the computational

load. Then with the m clusters’ bounding boxes, we pick the

proposal with the highest objectness score in each cluster and

generate m candidate regions H = {hi}
m
i=1

for each image.

Compared to the greedy non-maximum suppression (NMS)

method that is widely used for filtering [46], our candidate

selection method can generate a specific number of proposals

while removing the redundant and noisy bounding boxes.

B. Discovering Affective Regions

1) Initializing the framework: CNNs achieve the state-

of-the-art performance in the related computer vision tasks,

e.g., aesthetic quality rating [4] and image style recognition

[68] by fine-tuning the pre-trained ImageNet model. In this

work, the CNN is based on the deep model VGGNet [69]

with 16 layers. In order to adapt the pre-trained model on

ImageNet for sentiment analysis, the CNN is first fine-tuned on

the target affective dataset (e.g., Flickr and Instagram) utilizing

the original images (without any bounding boxes) to adjust

the parameters of the deep model. As a supervised learning

approach, the fine-tuned CNN is applied to learn a function

f : I → L, from a collection of affective training examples

Cluster 1

Cluster 2

Cluster m

(a) Input (b) Candidates

(c) Candidates Selection

Objectness_ Score

Fig. 4. Given the input image (a), the candidate windows are generated by
EdgeBoxes and small or high aspect ratio boxes are filtered out. As shown in
(b), the proposals with blue bounding boxes are dropped in this step. Different
colors in (c) indicate the different clusters produced by normalized cut, from
which the representative proposals are selected.

{(Ii, li)}
N
i=1

, where N is the size of the training set, Ii is the

input image, and li is the associated sentiment label. In the

standard training process, the traditional classification loss is

optimized to maximize the probability of the correct class [45],

[69]. Let di be the output from the penultimate layer, then the

fine-tuning of the last layer is done by minimizing the softmax

loss function as follows:

l(W) =

N
∑

i=1

∑

j∈l

1(li = j) log p(li = j|di,wj), (2)

where W = {wj}jǫl is the set of model parameters, and the

indicator function 1(s) = 1 if s is true, otherwise 1(s) = 0.

The probability of each sentiment label p(li = j|di,wj) can

be defined by the softmax function:

p(li = j|di,wj) =
exp(wT

j di)
∑

j′ǫl exp(w
T
j′di)

(3)

Since the number of categories in the affective dataset is

not equal to that of ImageNet, the fc8 classification layer is

changed to 2-way required by the sentiment dataset, which can

produce a probability prediction over the sentiment classes.

2) Estimating sentiment score: For the affective-level qual-

ity of the candidate proposals, we compute the sentiment

scores by feeding the proposal to the CNN. For the generated

affective candidates H = {hi}
m
i=1

of the input image I , let

{yij}
c
j=1

be the output vector of the last layer indicating

the probability of the i-th proposal carrying the j-th class

sentiment, and c is set to 2 as the number of sentiment classes.

If the prediction values for each sentiment are similar then this

usually indicates that it is difficult to distinguish the sentiments

evoked by the proposal. Therefore, we aim to keep only those
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0          1

Senti_score

Obj_score

Fig. 5. Visualization of the objectness score and sentiment score in an
image. For example, the region with a high objectness score indicates that
the corresponding bounding box is extremely likely to be an object.

proposals which contain a dominant sentiment. We define a

probabilistic sampling function to evaluate the sentiment score

of the i-th region in an affective-level perspective as follows:

Senti scoreIi =

c
∑

j=1

yij ∗ log yij + 1, (4)

where the score ranges between 0 and 1 for binary classifica-

tion. The information entropy defined in Eqn. (4) represents

the degree of uncertainty when predicting sentiment, which

is also consistent with the affective-level estimation of the

proposal. The Senti scoreIi can be high-level and provides

a more semantic measurement compared to the traditional

methods.

