
Towards Large-Scale Deterministic IP Networks
†Bingyang Liu, †Shoushou Ren, †Chuang Wang, ∗Vincent Angilella,

∗Paolo Medagliani, ∗Sebastien Martin, ∗Jeremie Leguay
∗Huawei Technologies, Paris Research Center.
†Huawei Technologies, Beijing Research Center.

Abstract—Deterministic performance is a key enabler for 5G
networking. In this context, we present a highly scalable Large-
scale Deterministic Network (LDN) architecture providing end-
to-end latency and bounded jitter guarantees in IP networks. At
the data plane, flows are first shaped at ingress gateways using
gate-control queues, achieving a very fine granularity compared
to existing state of the art solutions. Inside the network, traffic
is scheduled using an asynchronous cyclic queuing mechanism
that can be implemented in real devices as it requires only 3
FIFO queues. The data plane relies on standard IP routing and
a quasi-static mapping table to deterministically aggregate and
forward packets over cycles with a low complexity in O(1). For
the control plane, we present an advanced column generation
algorithm to quickly take admission control decisions in large-
scale networks. For a set of flows, it determines acceptance and
selects the best shaping and routing policy.

Through a proof-of-concept implementation and simulations,
we show that our LDN architecture can guarantee end-to-
end latency and bounded jitter. We also demonstrate that our
advanced control plane algorithm brings an improvement up to
40% in terms of accepted traffic over classical routing.

Index Terms—Deterministic networks, Large-scale IP net-
works, Bounded delay, Bounded jitter.

I. INTRODUCTION

The 5th generation of networks is paving the road for
latency-sensitive network services to enable a wide-range
of Internet applications like factory automation, connected
vehicles and smart grids [1]. Traditional Internet Protocol (IP)
services allow reliable data delivery, but they cannot provide
strict Quality of Service (QoS) guarantees. Certain classes of
service can get preferential treatment but performance remains
statistical. To frame the development of new technologies for
deterministic IP networks, the IETF [2] and the ITU-T [3]
have specified target requirements for guaranteed bandwidth,
bounded End-to-End (E2E) latency and bounded jitter.

In the past decade, a collection of IEEE 802.1 Ethernet
standards, known as Time-Sensitive Networking (TSN) [4],
has been developed to support professional applications over
Local Area Networks (LAN) with layer-2 mechanisms such as
priority queuing, preemption, traffic shaping, and time-based
opening of gates at output ports. A common approach to
bound latency and jitter at each hop for High Priority (HP)
traffic is to use Cyclic Queuing and Forwarding (CQF) [5],
which considers 2 queues on each port, opened and closed
alternatively in a cyclic fashion. At any given time, one queue
is for transmission and the other one is for reception. However,
CQF is suitable for small networks with time synchronized

nodes and short transmission links as a packet, sent in a
given cycle, must be received during the same cycle and
retransmitted at the next cycle.

To improve the scalability of TSN solutions, the IETF Det-
Net (Deterministic Networking) [6] group has been working
on a Deterministic Networking (DN) architecture, where so-
lutions such as Large-scale Deterministic Network (LDN) [7]
and Cycle Specified Queuing and Forwarding (CSQF) [8] have
been proposed to specify how traffic should be scheduled and
forwarded. Even if they both operate at layer 3, CSQF requires
complex per-packet scheduling policies [9], as each packet can
have a custom forwarding cycle at each intermediate node,
while LDN considers flow-level processing only at ingress
nodes and it operates on flow aggregates at core nodes. In
the rest of this paper, we build upon the LDN proposal as it
is the most scalable.

To provide E2E latency and bounded jitter guarantees,
several challenges must be addressed. As traffic bursts are
common in IP networks due to their multiplexing nature [10],
the elasticity of traffic needs to be controlled at the ingress, at
the price of an extra latency depending on the burst size. Also,
because IP networks usually contain a very large number of
devices and users, a low complexity and scalable solution is
required, to avoid core routers and switches to maintain per-
flow states and achieve low complexity inside devices.

To address the aforementioned challenges, we present a
complete LDN architecture, that extends current work at
IETF [7], to guarantee deterministic E2E latency and bounded
jitter for HP flows. At the data plane level, we consider a new
fine-grained shaping method that scatters incoming bursts at
ingress nodes and makes flows fit into the assigned cycles in-
side the deterministic network. The use of gate-control queues
yields a 1.5 KB granularity for shaping, 10 times better than
current state of the art solutions. At intermediate core nodes,
the data plane relies on standard IP forwarding and schedules
traffic using a cyclic queuing mechanism with 3 queues that
does not require time synchronization between nodes. At each
hop, a quasi-static mapping table is used to forward packets
from incoming to outgoing cycles based on a label carried
in the header of packets. Since core routers only use the
carried label for packet scheduling, LDN is free of per-flow or
per-packet orchestration at both data plane and control plane.
To derive latency and jitter bounds, we present a theoretical
performance analysis of this asynchronous scheduling and
forwarding mechanism. Through a Proof-of-Concept (PoC)
implementation on real devices and simulation results, weISBN 978-3-903176-39-3© 2021 IFIP

verify that performance can be guaranteed even in large-
scale networks. At the control plane level, we introduce a
centralized architecture and an efficient Column Generation
and Randomized Rounding (CGRR) algorithm to decide the
best shaping and routing parameters for a batch of incoming
traffic requests. Thanks to a numerical evaluation, we show
that our control plane algorithm can accept 40% more traffic
than traditional routing, while ensuring deterministic E2E
requirements. Overall, we demonstrate that our LDN imple-
mentation is highly scalable and suitable for real networks.

