XPi: a typed process calculus
for XML messaging*

Lucia Acciail and Michele Boreale?

1 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence.
2 Dipartimento di Sistemi e Informatica, Universita di Firenze.
lucia.acciai@lif.univ-mrs.fr, boreale@dsi.unifi.it

Abstract. We present XP1i, a core calculus for XML messaging. XPi features asynchro-
nous communications, pattern matching, name and code mobility, integration of static
and dynamic typing. Flexibility and expressiveness of this calculus are illustrated by
a few examples, some concerning description and discovery of web services. In XPi, a
type system disciplines XML message handling at the level of channels, patterns, and
processes. A run-time safety theorem ensures that in well-typed systems no service will
ever receive documents it cannot understand, and that the offered services, even if re-
defined, will be consistent with the declared channel capacities.

1 Introduction

The design of globally distributed systems, like Web Services (WS, [23]) or business-to-business
applications [5], is more and more centered around passing of messages in the form of XML
documents. Major reasons for the emergence of message-passing are its conceptual simplicity,
its minimal infrastructural requirements, and its neutrality with respect to back-ends and
platforms of services [6]. These features greatly ease interoperability and integration.

It is generally recognized that some of the proposed languages and standards for WS draw
their inspiration from the Tecalculus [19]. The latter conveys the message-passing paradigm
in a distilled form. In practice, at one extreme we find languages like WSDL [12], useful to
describe service interfaces, but saying very little about behaviour. At the other extreme, we
find proposed standards like BPEL4AWS [2], oriented to detailed descriptions of services, but
hardly amenable to formal analysis. In other words, we are experiencing a significant gap
between theory (formal models and analysis techniques) and practice (programming) in the
field of distributed applications.

As a first step toward filling this gap, we aim at giving a concise semantic account of XML
messaging and of the related typing issues. To this purpose, we present XPi, a process language
based on the asynchronous Tecalculus. Prominent features of XPi are: patterns generalizing
ordinary inputs, ML-like pattern matching, and integration of static and dynamic typing. Our
objective is to study issues raised by these features in connection with name and code mobility.
A more precise account of our work and contributions follows.

For the sake of simplicity, syntax and reduction semantics of untyped XPi are first intro-
duced (Section 2). In XPi, resource addresses on the net are represented as names, which can be
generally understood as channels at which services are listening. Messages passed around are
XML documents, represented as tagged/nested lists, in the vein of XDuce [15, 16]. Services and
their clients are processes, that may send messages to channels, or query channels to retrieve
messages obeying given patterns. Messages may contain names, which are passed around with
only the output capability [20]. Practically, this means that a client receiving a service address

* This work has been partially supported by EU within the IST FET - Global Computing initiative,
projects MIKADO and PROFUNDIS.



cannot use this address to re-define the service. This assumption is perfectly sensible, simplifies
typing issues, and does not affect expressive power (see e.g. [7,17]). Messages may also con-
tain mobile code in the form of abstractions, roughly, functions that take some argument and
yield a process as a result. More precisely, abstractions can consume messages through pattern
matching, thus supplying actual parameters to the contained code and starting its execution.
This mechanism allows for considerable expressiveness. For example, we show that it permits
a clean encoding of encryption primitives, hence of the spi-calculus [1], into XP1i.

Types (Section 3) discipline processing of messages at the level of channels, patterns, and
processes. At the time of its creation, each channel is given a capacity, i.e. a type specifying the
format of messages that can travel on that channel. Subtyping arises from the presence of star
types (arbitrary length lists) and union types, and by lifting at the level of messages a subtyping
relation existing on basic values. The presence of a top type T enhances flexibility, allowing for
such types as “all documents with an external tag f, containing a tag g and something else”,
written T = f[g[T], T]. Subtyping is contravariant on channels: this is natural if one thinks of
services, roughly, as functions receiving their arguments through channels. Contravariance calls
for a bottom type I, which allows one to express such sets of values as “all channels that can
transport documents of some type S < T7, written ch(f[g[L],L]). Abstractions that can safely
consume messages of type T are given type (T)Abs. Interplay between pattern matching, types,
and capacities raises a few interesting issues concerning type safety (Section 4). Stated in terms
of services accessible at given channels, our run-time safety theorem ensures that in well-typed
systems, first, no service will ever receive documents it cannot understand, and second, that
the offered service, even when re-defined, will comply with the statically declared capacities.
The first property simply means that no process will ever output messages violating channel
capacities. The second property means that no service will hang due to a input pattern that is
not consistent with the channel’s capacity (a form of “pattern consistency”). Type checking is
entirely static, in the sense that no run-time type check is required.