3) Selecting affective regions: We choose ARs according

to two aspects: i) how likely the region contains an object,

which is represented as Obj scoreIi , and ii) how much the

region carries sentiment at the affective-level, referred to as

Senti scoreIi . Fig. 5 demonstrates that an affective region

should have both high Obj scoreIi and Senti scoreIi . The

reason is that the Obj scoreIi only measures the probability of

regions containing an object and is based on the texture appear-

ance, which lacks the guidance of semantic information. The

Senti scoreIi reflects the sentiment of images at the affective

level, which enables lots of noisy regions to be removed with

little impact on the sentiment analysis. Such a score allows

certain flexibility for the object regions, which may occur in

the background as well. Considering the characteristics of each

score, we introduce the AR score to evaluate the sentiment

quality of each region with the following definition:

AR score
I

i =

√

(1− α) ∗Obj scoreI
i

2
+ α ∗ Senti scoreI

i

2
,

(5)

where α controls the trade-off between low-level and affective-

level perspectives. In this paper, we select α by the cross

validation of the large-scale affective dataset. The proposals

with high AR score are considered be an AR and used for

sentiment prediction, while the proposals with low AR score
are removed from the candidate set.

Algorithm 1 Visual Sentiment Analysis using Affective Re-

gions

Input:

Input Image: I
The number of desired affective regions: K

Output:

Predicted sentiment label : ~Y
1: Generate n bounding boxes with their objectness scores

B = {bi;Obj scoreIi }
n
i=1

.

2: Apply candidate selection method to generate m candidate

regions H = {hi}
m
i=1

.

3: Initialize the framework with pre-trained CNN.

4: Let ~YGlobal be the predictions of the whole image.

5: Pass H through the CNN model from the second layer to

the last layer.

6: Let y ∈ R
m×c be the sentiment probability of m pro-

posal using the CNN model, compute the sentiment score

in Eqn. (4)

7: Compute the AR score for the each region in Eqn. (5).

8: Rank proposals with AR scores and select top K as

affective regions.

9: Predict the label ~Y using the cross-candidates pooling

operation.

10: return ~Y

C. Sentiment Classification

Based on the initialized framework, the sentiment classifi-

cation of a given image can be summarized as follows. Given

a test image, we first generate the affective candidates based

on EdgeBoxes. In order to reduce redundancy, we apply the

candidate selection method based on their IoU scores and keep

just the best candidates. Both objectness score and sentiment

score are considered for selecting affective regions that are

likely to attract people’s attention and include emotional

content. Then, for each proposal as well as the holistic image,

a c-dimensional predictive result is obtained by the CNN,

which is then fused into a final prediction. In particular, we

consider three strategies, namely max pooling, sum pooling

and concatenation. We utilize the cross-candidates pooling

operation to fuse the outputs from the CNN into an integrated

prediction. With max pooling, the high prediction scores from

those candidates containing sentiment are preserved and the

noisy ones are ignored. The sentiment probability ~Y of a given

image can be defined as follows:

~Y = max
(

~YGlobal, {~YARj
}Kj=1

)

, (6)

where ~YGlobal represents the prediction of the whole image

and ~YARj
represents the prediction of the j-th affective region,

and we select the top K affective regions based on Eqn. (5).
~Y , ~YGlobal and ~YARj

share the same vector structure of

(ypos, yneg), where ypos and yneg indicate the predicted prob-

ability of positive and negative sentiments, respectively.

The sum pooling fuses the prediction probability of all the

proposals, where the weights of consistent proposals can be
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IAPS subset Art Photo Abstract Paintings Twitter I Twitter II EmotionROI

Flickr FI

(a) Small-Scale Datasets

(b) Large-Scale Datasets

Fig. 6. Example images from (a) small-scale and (b) large-scale affective datasets. The images come from a variety of domains including art, real life, abstract
and so on, in which the sentiment distributions are different.

emphasized.

~Y = (1− β) ∗ ~YGlobal + β ∗
1

K
∗

K
∑

j=1

~YARj
, (7)

where β is the trade-off between global and local prediction.

The β is also estimated by cross-validation of the large-scale

affective dataset. Both max pooling and sum pooling can

generate the sentiment probability as the final prediction.

Concatenation is a simple but effective way by combing the

features for a comprehensive representation:

~Y =
[

~YGlobal, {~YARj
}Kj=1

]

. (8)

The final feature is generated by concatenating all the pre-

diction results, and the dimension of ~Y is (K + 1) × c. In

our experiments, we set the number of affective regions in

all samples to be the same, making it feasible to classify the

concatenated feature vector using an SVM.

IV. EXPERIMENTAL RESULTS

In this section, we present our experiments and evaluate our

method against the state-of-the-art deep methods to validate

the effectiveness of our framework for sentiment classification

and sentiment detection.