The rest of this paper is organized as follows. In Sec. II,
we present some related works. Sec. III introduces the system
design. The data plane and the control plane are presented in
Sec. IV and Sec. V, respectively. Finally, Sec. VI describes
performance results, before concluding in Sec. VII.

II. RELATED WORK

Traditional data plane scheduling methods mainly include
Round Robin (RR) [11], [12] and Weighted Fair Queuing
(WFQ) [13], [14] schedulers. In RR-based methods, such as
WRR and DRR, queues are scheduled one after another. At
each round, an amount of data based on each queue’s weight or
deficit is scheduled. Besides being useful to prioritize traffic,
these methods can be used to provide deterministic guarantees
as latency bounds can be computed with network calculus [15].
However, these solutions yield highly conservative E2E la-
tency bounds. They also suffer from a large jitter due to poor
flow isolation. Methods like WFQ, inspired from Generalized
Processor Sharing (GPS) [13], can provide better E2E latency
bounds. However, they usually require devices to maintain per-
flow states, preventing their use in large networks.

The IEEE 802.1 TSN task group has produced a series of so-
lutions to provide deterministic transmissions. Unfortunately,
they are limited to layer 2 and do not scale well to large
IP networks due to issues such as time synchronization, high
precision scheduling, short distance links, etc [16]. The IEEE
802.1Qav norm defines priority scheduling and Credit Based
Shaper (CBS) to guarantee latency. However, all the nodes
must maintain per-flow states to avoid burst formation. IEEE
802.1Qbv describes a TDM-like (Time Division Multiplexing)
method, where each flow can only be transmitted in cycles at
specific allocated time slots. It leverages on a time-based gate
opening and closing at the output ports, operating at cycle-
level, rather than slot-level. Thus, if a flow’s slot is in the
middle of a cycle, we need to control the multiplexing with
other flows to guarantee the transmission time instant inside
the proper cycle. This imposes constraints on the arrival time
of each flow at packet-level and requires per-packet orches-
tration while doing path planning, considerably increasing the
complexity to the control plane. IEEE 802.1Qch specifies the
CQF method based on a 2-queues buffering to synchronize
transmissions in a cyclic manner, with a per-hop bounded
latency. However, CQF requires time synchronization and can
only be used over short distance links. IEEE 802.1Qcr, known
as ATS (Asynchronous Traffic Shaper), describes how to
handle latency without requiring time synchronization between

devices. However, it uses an inter-leaved shaping method to
shape every flow at every hop. This method lacks of scalability
as it requires all core routers to maintain per-flow states to be
updated for each packet.

To integrate TSN technologies into IP networks, the IETF
DetNet working group has defined a general DN architec-
ture [6]. LDN [7] and CSQF [8] drafts have been proposed
for deterministic data scheduling and forwarding. The main
differences are the following. In CSQF, (i) packet arrivals are
required to be known in advance (i.e., time-triggered traffic),
(ii) different packets of the same flow may be scheduled in
different cycles, thus the nodes must maintain per-flow states,
and (iii) a Segment Routing header is used to route traffic
and schedule packets at each node, leading to a significant
packet overhead. On the other hand, LDN introduces a scalable
hierarchical architecture with (i) the possibility to control
shaping parameters for each flow at ingress nodes (it can
handle more elastic traffic sources) and a (ii) cycle-based
deterministic forwarding at core nodes in which no per-flow
states are needed, making LDN scalable. Compared to the
LDN draft [7], in this paper we detail how we implement
efficient shaping and routing at data plane and control plane
levels.

III. LDN ARCHITECTURE OVERVIEW

This section presents the high-level functionalities of the
LDN architecture we implemented to guarantee E2E latency
and bounded jitter. The next two sections (Sec. IV and Sec. V)
will introduce the data and control planes in more details.
For the sake of simplicity, we assume that all the devices are
managed by the same network controller. We also assume that
amongst all the traffic in the network, only a subset of IP flows
are High Priority (HP) and need guaranteed performance,
while the remaining flows are routed as low-priority Best
Effort (BE) flows.

As shown in Fig. 1, the LDN network is composed by
three elements: (i) user devices at the edge of the network
that send and receive application traffic, (ii) edge and core
network devices forwarding flows in the network, and (iii)
a network controller. The control plane is implemented in
the centralized controller and it orchestrates the configuration
of network devices in charge of deterministic and end-to-
end data transmissions. User traffic enters the LDN network
via an Ingress Gateway (I-GW) and leaves it at an Egress
Gateway (E-GW). As shown in Sec. IV-A, the I-GWs shape
incoming traffic to cut down bursts and make them fit within
transmission cycles along the paths. Network devices in the
middle, referred to as core nodes, forward flow aggregates at
each hop based on a cyclic division of time, to enforce E2E
delay and jitter constraints. In this paper, we define the E2E
latency of a packet as the time interval between the instant
at which it enters into the I-GW and the instant at which it
leaves the E-GW, and the jitter, as the maximum latency gap
between consecutive packets of the same flow.

Fig. 1. Architecture overview of LDN. 1) Admission control is performed before senders 1 and 2 start emitting flows. 2) I-GWs do per flow shaping. For
instance, I-GW 1 will scatter the received 2-packets burst into two consecutive cycles. 3) I-GWs mark HP packets with a local label and schedule packets
according to their labels. 4) Core routers rewrite labels for each HP packet to identify the next transmission cycle. Packets from different upstream nodes can
be mapped to the same label on a router (like for R3 and R4). 5) E-GWs strip the labels before forwarding packets to their destinations.