Our type system is partially inspired by XSD [13], but is less rich than, say, the language
of [9]. In particular, we have preferred to omit recursive types. While certainly useful in a
full blown language, recursion would raise technicalities that hinder issues concerning name
and code mobility. Also, our pattern language is quite basic, partly for the similar reasons of
simplicity, partly because more sophisticated patterns can be easily simulated.

The calculus described so far enforces a strictly static typing discipline. We also consider
an extension of this calculus with dynamic abstractions (Section 5), which are useful when
little or nothing is known about the actual types of incoming messages. Run-time type checks
ensure that substitutions arising from pattern matching respect the types statically assigned
to variables. Run time safety carries over. We shall argue that dynamic abstractions, combined
with code mobility and subtyping, can provide linguistic support to such tasks as publishing
and querying services.

There have been a number of proposals for integrating XML manipulation primitives into
statically typed languages. We conclude (Section 6) with some discussion on recent related
work in this field, and with a few directions for future extensions.

2 Untyped XPi

Syntar We assume a countable set of variables ¥, ranged over by z, y, 2, ..., a set of tags
F, ranged over f,g,..., and a set of basic values BV v, w, .... We leave BV unspecified (it
might contain such values as integers, strings, or Java objects), but assume that B4 contains
a countable set of names N/, ranged over by a, b, ¢, .... N is partitioned into a family of
countable sets called sorts S§,5’,.... We let U range over AUV and X, ... denote a tuples of
variables.



Message M:i= v Value

| X Var

[HM)  Tag

LM List

| A Abstraction
List of messages LM :i= [] Empty list

| X Var

|[M-LM  Concatenation

Abstraction Az= (Qx)P

Pattern and Continuation

| x Var
Pattern Qi= v Value
| X Var
[ f(Q  Tag
ILQ List
List of patterns LQ:= [] Empty list
| X Var
|Q-LQ  Concatenation
Process P:= TM) Output
| Sicl &.A Guarded Summation
|Pelse R Else
| PL|P, Parallel
[P Replication
| (va)P  Restriction

Table 1. Syntax of XPi messages, patterns and processes.

Definition 1 (messages, patterns and processes). The set M of XPi messages M,N, ...,
the set Q of XPi patterns Q,Q, ... and the set P of XPi processes P, R, ... are defined by the
syntax in Table 1. In Qg, we impose the following linearity condition: X is a tuple of distinct
names and each X; € X occurs at most once in Q.

In the style of XDuce [15,16] and CDuce [3] XML documents are represented in XPi as tagged
ordered list that can be arbitrarily nested; these are the messages being exchanged among
processes. A message can be either a basic value, a variable, a tagged message, a list of messages,
or an abstraction. The latter take the form (Qg)P, where variables X represent formal parame-
ters, to be replaced by actual parameters at run-time. A pattern is simply an abstraction-free
message. For the sake of simplicity, we have ignored tag-variables that could be easily accom-
modated. Also, note that patterns do not allow for direct decomposition of documents into
sublists (akin to the pattern p, p’ in XDuce). The latter can be easily encoded though, as we
show later in this section.

Process syntax is a variation on the Tecalculus. In particular, asynchronous (non blocking)
output on a channel U is written U(M), and u is said to occur in output subject position.



Nondeterministic guarded summation Y. &.A waits for any message matching Ai’s pattern
at channel g, for some i € |, consumes this message and continues as prescribed by Aj; names
8 are said to occur in input subject position. Note that the syntax forbids variables in input
subject position, hence a received name cannot be used as an input channel; in other words,
names are passed around with the output capability only. Parallel composition P;|P, represents
concurrent execution of Py and P». Process P else R behaves like P, if P can do some internal
reduction, otherwise reduces to R. This operator will be useful for coding up, e.g., if-then-else,
without the burden of dealing with explicit negation on pattern. Replication !P represents the
parallel composition of arbitrarily many copies of P. Restriction (va)P creates a fresh name a,
whose initial scope is P. Usual binding conventions and notations (alpha equivalence =, free
and bound names fn(-) and bn(-), free and bound variables fv(-) and bv(-)) apply. We let M
be the set of closed messages and P¢ be the set of closed processes.