A. Dataset

We evaluate our proposed method on eight widely-used

datasets, including IAPSa [43], ArtPhoto [10], Abstract Paint-

ings [10], Twitter I [14], Twitter II [17], EmotionROI [21],

Flickr [17] and Flickr and Instagram (FI) [16]. We divide the

datasets into small-scale and large-scale datasets with respect

to the number of images, as shown in Fig. 6.

1) Small-scale datasets: The International Affective Picture

System (IAPS) [70] is a common stimulus dataset which is

widely used in visual sentiment analysis research [8]–[10],

[71]. IAPSa selects 395 pictures from IAPS and is labeled

with Mikel’s eight sentiment categories. ArtPhoto contains

806 artistic photographs from a photo sharing site and the

ground truth labeling is provided by the owner of each image.

Abstract Paintings contains 228 peer rated abstract paintings

consisting of color and texture. Twitter I is collected from

social websites and labeled with two categories (i.e., positive,

negative) by Amazon Mechanical Turk (AMT) workers, and

contains 1,269 images in total. We test our method on all of

the three subsets of Twitter I, including “Five agree”, “At least

four agree” and “At least three agree”, in a similar fashion to

[14]. “Five agree” indicates that all the five AMT workers give

the same sentiment label for a given image. Twitter II contains

603 images from the Twitter website, and the ground truths

are obtained by AMT annotation too, resulting in 470 positive

and 133 negative labels. EmotionROI is created as a sentiment

prediction benchmark, and is collected from Flickr resulting

in 1,980 images with six sentiment categories. They use AMT

to collect 15 responses to the regions that evoke sentiment and

represent the ground truth by assuming the influence of each

pixel on evoked sentiments is proportional to the number of

drawn rectangles covering that pixel.

2) Large-scale datasets: FI is currently the largest well-

labeled dataset, which is collected by querying with eight

sentiment categories as keywords from social websites. 225

AMT workers were employed to label the images which

resulted in 23,308 images receiving at least three agreements.

We divide FI into binary datasets the same as the IAPSa.

Flickr contains 484,258 images in total, where each image

was automatically labeled using the corresponding ANP.

Since we focus on the binary sentiment prediction, we
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Methods FI Flickr

Baseline

AlexNet [45] 60.54 55.13
VGGNet [69] 70.64 61.28
Fine-tuned AlexNet 72.43 61.85
Fine-tuned VGGNet 83.05 70.12
PCNN (VGGNet) [14] 75.34 70.48
DeepSentiBank [49] 61.54 57.83

Ours

obj + concatenation 83.85 70.05
senti + concatenation 84.07 70.10
AR + concatenation 84.83 70.51
AR + sum-pooling 84.50 70.46
AR + max-pooling 84.21 70.49
AR + concatenation (K = 8) 86.35 71.13

Fig. 7. Classification accuracy (%) on the test set of the large scale dataset,
i.e., FI and Flickr. We compare our proposed method with different deep
methods including ImageNet models (row 1-2), fine-tuned models (row 3-4),
and state-of-the-art algorithms (row 5-6). Our proposed method with different
configurations are also given, i.e., combining with the top-1 region (row 7-11),
and leveraging more Affective Regions(row 12). Note that obj/senti indicate
that only objectness score/sentiment score is used, while our “AR” method
selects Affective Regions, where both objectness score and sentiment score
are considered.

convert the multi-sentiment labels into positive and negative

ones according to their valance for datasets except for Twit-

ter I, Twitter II and Flickr, which were originally labeled with

binary sentiment. Specifically, for IAPSa, ArtPhoto, Abstract

Paintings, and FI, we divide Mikel’s eight sentiment categories

into binary labels according to [43], which suggests that

amusement, awe, contentment and excitement are positive

sentiments and anger, disgust, fear and sadness are negative

sentiments. EmotionROI is labeled with seven sentiments

(i.e., anger, disgust, fear, joy, sadness, surprise, neutral) along

with Valance-Arousal scores, where anger, disgust, fear, sad-

ness can similarly be considered as the negative sentiments.

Since the mean valance of the set of joy and surprise images is

higher than the mean valance of the set of negative images, we

treat them as positive sentiment. Note that we do not include

images with neutral sentiment in the experiment.