A. Data plane

Deterministic forwarding in the LDN is assured by dividing
transmission time into cycles of duration T on each port of
all the nodes in the network. The starting time of the cycles
on a node is based on its local clock, i.e. network devices are
not required to be time synchronized. As explained in more
details in Sec. IV, the scheduler is based on 3 gate-control
queues that are opened and closed in a round robin fashion.

At the ingress, I-GWs maintain per-flow states to control the
shaping and forwarding of each incoming flow. As described
later in Sec. IV-A, a fine-grained shaping method is used to
control the bandwidth utilization of each flow in transmission
cycles. When sending out a packet, the I-GW also adds a label,
marking its sending cycle.

Core network devices forward each flow over a specific
path and use a cycle-based scheduling at each hop to enforce
delay and jitter bounds. Once a labeled packet is received, the
forwarding engine updates the label to specify the transmission
cycle to be used at the next hop. A mapping table is maintained
on each device and it is used to map incoming cycles into
outgoing cycles, i.e., incoming labels into outgoing labels
(more details in Sec. IV-C). To forward packets, the outgoing
port, i.e., the next hop, is determined in a standard and con-
ventional manner via IP forwarding (i.e., using FIB entries).
Once the port is chosen, the transmission cycle is selected,
starting from the label in the received packet header, using the
corresponding entry in the mapping table. The mappings are
not specific to the flows as packets with the same label are sent
out in the same cycle, even if they belong to different flows
and come from different upstream nodes. As the propagation
delay between neighbor nodes and the processing delay can
be upper bounded using statistical information, the mapping
between sending cycles of two neighbor nodes is almost static.
This decoupling between scheduling and routing improves
scalability. As last step, once the E-GW receives a packet,
it schedules the transmission, sending the packet out in the
corresponding cycle. Differently from core nodes, the E-GW
only needs to (i) find the outgoing cycle from the mapping

table and (ii) remove the header field carrying the label.
The efficient bandwidth allocation and aggregation of dif-

ferent flows within the transmission cycles is managed by the
control plane. As bandwidth sharing is controlled by ingress
shaping and routing, core devices do not need to maintain per-
flow states, making LDN highly scalable to large IP networks.

B. Control plane
The control plane is in charge of admission control, shap-

ing and routing for high-priority flows. As short delay and
low bandwidth consumption are usually opposite objectives,
a smart resource allocation needs to be performed by the
controller to ensure that a maximum amount of traffic can be
accepted in the network and that all accepted flows meet their
requirements. When a batch of new flows has to be admitted
into the network, the centralized controller decides which
flows could be accepted, as well as the shaping parameter
and the path of each accepted flow. In particular, for the
decision of the optimal shaping parameter, the controller has
to consider that a smaller shaping parameter decreases the
amount of capacity used along the path while, on the other
hand, it introduces a predictable additional shaping delay. The
controller has to ensure that this extra delay is compatible with
the end-to-end delay constraints of priority flows.

Once the admission control decision is made, the installation
of each flow can be performed in a distributed manner using
a resource reservation protocol like RSVP [17] or by the
centralized controller communicating directly with devices.

IV. DATA PLANE MECHANISMS

This section presents in more details the data plane mech-
anisms at gateways and core nodes.

A. Ingress shaping at I-GWs with gate-control queues
Every flow can be characterized by a traffic envelope, also

referred to as arrival curve Af (t), using the network calculus
terminology [18]. For any arbitrary time interval of duration t,
the cumulative data Cf (t) sent by flow f can be constrained
as follows:

Cf (t) ≤ Af (t) = rf t+ bf (1)

Fig. 2. Example of shaping of a burst of size bf = 7.5 kB with a shaping
parameter b′f = 3 kB/cycle, 3 kB used on each cycle and shaping delay 3T .

where bf is the maximum burst size for f , rf is the the arrival
rate (upper bound average rate), and MPSf is the maximum
packet size for the flow. In our LDN implementation, these
parameters are declared by the application and communicated
to the network controller to perform admission control.

Fine-grained shaping. The shaping performed at I-GWs
for a flow is meant to cut an incoming burst of size bf into a
smaller burst of size b′f , referred to as shaping parameter. The
objective is to make flow f fit into the network capacity. Typ-
ically, routers implement shaping in the Traffic Management
(TM) module via a token bucket mechanism. However, due to
the low frequency of network processors, a large volume of
traffic has to be scheduled at each round. Thus, this method can
only control burst sizes at coarse-grained (larger than 15 KB
in most commodity routers) [19], [20].

To overcome this drawback, we propose a new shaping
method based on multiple gate-control queues. Each I-GW
divides time into cycles of duration T and each cycle is
associated with a queue. A queue opens at the beginning of
the corresponding cycle and closes at the end. Only when a
queue is open, the packets inside can be transmitted. As shown
in Fig. 2, a large burst will be scattered into different queues.
With this shaping method, the burst after the I-GW can be as
small as the Ethernet MTU packet size, i.e. 1.5KB.