Notations  The following abbreviations for messages and patterns are used:
[Ml, Mz, ey Mk—17 Mk] stands for M1 . (Mz . ( .o (Mk_]_ . (Mk~ H)) . )), while f [Ml, Mz, cany Mk_]_, Mk]
stands for f([M1,Mz,...;Mk_1,M]). The following abbreviations for processes are used: O,
a1.Ar and ai.A1 + a2 A2+ -+ + an.Ay stand for iy @A when [11=0, [I|=1, and |I| =n,
respectively; (Vay,...,a,)P = (v@)P stands for (vay)...(va,)P. We sometimes save on subscripts
by marking binding occurrences of variables in abstractions by a ‘?” symbol, or by replacing a

binding occurrence of a variable by a don’t care symbol, ‘_’, if that variable does not occur in
the continuation process. E.g. ([f[?x],9[-]])P stands for ([f[x],g[y]];xy})P where y ¢ fv(P).

Our list representation of XML ignores algebraic properties of concatenation (such as asso-
ciativity, see [16]). We simply take for granted some translation from actual XML documents
to our syntax. The following example illustrates informally what this translation might look
like.

Ezample 1. An XML document encoding an address book (on the left) and its representation
in XPi (on the right)®:

<addrbook> addrbook[ person[ name("John Smith"),
<person> tel(12345),
<name>John Smith</name> emailaddrs[email ("john@smith"),
<tel>12345</tel> email ("smith@john")]
<emailaddrs> ],

<email>john@smith</email>
<email>smith@john</email>
</emailaddrs>
</person>
<person>
<name>Eric Brown</name>
<tel>678910</tel>
<emailaddrs></emailaddrs>
</person>
</addrbook>.

person[ name("Eric Brown"),
tel(678910),
emailaddrs[]

]

Note that a sequence of tagged documents such as <tagil>M</tagl><tag2>N</tag2>--- is
rendered as an ordered list [tagl(M), tag2(N),---]. A pattern that extracts name and
telephone number of the first person of the address book above is: Qxy = addrbook[ per-
son [name (7x) ,tel(?y),_1,_].

1 We shall prefer the typewriter font whenever useful to improve on readability.



P=gR=P=R
PR=R/P
(PIRy)|Rz = P|(Ru|R2)
PO=P
IP=P|IP
(va)(PIR) = P|(va)R if a¢fn(P)
(vaj0=0
(va)(vb)P = (vb)(va)P

Table 2. Structural congruence.

jel aj=a Aj=(QyP, matchM,Q,0)
(com) alM)| 3 a.A — Po
IS
P=P. P-Q. Q=Q PP
(stucn) P ) LEPR) — vE PR
(ELSE1) % (ELSE2) Pelssﬁ

Table 3. Reduction semantics.

Reduction semantics A reduction relation describes system evolution via internal communi-
cations. Following [18], XPi reduction semantics is based on structural congruence =, defined
as the least congruence on processes satisfying the laws in Table 2. The latter permit certain
rearrangements of parallel composition, replication, and restriction. The relation = extends to
abstractions, hence to messages, in the expected manner. The reduction semantics also relies
on a standard matching predicate, that matches a (linear) pattern against a closed message
and yields a substitution.

Definition 2 (substitutions and matching). Substitutions 0,0’,... are finite partial maps
from the set V of variables to the set M of closed messages. We denote by € the empty
substitution. For any term t, t0 denotes the result of applying o onto t (with alpha-renaming
of bound names and variables if needed). Let M be a closed message and Q be a linear pattern:
matchM, Q,0) holds true if and only if dom(c) =fv(Q) and Qo = M; in this case, we also say
that M matches Q.

Definition 3 (reduction). The reduction relation, — C P X Py, is the least binary relation
on closed processes satisfying the rules in Table 3.

Derived constructs and examples XPi allows for straightforward definition of a few powerful
constructs, that will be used in later examples. In the following, we shall freely use recursive
definitions of processes, that can be coded up using replication [18].

— Application. A functional-like application for abstractions, Ae M, can be defined as
(vc)(t(M)|c.A), for any c ¢ fn(M,A).
— Case. A pattern matching construct relying on a first match policy, written

CaseMof (Qi)z, = P, (Q2)z, = Po,-,(Qu)z = P

evolves into Py if M matches Qi (with substitutions involved), otherwise evolves into P, if
M matches Q2, and so on; if there is no match, the process is stuck. This construct can be
defined in XPi as follows (assuming precedence of e on else and right-associativity for else):



(Qu)z,PLeM else (Q2)z,PoeM else --- else (Qx)zPcoM.

— Decomposition. A process that attempts to decompose a message M into two sublists that
satisfy the patterns Qg and ny and proceeds like P (with substitutions for X and ¥ involved),
if possible, otherwise is stuck, written: M as Q, Q§~, = P, can be defined as the recursive
process R([[], M]), where:

R([l,X]) = Casexof ?y-?w = (Case @y of Qz = (Casewof Qj =P,
-=R{l@y,w)),
- = R(l@y,w])).