B. Implementation Details

CNNs have the capability to incorporate model weights

learned from a more general dataset, which is a convenient

property for tasks lacking sufficient training data. We employ

the VGGNet with 16 layers [69] as our basic architecture.

Following previous works [13], we initialize our model with

the weights trained from ImageNet. Then the pre-trained

network is fine-tuned on the large-scale datasets with the 1000-

way fc8 classification layer replaced by the 2-way layer, and

the data are split randomly into 80% training, 5% validation

and 15% testing sets. The learning rates of the convolutional

layers and the last fully-connected layer are initialized as 0.001

and 0.01 respectively. We fine-tune all layers by stochastic

gradient descent through the whole net using a batch size of

64. A total of 100,000 iterations is run to update the parameters

to extract more precise sentiment-related information. All our

experiments are carried out on two NVIDIA GTX 1080 GPUs

with 32 GB of CPU memory. For the candidate selection

method, we set m = 50 for each image as the experimental

Fig. 8. Impact of different α and β on the validation sets of the FI dataset.
We choose α = 0.6, β = 0.3 in the remaining experiments.

trade-off between the performance and computational time,

which provides the initial candidate proposals for discovering

the affective regions.

With the help of transfer learning, we also employ our

framework on small-scale datasets with limited training ex-

amples. In detail, we use the parameters of the CNN trained

on FI on other datasets and fine-tune the model on the training

set of other datasets. The small datasets are randomly split into

80% training and 20% testing sets except those with a specified

training/testing split [17], [44] and we conduct the experiments

using 5-fold cross validation and average the accuracies as the

final results.

C. Baseline

In the following subsections, we evaluate the proposed

method against the state-of-the-art algorithms for image sen-

timent prediction, including those based on hand-crafted fea-

tures and deep methods. In addition, we also show the results

with different configurations of the proposed method on the

validation set, especially with different components and fusion

strategies.

1) Hand-crafted features: We extract several low-level fea-

tures from the small-scale datasets, including local descriptors

like SIFT, HOG, GIST, etc. The global color histograms

(GCH) features consists of 64-bin RGB histogram, while the

local color histogram features (LCH) first divide the image

into 16 blocks and use a 64-bin RGB histogram for each

block [72]. We use the ColorName to count the pixels of

each of the 11 basic colors presented on the image using the

algorithm in [10]. We also use SentiBank [17], a concept

detector library based on the constructed ontology, to exploits

the 1,200 dimensional features as mid-level representation.

Zhao et al. [8] propose the principle of art features (PAEF)

for sentiment analysis. We use a simplified version provided

by the author to extract 27 dimension features.

2) Deep methods: PCNN proposed by You et al. [14]

is a novel progressive CNN architecture. They suggest that

leveraging larger amounts of weakly supervised data can
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Fig. 9. Impact of different K on the validation set of the FI dataset. We set
K = 8 in the remaining experiments.

improve the generalizability of the model. We fine-tune the

PCNN with the noisy Flickr dataset based on VGGNet and

extract the deep visual features. DeepSentiBank [49] is a

visual sentiment concept classification based on CNNs for

discovering ANPs. We apply the pre-trained DeepSentiBank to

extract 2,089 ANPs as mid-level representations for sentiment.

We also show the performance of deep visual features of CNN

models pre-trained on ImageNet and fine-tuned on the affec-

tive datasets, including different architectures, i.e., AlexNet

and VGGNet. To compare with the ImageNet CNN, we

show the results of using LIBSVM [73] trained on features

extracted from the second to the last layer of the model and

reduce the dimensionality employing PCA. In practice, we find

that different cost values (parameter C in LIBSVM) produce

similar accuracy, so we just use the default value and use

the one v.s. all strategy following the same evaluation routine

described in [10].

D. Results on Large-Scale Datasets

We first fine-tune the CNN on the large scale datasets

(i.e., FI and Flickr), and compare the performance of our

framework with the deep methods. Fig. 7 reports the per-

formance of the baselines on the test set of the FI and

Flickr datasets. As can be seen, the pre-trained model on

the ImageNet is inferior to the fine-tuned model due to the

differences between the distributions in the ImageNet and

sentiment datasets, while VGGNet with a deeper architecture

performs better than AlexNet. The fine-tuned VGG achieves

83.05% on the FI dataset, which outperforms DeepSentiBank

(61.54%) and PCNN (75.34%). Compared to the weakly-

labeled Flickr, the fine-tuned CNN on FI shows a greater

improvement in performance due to the reliable annotation.