Shaping delay. The incoming burst is spread over d bfb′f e
contiguous cycles, provided that b′f ≥ rfT . In this way, it is
guaranteed that the flow f cannot send more than b′f/MPSf

data packets in every cycle to core routers. This shaping intro-
duces a maximum additional latency of Dshaping = T d bfb′f e,
which is the shaping delay experienced by the last packet of
a maximum size burst. For instance, referring to the example
in Fig. 2, a burst of size bf = 7.5 kB is spread over 3 cycles
considering a shaping factor b′f = 3 kB/cycle, and the shaping
delay of the last packet is no more than 3T .

The set of considered shaping parameters for a flow f is
Bf = {MPSfd bf

nMPSf
e|n ∈ N, d bfn e ≥ rfT} ; where n is the

number of cycles over which a burst is spread. Indeed, shaping
parameters of the form bf

n are the ones using a smaller amount
of capacity in each cycle for a shaping delay of nT .

In the control plane algorithm presented in Sec. V, Dshaping

is controlled by the shaping parameter to tackle the trade-off
between the amount of required capacity and the E2E delay
requirements. Indeed, the shaping parameter b′f determines the

Fig. 3. Cyclic queue scheduling on core LDN nodes.

capacity that a flow will occupy in each cycle and it also
impacts the extra delay Dshaping introduced by shaping.

B. Scheduling with 3 queues

Cyclic scheduling. At each port, 3 FIFO queues are sched-
uled in a round-robin fashion. Each queue is active for a period
T and follows a calendar to open and close its gate. At any
given time, only one queue is open (scheduled to transmit
traffic) and the other two queues are closed (backlogging
traffic). As shown in [21], the packet processing complexity
of this round robin mechanism is O(1), making this approach
suitable for large-scale networks. During each cycle, HP and
BE traffic may coexist. To guarantee QoS performance, BE
traffic is enqueued into other lower priority FIFO queues. In
order to avoid starvation of BE flows, the HP traffic should
not occupy the entire bandwidth of each cycle. One of the
goals of the control plane algorithm is to ensure that only a
portion of the capacity is reserved for HP flows, leaving the
spare capacity to BE traffic.

Fig. 3 illustrates how the data plane works in a simple two-
nodes topology where we assume that node X is the only
upstream node of Y and Y is allowed sending TCY data at
each cycle, where CY is the outgoing link capacity of Y and
T the duration of cycles. Node Y receives the first bit of the
packets sent at cycle x at the time instant Pb and it receives
in the worst case the last bit of the packets at the time instant
Pe, where, Pe = Pb + T . According to the mapping table
(explained more in details in Sec. IV-C), these packets will be
scheduled for transmission in cycle y. Similarly, the packets
sent in cycle x+1 will arrive at node Y between Pe and Pe+T
and will be scheduled in cycle y + 1. In Sec. IV-C, we will
see that node Y will maintain the cycle mapping information
for each of its upstream nodes.

Number of queues. In the following, we explain why 3
queues are required to forward traffic. Let’s now focus on the
time interval (Pe + T , Pe + 2T]. We first consider the sub-
interval ST1 = (Pe + T , T y

e), where T y
e is the end of cycle

y. For any time instant during ST1, there are always packets
belonging to cycle x (labeled now with y) waiting to be sent
in queue y. One extra queue (e.g., queue 1 in node Y in Fig. 3)
is needed to cache packets sent in cycle x. Moreover, we can
also see that, during ST1, node X has already received all the
packets belonging to cycle x+ 1 and received part of data of
cycle x + 2. Thus, two queues (e.g., queue 2 and queue 3 in
node Y in Fig. 3) are needed to cache the packets belonging

to cycle x+1 (with the new label y+1) and cycle x+2 (with
the new label y + 2) before sending them out in cycles y + 1
and y + 2, respectively. At T y

e , all the packets belonging to
cycle x have been sent out and queue 1 is empty.

In the sub-interval ST2 = (T y
e , Pe + 2T), queue 2 is open

and scheduled to send packets, while queue 1 is still empty
and queue 3 is receiving packets belonging to cycle x+ 2. At
time Pe + 2T , queue 1 will be re-used to receive and cache
packets belonging to cycle x + 3, and so on. Thus, node Y
needs at most 3 queues per interface to schedule and forward
packets during the time period (Pe +T , Pe + 2T]. Only three
gate-control FIFO queues are needed on each interface.

C. Forwarding with labels and IP routing

Mapping table. The mapping table maintained at each
core node contains an entry for each upstream neighbor
(i.e., in-port) to determine the corresponding output label (i.e,
output cycle or queue) according to the carried label. These
mappings are applied to all priority packets and labels are
encoded into packet headers. Note that packets from different
upstream nodes may be mapped into the same sending cycle
and share the same queue, thus aggregation scheduling can
be performed. All the packets at the same output port with
the same new label will be scheduled into the same queue
and, by consequence with the same label, in the same cycle,
independently of where they come from. As explained before,
the next hop is determined using standard IP routing. Besides,
the control plane algorithm makes sure that, at each cycle T
and port k, the capacity constraint is met. In particular that
the total used bandwidth Rk is smaller than the capacity Ck.

Fig. 3 illustrates how packets are forwarded. Let’s assume
that node X is an upstream neighbor of node Y and that it
sends a packet marked with label x to identify the outgoing
queue. When node Y receives this packet, it replaces the label
x with a new local label y according to the local mapping table.
Before forwarding the packet, node Y introduces a delay τY
to wait for the next cycle y.

Learning mappings. The learning of mappings at nodes is
a critical point. Since there is no time synchronization in LDN,
packets with label y after the label swapping may come from
different upstream nodes at the same time. Thus, a constraint is
that all the packets, expected to be transmitted in cycle y, must
be received before the beginning of cycle y, otherwise node Y
may not be able to send all the packets belonging to this cycle.
This means that the queue x of node X should be mapped to
the first available cycle after the end of the reception cycle at
node Y, referred to as Pe. The mapping relationship between X
and Y depends on the propagation delay of the link e between
X and Y. In the case de changes for some reasons, a dynamic
detection and mapping re-learning mechanism is required. Due
to space limitation, the implementation details are not given in
this paper. Once determined, the forwarding delay associated
with mappings is provided to the control plane so that end-to-
end QoS requirements of flows can be satisfied. From Fig. 3,
it turns out that the overall delay le for a packet to reach the
out-port of node Y is given by le = de + τY + T .

Fig. 4. End-to-end latency and jitter analysis.

D. Bounds on E2E latency and jitter

According to [5], the E2E delay and jitter bounds are 2hT
and 2T , respectively, where h is the number of nodes of the
E2E path and T is the cycle duration. In this section, we are
going to provide a more detailed evaluation of the worst and
best queuing delay experienced by all the packets within a
flow. We also provide some useful theoretical upper and lower
bounds on the queuing delay that can experienced by all the
flows in the network. Let’s focus on a generic flow f with an
h-hop path. The forwarding time for the packets belonging to
a specific cycle x at the first hop is shown in Fig. 4. Since the
mapping information is fixed between each pair of neighbors,
all the sending cycles {x1, . . . , xh} along the path are fixed
as well and known if x1 is known.

Let T i
b be the beginning of the cycle to be used for

transmission according to the carried label and T i
e be the end of

the mapped cycles on hop i, where 1 ≤ i ≤ h. Let τi ∈ [0, T)
be the time interval between P i

e and T i
b , i.e., the beginning of

the sending cycle on node i, where 2 ≤ i ≤ h. From Fig. 4,
the worst E2E queuing delay happens when a packet, sent at
the first hop at T 1

b , is forwarded, at the last hop, at Th
e , i.e., a

packet transmitted at the beginning of the transmission cycle
in the first hop is sent out by the E-GW as the last packet of
the transmission cycle. It can be expressed as:

Dworst = T +
h∑

i=2

(τi + T) (2)

In the best case, a packet, sent at the first hop at time T 1
e ,

is sent out at the last hop at time Th
b . Thus, the minimum

end-to-end queuing delay can be expressed as

Dbest =

h−1∑
i=2

(T + τi) + τh (3)

For a specific flow, all the packets experience the same τi.
Thus the jitter can be computed as

Jitter = Dworst −Dbest = 2T (4)

Note that the best and worst delay bounds experienced by each
flow can vary as the real value of τi can be different flow-by-
flow. Recalling that by construction τi < T , the theoretical
upper bound on the queuing delay can be computed assuming
that there exists at least one flow with τi = T ∀i. The

corresponding theoretical upper bound is Φup ≤ (2h − 1)T .
Vice versa, the theoretical lower bound can be computed
considering that there exists one flow with τi = 0 ∀i, giving
a lower bound of Φlow ≥ (h− 2)T .

V. CONTROL PLANE ALGORITHM

In this section, we present an efficient control plane algo-
rithm to route a batch of incoming flows over a LDN.

A. System model

The admission control decisions for a batch of incoming
traffic requests are taken by the controller which computes
the best shaping parameters and routing paths to maximize the
total amount of traffic accepted into the network. While ad-
mission control can be performed for single arrivals, incoming
traffic requests can be processed by batch to further optimize
resources. In this case, a maximum flow processing time can
be enforced to trigger admission control.

Let’s assume an input network characterized by:
• a graph G = (V,E) representing the network topology;
• a delay le for each link e = (u, v) ∈ E as introduced in

Sec. IV-C;
• a bandwidth capacity Ce of each link e ∈ E. The cycle

capacity, which is the maximum traffic that a link can
transmit during one cycle duration, is given by CeT .

We denote the set of incoming flows F , and for each flow
f ∈ F the controller gets in particular:
• the arrival curve Af (t) = rf t+bf , where rf is the arrival

rate and bf the maximum burst size;
• the maximum E2E delay requirement Df .
The arrival curve Af (t) and the maximum delay Df are

typically given by client applications to the controller. For
each accepted flow f , the control plane computes a shaping
parameter b′f and a routing path p in the graph G, going
from the source to the destination of f . The sum d bfb′f eT +

Dworst +
∑

e∈p de (respectively, the sum of the shaping delay,
the worst case queuing delay in Eq. (2) from Sec. IV-D, and
the propagation delay) must be smaller than the maximum
E2E delay Df given as input. As we have the upper bound
delay le for each link, this inequality can be rewritten as
d bfb′f eT +

∑
le + T ≤ Df and considered as a constraint on

top of the path-based formulation presented after. The goal of
the admission control algorithm is to maximize the sum of the
arrival rates of the accepted flows, i.e.,

∑
f |f accepted rf , since

this is equivalent to maximizing the total throughput of the
network. Alternative objectives, out of scope for this paper,
could ensure a good load balancing of flows into the network
or enforce a more resilient routing in case of failures.

B. Mathematical model

For each flow f ∈ F , we denote as Pf the set of feasible
paths, corresponding to the paths between the source and the
destination of f with an end-to-end delay satisfying its E2E
delay constraint on path p. Given a flow f ∈ F and a path p ∈
Pf , the shaping parameter b′(f, p) considered is the smallest

one meeting the E2E delay and arrival rate constraints of the
flow, b′(f, p) = min{b′|d bfb′ eT+T+

∑
e∈p le ≤ Df&b′ ≥ rf}.