When selecting and combining affective regions in the deep

model, we have several choices: we can use the objectness

score or sentiment score only, or use the AR score proposed

in this work. We roughly consider the objectness score as a

low-level cue and sentiment score as a high-level cue. The

experimental results show that the sentiment score is more

effective than the objectness score, which is mainly because

Fig. 10. Precision-recall curve for discovering affective regions. Our method
is more consistent with human annotation than objectness (i.e., using the
proposals with the highest objectness scores generated by EdgeBoxes).

the objectness score just indicates how likely a region contains

an object. When both scores are combined into a deep model,

our method using the most confident affective regions achieves

84.83%, which performs favorably against the state-of-the-art

methods as well as combing the proposals selected by only

one score, demonstrating the benefit of using local details for

classification. Analyzing the objectness and sentiment score

of different regions, we observe that the sentiment score often

gives different values even when the area of overlap of two

different proposals is more than half. For two different regions

proposals both containing an affective region, the sentiment

scores are usually similar, and thus it only needs to evaluate

whether the proposal contains an affective region and ignore

the area of proposal.

1) The effect of the hyper-parameters: We report the classi-

fication performance of using “AR + sum pooling” methods on

the validation set of the FI dataset, and different α and β are

employed for comparison. As shown in Fig. 8, setting α = 0.6
achieves the best overall accuracy for discovering affective

regions in the validation set. Using only the objectness score

(α = 0) gives limited performance, which indicates it is

necessary to use the sentiment score for selecting affective

regions. On the other hand, combining local regions can boost

the classification performance compared with using a single

global representation. Setting β = 0.3 achieves a balance

in most cases. Therefore, we use α = 0.6, β = 0.3 in the

remaining experiments.

2) The effect of the fusion operations: When fusing the

outputs of the affective region and the entire image, we con-

sider three fusion operations for combing the most confident

affective regions. Fig. 7 (bottom) shows that all three combi-

nations are useful for capturing information in the holistic and

regional view, while concatenation is the most effective way

since it retains all the information.

3) The effect of the hyper-parameter K: Given an input

image, we not only predict the sentiment of the whole image

but also find the affective regions. Although the dataset does

not provide annotations of affective regions, the number of

affective regions is usually small. Here we show an experiment

to determine how many affective regions should be evoked in
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Algorithm IAPS-Subset Abstract ArtPhoto
Twitter I

Twitter II EmotionROI
Twitter I 5 Twitter I 4 Twitter I 3

GCH 71.76 71.50 67.00 67.91 67.20 65.41 77.68 66.53
LCH 52.91 73.26 64.01 70.18 68.54 65.93 75.98 64.29
ColorName + BoW 57.72 73.28 66.26 64.51 64.79 60.83 70.10 60.13
Gist 65.05 60.97 63.40 65.87 61.47 60.68 77.68 60.38
LBP 56.73 59.85 55.06 55.78 53.94 57.29 65.15 55.26
Gabor 79.21 50.43 58.43 55.37 54.03 53.90 63.72 58.73
SIFT + BoW 86.06 53.54 59.05 63.15 63.71 60.36 70.32 65.30
SIFT + VLAD 83.02 60.53 64.75 70.29 68.91 67.14 77.34 72.15
SIFT + FisherVector 83.28 60.10 62.40 71.09 67.29 65.56 76.34 70.92
DenseSIFT + BoW 56.22 54.38 56.58 64.29 59.94 58.94 60.07 59.85
DenseSIFT + VLAD 58.25 55.74 64.38 67.12 66.49 65.01 77.17 62.13
DenseSIFT + FisherVector 62.55 59.21 64.01 71.76 68.01 65.96 78.01 62.97
HOG + BoW 79.99 60.95 62.40 68.48 61.92 60.99 61.23 61.05
HOG + VLAD 82.52 57.49 68.97 71.99 67.74 66.43 61.92 63.38
HOG + FisherVector 83.76 61.41 68.11 76.07 70.34 68.32 68.12 65.33