If b′(f, p) is larger than the minimum available capacity on
path p, the path is removed from Pf . Another path must be
generated to accommodate flow f . For f ∈ F , p ∈ Pf , the
variable zf ,p ∈ {0, 1} equals 1 iff flow f is selected, and
routed on path p.

The optimization problem can be formulated as follows.

max
∑
f∈F

∑
p∈Pf

rfzf ,p∑
p∈Pf

zf ,p ≤ 1 ∀f ∈ F , (5)

∑
f∈F

∑
p∈Pf |e∈p

b′(f, p)zf ,p ≤ CeT ∀e ∈ E, (6)

zf ,p ∈ {0, 1}

Inequalities (5) ensure that at most one path is associated
to each flow, while inequalities (6) ensure that the capacity
required by the flows passing through a link e does not exceed
the amount of data that can be transmitted over a cycle, i.e.,
CeT . The delay and rate constraints are ensured by the set of
variables introduced in the model. The difficulty of this model
lies in the large set of paths (potentially exponential) to be
generated to solve the problem. If b′f = rfT and Df = ∞
for all f ∈ F , the delay constraints disappear and the only
possible shaping parameter is bf . Thus, the problem reduces
to a multi-commodity flow, which is strongly NP-hard [22].

C. Column Generation with Randomized Rounding (CGRR)

Algorithm 1 Column Generation and Randomized Rounding
Require: Set of flows F , graph G, capacities Ce for e ∈ E.

calculate solution of the RMP and dual variables values
while Columns added last loop iteration or first iteration do

Calculate solution of the RMP and dual variables values
for all flow f ∈ F do

Path p∗ ← ∅.
Solve pricing problem for f
if path found such that uF

f +
∑

e∈p∗ b
′(f, p∗)uE

e < rf∗ then
add the variable zf,p∗ to the RMP

end if
end for

end while
base solution ← {(f, p)|zf,p = 1}, best solution ← base solution
while max number of rounding steps not reached do

current solution ← base solution
for i ∈ {0, .., N} where N = |{(f, p)|0 < zf,p < 1}| do

P(f, p)← zf,p∑
f,p|zf,p 6=0 zf,p

we add weights to each fractional

variable
(f i, pi)← random couple (f,p) such that 0 < zf,p < 1
if (f i, pi) can be added to the current solution then

current solution = current solution ∪{(f i, pi)}.
end if

end for
update best solution found by rounding

end while
return Best Solution

A classical approach for solving this problem is the Column
Generation (CG) algorithm [23]. The basic idea behind this
method is to consider only a subset of “useful” relaxed
variables (i.e., without integrality constraint), forming a basis,
referred to as Restricted Master Problem (RMP) or “primal
problem”, that can be solved using generic linear solvers. For
each flow f ∈ F , a new variable zf ,p, i.e., new column of
the basis, is computed in the pricing phase via a constrained
shortest path in a graph with dual costs on the links. The RMP
and the pricing are iteratively solved until the pricing cannot
find any new variable improving the RMP. At this point, the
CG routine ends as the relaxed solution is optimal. The overall
CGRR algorithm is presented in Alg. 1.

When the CG has converged to an optimal solution, the
variables are fractional and need to be rounded to integers.
For a fast resolution of this problem, we leverage on the
Randomized Rounding (RR) algorithm. The variables equal to
1 at the end of the RMP are added to the solution as already
integer. The other variables with a fractional value have a
probability of being picked proportional to this value. The RR
has the advantage of being easily parallelized, improving the
efficiency of the research of solution.

Solving the pricing problem consists in finding a variable
which can improve the objective [23]. Each constraint of
the primal problem is associated with a variable of the dual
problem and each variable of the primal problem is associated
to a constraint of the dual problem. Thus, by solving the RMP
over a subset of variables and looking for additional variables
that can improve the objective, it is possible to identify the
violated constraints in the following dual problem:

min
∑
f∈F

uF
f +

∑
e∈E

CeTu
E
e

zf ,p : uF
f +

∑
e∈E|e∈p

b′(f, p)uE
e ≥ rf ∀f ∈ F ,∀p ∈ Pf

where uF
f ≥ 0 are the dual variable associated with each flow

f ∈ F and uE
e ≥ 0 is the dual variable associated with each

capacity constraint over e ∈ E.
In order to improve the RMP objective and identify the

violated dual contraints, we must look for a flow f∗ ∈ F and
a path p∗ ∈ Pf such that

uF
f∗ +

∑
e∈p∗

b′(f∗, p∗)uE
e < rf∗

This problem can be solved as follows: for each flow f , the
set of possible shaping parameters is Bf = {rfT, .., bf} (see
Sec. IV). For each shaping parameter b′ ∈ Bf , we solve a
Constrained Shortest Path (CSP) over the graph G, trying to
minimize

∑
e∈p∗ u

E
e . The cost of each link in this CSP is

given by the dual variables and the constraint corresponds
to the delay constraint. Only the arcs with enough capacity
for the shaping parameter can be used. We use the LARAC
algorithm [24] for an efficient CSP implementation. At each
iteration of the pricing problem at most one variable per flow,
i.e., the one with the smallest shaping parameter, is added.

TABLE I
TRAFFIC PATTERNS IN THE

POC TEST.

Parameter HP flows BE flows
Rate (Mbps) 600 600
Burst size (KB) 1.5 192

Fig. 5. Test topology for the PoC implementation.

VI. SIMULATION RESULTS

We now verify with a PoC implementation and simulations
that our LDN architecture can guarantee the E2E delay and
bounded jitter. We also show that our control plane algorithm
CGRR can efficiently maximize the accepted traffic.

A. Proof-of-Concept implementation

We have implemented this LDN architecture on a main-
stream commodity router of Huawei. All functionalities in-
cluding shaping, traffic classification, label swapping, gate-
control queues have been developed. The duration of a cycle
was set to T = 10µs and the test topology is shown
in Fig. 5. A flow generator is used to generate flows and
sample E2E latency of packets. We considered 1 HP flow
and 3 BE flows with the characteristics given in Table I.
The experimental results are presented in Fig. 6, where the
red line and blue line represent the E2E latency upper and
lower bounds, respectively. The largest value of the worst case
E2E queuing delay is 67.046µs, while the smallest value of
the best case delay is 49.886µs. By consequence, the largest
jitter experienced by the flows is 67.046− 49.886 = 17.16µs,
smaller than 2T as expected from the results in Sec. IV-D.

In Fig. 6, we also show results of the case where routers do
not have LDN capabilities, in the same experimental setting.
As no performance can be guaranteed, the traffic in this case
is considered as BE. The green line and yellow line represent
the worst and best delays for the HP flows, respectively. We
can see that, the latency upper bound is nearly 980µs and
lower bound is 19µs, with a resulting jitter of 961µs. This is
because common routers forward packets as BE traffic and the
bursts of background flows have a larger impact on the latency
of the HP flow. These experimental results have shown that
LDN can provide guaranteed latency and jitter in practice.

B. Simulation setup

In order to assess the scalability of the LDN architecture, we
use OMNeT++ to simulate its performance within a real ISP
topology (AS 1239 of Sprint), composed of 315 routers and

Fig. 6. Test results over the PoC implementation.

1944 unidirectional links, each with capacity Ce = 10Gb [25].
Each router is directly connected to a host. The cycle duration
T , in this case, is set to T = 25µs. We consider 22062
randomly generated flows between different pairs of hosts. The
path length distribution of flows is presented in Table VI-B.
Each flow sends one packet at a random time during a
cycle. Three classes of flows are considered: (i) 8997 flows
have packets with fixed MPS = 64 Bytes, (ii) 4342 flows
have packets with fixed MPS = 1500 Bytes, and (iii) the
remaining 8723 flows generate packets with MPS randomly
generated in the interval [64, 1500] Bytes. The routing is
chosen using the OSPF shortest path.

The simulated E2E queuing latency is shown in Fig. 7(a).
We can find that the measured E2E queuing latency lies
between the Dworst and Dbest bounds presented in Sec. IV-D.
We point out that the Max and Min values in Fig. 7(a)
represent the worst and best delay of all the flows with the
same path length in the simulation. For the sake of comparison,
in the same graph we also show the theoretical upper and lower
bounds Φup and Φlow introduced in Sec. IV-D. We can see that
the measured latency is indeed in between these bounds. We
also calculate the jitter of each flow independently and depict
the statistics for all flows in Fig. 7 (b). We can see that the
jitter of each single flow is less than the theoretical upper
bound (50µs) and the average jitter of all flows with different
hops is much smaller than the upper bound. For example, for
the 7-hop flows, the lower jitter bound is 0 and average jitter
among all the flows is 0.277µs. Besides, the upper jitter bound
of the majority of flows is also very small (smaller than 0.3µs),
while only 11 flows are with an upper bound above 3µs. The
corresponding Cumulative Distribution Function (CDF) for the
jitter is shown in Fig. 7(c).

C. Admission control

In order to evaluate the efficiency of the proposed CGRR
admission control algorithm, we produce numerical results
considering the same instance as in Sec. VI-B, i.e., the same
network, propagation delays, demand set, and MPS distribu-
tion. The maximum burst size bf for each flow is randomly
chosen between 1 and 10 MPSs over one cycle, and the arrival
rates rf are chosen between 256kb/s and 60 Mb/s, both with
a uniform distribution. The maximum E2E delays for each

demand is set to the same value, varying this value at each trial
between 100µs and 1000µs. Similarly, all the links have the
same capacity, fixed, at each trial, to a value between 20 and
100 Gb/s. In order to get a realistic evaluation of the E2E delay,
a random shift between cycles due to asynchronism between
the nodes is also added. As a benchmark of the proposed
CGRR admission control algorithm, we consider a Shortest
Path First (SPF) routing algorithm using as link costs standard
OSPF metrics, i.e. 108/Ce. Differently from CGRR, where the
flows of the batch are processed together, in OSPF routing, we
consider one flow at a time. For each flow, once the path is
computed, we choose the smallest shaping parameter that can
verify the delay and arrival rate constraints. If the capacity
constraint is respected on each link, the flow is accepted.