PAEF [8] 62.81 70.05 67.85 72.90 69.61 67.92 77.51 75.24
SentiBank [17] 81.79 64.95 67.74 71.32 68.28 66.63 65.93 66.18
DeepSentiBank [49] 85.63 71.19 68.73 76.35 70.15 71.25 70.23 70.11
PCNN (VGGNet) [14] 88.84 70.84 70.96 82.54 76.52 76.36 77.68 73.58
VGGNet 88.51 68.86 67.61 83.44 78.67 75.49 71.79 72.25
Fine-tuned VGGNet 89.37 72.48 70.09 84.35 82.26 76.75 76.99 77.02

obj + concatenation 88.47 73.38 71.34 84.24 81.81 76.68 75.97 77.83
senti + concatenation 88.74 74.23 72.86 84.35 82.44 76.57 78.18 77.95
AR + concatenation 89.39 74.71 73.76 86.10 83.25 77.97 78.89 78.52
AR + sum-pooling 90.32 73.72 73.63 86.39 83.41 77.57 78.32 78.43
AR + max-pooling 89.04 73.92 73.32 86.19 83.11 77.67 78.52 78.32
AR + concatenation (K = 8) 92.39 76.03 74.80 88.65 85.10 81.06 80.48 81.26

Fig. 11. Classification results of different methods on the small-scale datasets. GCH represents the features of global color histogram and LCH corresponds to
local color histogram. Note that “obj” means that we only regard the proposals with high objectness score as affective regions, “senti” refers to the proposals
having high sentiment score are used. Note that our method is based on the fine-tuned VGGNet.

our proposed framework. It is hard to evaluate the quality

of the discovered affective regions directly due to lack of

annotations. Therefore, our aim is to discover how many

affective regions can boost sentiment prediction accuracy. We

show the classification performance when combing different

numbers of affective regions for sentiment analysis. As shown

in Fig. 9, as the number of affective regions is increased, the

accuracy increases as more information becomes available.

However, a further increase in the number of regions leads

to a slight decrease in performance due to the introduction

of noisy regions. Therefore, as a good balance, we choose

to combine 8 affective regions for sentiment analysis in

the remaining experiments, which outperforms the fine-tuned

VGGNet by 3.3% on FI (86.35%) and 1% on Flickr (71.13%).

We also report the true positive rate of different sentiments on

the large-scale datasets. In detail, the positive and negative

sentiments achieve 92.10% and 72.65% on FI, respectively;

and on Flickr achieve 73.56% and 47.92%, respectively. For

both datasets, the positive class receives a higher accuracy

than the negative class, which is consistent with the number

of training images. More training images can lead to a higher

probability that the corresponding sentiment receives a higher

true positive rate.

E. Results on Small-Scale Datasets

We transfer the parameters learned on the FI dataset to

small-scale datasets, then show our experimental results in

Fig. 11 and provide comparisons to several state-of-the-art

works. Note that our method is based on the fine-tuned

VGGNet. “obj” means that we only regard the proposals with

relatively high objectness score as affective regions and “senti”

refers to the proposals having high sentiment score. Our “AR”

method selects affective regions, where both objectness score

and sentiment score are considered.

For the color features, ColorName is usually not enough to

describe the distribution of image color compared to GCH

and LCH except for the Abstract dataset. For the texture

features, the HOG descriptor is able to achieve the best pre-

diction accuracy in most datasets compared with other texture

representations like SIFT, Gist, LBP and Gabor. Texture has

better discriminative power than color on these small datasets.

The reason is that sentiments are usually conveyed through

complicated texture regions, e.g., faces, dogs, buildings etc. In

addition, we also compare the different encoding algorithms in

Fig. 11. As can be seen, it achieves better performance while

using the Fisher Vector to encode these descriptors on most

datasets.