Fig. 8(a) shows the proportion of traffic accepted into the
network as a function of the tightness of the delay constraint
and the link capacity. The tighter the delay constraint, the
lower the accepted traffic, since for many demands it is no
longer possible to compute a feasible path. Even with a
loose delay constraint and a large capacity, the OSPF routing
fails to accept all demands. Vice versa, the CGRR routing
is quickly able to accept all the traffic into the network due
to a better distribution of traffic and a better choice of the
shaping parameter. With a bandwidth of 40 Gb/s and a realistic
max E2E delay constraint of 400 µs, all the LDN traffic can
be accepted into the network. The gap in terms of accepted
traffic between CGRR and OSPF, defined as CGRR - OSPF

CGRR , is
presented in Fig. 8(b). When the link capacity is small, the
gap gets higher, up to 40%, since the CGRR is able to carry
out better decisions in terms of routing and shaping. This
gap reduces as the OSPF algorithm manages to accept more
demands, i.e., for larger values of the delay constraints and link
capacities. However, the CGRR is slower than OSPF, as shown
in Fig. 8(c). In the worst case, CGRR takes up to 80s to solve
the hardest instances, i.e., those with the smallest capacity. On
the other hand, OSPF runs in at most a few seconds, no matter
the link capacity or the E2E delay constraint.

VII. CONCLUSION

This paper presented a realistic implementation of a Large-
scale Deterministic Network (LDNs) to provide deterministic
E2E latency and bounded jitter in large-scale IP networks.
At the data plane, high scalability is achieved considering
an asynchronous cyclic scheduling with 3 queues and a
low complexity forwarding in O(1). To ensure deterministic
performance, the traffic is shaped at I-GWs using gate-control
queues that allow achieving a granularity of 1.5kB, improving
traditional methods. Detailed analysis shows that LDN can
guarantee a bounded E2E queuing delay of (2h− 1)T for an
h-hop flow and a 2T jitter bound. We also presented CGRR,
a control plane algorithm for admission control to maximize
the accepted traffic by computing the best feasible shaping
parameters and paths for a batch of incoming flows. Besides,
we also verified the performance of LDN through a PoC
implementation and simulations. We showed that the proposed
CGRR algorithm outperforms traditional OSPF routing by up

TABLE II
FLOW DISTRIBUTION OVER PATHS.

Path length (hops) 2 3 4 5 6 7 8 9 10 11
Number of flows 1239 4824 6953 5776 2156 558 295 162 88 11

(a) E2E queuing latency (µs). (b) E2E jitter (µs). (c) Jitter distribution among all flows.

Fig. 7. Performance results for a large-scale deterministic IP network simulated with OMNet++.

(a) Accepted traffic (%). (b) Gap between CGRR and OSPF. (c) Computational time of CGRR and OSPF (s).

Fig. 8. Admission control results for the CGRR algorithm and OSPF routing.

to 40% in term of traffic acceptance. Our results confirm that
LDN is suitable large-scale IP networks.

REFERENCES

[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, 2018.

[2] E. Grossman, “Deterministic Networking Use Cases,” RFC 8578, May
2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8578.txt

[3] R. Li, “Towards a new internet for the year 2030 and beyond,” Proceed-
ings 3rd Annual ITU IMT-2020/5G Workshop Demo Day, 07 2018.

[4] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. Elbakoury, “Cyclic queuing and forwarding for large scale
deterministic networks: A survey,” ArXiv, vol. abs/1905.08478, 2019.

[5] “IEEE Standard for Local and metropolitan area networks: Cyclic
Queuing and Forwarding,” IEEE 802.1Qch-2017, pp. 1–30, June 2017.

[6] “Deterministic Networking Architecture,” RFC 8655, Oct. 2019.
[7] L. Qiang, X. Geng, B. Liu, T. Eckert, L. Geng, and G. Li, “Large-Scale

Deterministic IP Network,” IETF Draft draft-qiang-detnet-large-scale-
detnet-05, Sep. 2019.

[8] M. Chen, X. Geng, and Z. Li, “Segment Routing (SR) Based Bounded
Latency,” Internet Engineering Task Force, Internet-Draft draft-chen-
detnet-sr-based-bounded-latency-00, Oct. 2018.

[9] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, “Joint routing and scheduling for large-scale deterministic
ip networks,” Elsevier Computer Communication, 2020.

[10] J. Walrand and P. P. Varaiya, High-performance communication net-
works. Morgan Kaufmann, 2000.

[11] H. Shimonishi, M. Yoshida, R. Fan, and H. Suzuki, “An improvement of
weighted round robin cell scheduling in atm networks,” in Proc. IEEE
GLOBECOM, 1997.

[12] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on networking, vol. 4, no. 3, pp.
375–385, 1996.

[13] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM transactions on networking, vol. 1, no. 3, pp.
344–357, 1993.

[14] J. C. Bennett and H. Zhang, “WF/sup 2/Q: worst-case fair weighted fair
queueing,” in Proc. IEEE INFOCOM, 1996.

[15] M. Fidler, “Survey of deterministic and stochastic service curve models
in the network calculus,” IEEE Communications surveys & tutorials,
vol. 12, no. 1, pp. 59–86, 2010.

[16] I. . W. Group, “IEEE Standard for Local and Metropolitan Area
Network–Bridges and Bridged Networks,” Tech. Rep., 2018.

[17] R. T. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification,”
RFC 2205, Sep. 1997.

[18] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[19] https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/ixp42x-product-line-network-processors-datasheet.pdf.

[20] https://www.mellanox.com/related-docs/prod multi core/PB TILE-
Gx36.pdf.

[21] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375–385, 1996.

[22] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in Symposium on Foundations
of Computer Science, 1975.

[23] W. E. Wilhelm, “A technical review of column generation in integer
programming,” Optimization and Engineering, vol. 2, no. 2, pp. 159–
200, 2001.

[24] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest
path problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[25] https://research.cs.washington.edu/networking/rocketfuel/.