Compared with the traditional representations based mainly

on color and texture information, the deep methods achieve

better results, as expected. Our proposed method employs

affective regions and outperforms both hand-crafted features-

based methods and deep approaches, and achieves the best

accuracy in all the small datasets. In detail, compared to the

SentiBank and DeepSentiBank which do not use affective
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(a) input image (b) Probability of correct class (c) object region (d) sentiment region (e) affective region

Fig. 12. Visualization of images from the FI dataset. Given the input image (a), we systematically cover up different portions of the image with a gray square
and see how the classifier output (b) changes. Column (b) denotes a map of the probabilities estimated by the CNN for the ground-truth class, indicating the
relative importance of locations in the affective image for the CNN. We also show the top-1 regions ranked by different scores (i.e., Obj score, Senti score,
AR) as object region (c), sentiment region (d), and affective region (e).

regions and represent images at the mid-level, our method

outperforms them by a large margin. Furthermore, our method

also shows an advantage over PCNN on all the affective

datasets, and the three fusion operations are all useful with

concatenation being the most effective method. According to

our experimental findings on the large-scale datasets, when we

increase the number of affective regions many regions have

little impact on image sentiment and can even decrease the

prediction accuracy. Therefore, we combine the same number

of regions for the final sentiment prediction on the small-scale

datasets and achieve the best performance. This shows another

advantage of our method, which is that we do not need many

local regions to be included in the deep model, ensuring an

acceptable increase in computation overhead.

F. Affective Regions Evaluation

We evaluate the affective regions detected by our framework

on the EmotionROI dataset, taking the same training/testing

split as the previous works [44], [74]. Since the dataset only

provides as ground truth the normalized Emotion Stimuli Map,

which is based on 15 bounding boxes, we first binarize the

Emotion Stimuli Map with threshold values γ ∈ [0..255]/255,

and compare the ground truth region with the most con-

fident discovered affective regions. Precision and recall are

employed, which represents the percentages of detected emo-

tionally involved pixels out of all the pixels identified in the

predicted region or the ground truth. Following [44], all the

predicted affective regions and ground truth are normalized

to 0 to 1 for evaluation. Fig. 10 shows the precision-recall

curve of the objectness score and our proposed AR score.

The average precision and recall of our method are 0.69

and 0.59, while the objectness measure achieves 0.63 and

0.53, indicating that the selected affective regions are more

consistent with the human annotation.

V. VISUALIZATION OF AFFECTIVE REGIONS

For the image classification approaches, a natural question

is whether the proposed model can identify the target part

in the image. In this section, we attempt to answer this

question by visualizing the crucial location for classifying

sentiment. Following the previous works [75], we use sliding

windows to occlude different portions of the input image with

a gray square, and then generate the heat-map by plotting the

estimated probability of the ground truth class at that location.

Compared to other visualization methods, e.g., embedding the

features with t-SNE or visualizing the filters of the network,

this method tends to directly show the regions that the CNN

focuses on. As shown in Fig. 12, the first column is the input

image and the second column is the prediction probability of
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the correct class using the fine-tuned VGGNet when occluding

the corresponding portions of the image. If the occluded por-

tion is essential for the sentiment prediction, the corresponding

probability in the heat-map will obviously decrease (blue

pixels). As can be seen in the three examples, the fine-tuned

deep model has the ability to discover the parts in the images

that can evoke the sentiment. For example, occluding the

salient objects (e.g., people, fire) that can evoke the sentiment

leads to decreasing prediction probabilities. However, due

to the affective gap, the CNN is not discriminative enough

to capture the most significant sentiment information in the

images.

We also visualize the top-1 regions by re-ranking the can-

didate proposals according to different scores (i.e., Obj score,

Senti score, AR) in Fig. 12 (c) (d) (e), respectively. Column

(c) and (d) refer to the regions that are selected using only

objectness or sentiment scores. The objectness score selects the

regions which contain rich information at the low level, while

the sentiment score usually evaluates the regions’ sentiment

at the affective level. Considering information from both of

these two aspects, our proposed method is able to discover

more accurate affective regions, see column (e). The detected

affective regions can be not only complementary for the salient

objects in the image (first example), but also extend the regions

of interest to the additional contextual background (last two

examples). Thus, combing the global and local information

can be discriminative for the visual sentiment analysis.

VI. CONCLUSION

In this paper, we address the problem of automatically rec-

ognizing sentiments in images. Inspired by the observation that

both global appearance and local regions produce significant

sentiment responses, we propose a framework to discover

affective regions and combine both information using CNN.

We estimate the level of sentiment content in a region consid-

ering the objectness score and sentiment score. The objectness

score usually finds regions containing rich texture information

while the sentiment score evaluates the regions’ sentiment at

the affective level. We also consider three alternative fusion

operations and implement the proposed model on VGGNet.

The experimental results show that our method outperforms

the state-of-the-art methods on the popular affective datasets.
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