Here we have used a list-append function @, which can be easily defined via a call to a
suitable recursive process. Most common list manipulation constructs can be easily coded
up in this style. We shall not pursue this direction any further.

Ezample 2 (a web service). Consider a web service WS that offers two different services: an
audio streaming service, offered at channel stream and a download service, offered at channel
download Clients that request the first kind of service must specify a streaming channel and
its bandwidth ("high" or "low"), so that W Scan stream one of two mp3 files (viow Or Vhigh), as
appropriate. Clients that request download must specify a channel at which the player will be
received. A client can run the downloaded player locally, supplying it appropriate parameters
(a local streaming channel and its bandwidth). We represent streaming on a channel simply as
an output action along that channel:

WS-l ( stream(req_stream[bandwidth("low"),channel (?X)1)X(viow)
+ stream(req_stream[bandwidth("high") , channel (?y)]1)¥(vhigh)
+ download(req_down(?2) )z(Player) ).

Playeris an abstraction:

Playeré (req_stream[bandwidth(?y),channel(?2)])( Caseyof "low" = Z(viow)

"high" §Z<Vhigh> )

Note that the first two summands of W Sare equivalent to streamPlayer. However, the extended
form written above makes it possible a static optmization of channels (see Example 5).
A client that asks for low bandwidth streaming, listens at s and then proceeds like C is:

C1 2 (vs)(streamreq_stream[bandwidth("low") ,channel(s)])|s.(?v)C).

Another client that asks for download, then runs the player locally, listening at a local high
bandwidth channel sis Cy defined as:

(vd,s)( downloadreq_down(d)) | d.(?Xp)(Xp®
req_stream[bandwidth("high") ,channel(s)]|s.(?v)C) ).

Encryption and decryption Cryptographic primitives are sometimes used in distributed applica-
tions to guarantee secrecy and authentication of transmitted data. As a testbed for expressive-
ness, we show how to encode shared-key encryption and decryption primitives & la spi-calculus
[1] into XPi. We shall see an example of application of these encodings in Section 5. We first
introduce XPi®, a cryptographic extension of XPi that subsumes shared-key spi-calculus, and
then show how to encode XPi®" into XPi. Message syntax is extended with the following clause,
that represents encryption of M using N as a key:



M = - [{M}n (encryption)

where N does contain neither abstractions nor encryptions. Process syntax is extended with a
case operator, that attempts decryption of M using N as a key and if successful binds the result
to a variable X :

P = - |caseMof {x}ninP (decryption)

where N does contain neither abstractions nor encryptions, M is a variable or a message of the
form {M’}y and X binds in P. Patterns remain unchanged, in particular they may not contain
encryptions or abstractions. The additional reduction rule is:

(DEC) case {M}y of {X}n in P — P[M/X].

Next, two translation functions, one for messages ([[']]) and one for processes ({-)), are defined
from XPi® to XPi. The translations of messages follow a familiar continuation-passing style.
The relevant clauses of the definition, by structural induction, are as follows (on the others the
functions just go through the structure of terms):

[u] =u
[{MIND = (IN, X)) %([M})

(uM)) = (M)
(case M of {x}n in P) = (vr) ([M] e [N,r]|r.(?x)(P)).

Following [22], let us define the barb predicate P} a as follows: there is P’ s.t. P —* P" and
P’ has either an input summand a.A or an output a(M) which are not in the scope of a (va),
an else or guarded summation. The encoding defined above is correct, in the sense that it
preserves reductions and barbs in both directions, as stated by the proposition below. Note
that, by compositionality, this implies the encoding is fully abstract w.r.t. barbed equivalence

(see e.g. [7]).
Proposition 1. Let P be a closed process in XPic'.

2. if (P) = P then IP" € XP s.t. P —* (P");
3. Pl a if and only if (P) | a.

3 A Type System

In this section, we define a type system for XPi that disciplines messaging at the level of
channels, patterns and processes. The system guarantees that well-typed processes respect
channels capacities at runtime. In other words, services are guaranteed to receive only requests
they can understand, and conversely, services offered at a given channel will be consistent
with the type declared for that channel. XPi’s type system draws its inspiration from, but is
less rich than, XML-Schema [13]. Our system permits to specify types for basic values (such
as string or int) and provides tuple types (fixed-length lists) and star types (arbitrary-length
lists); moreover, it provides abstraction types for code mobility. For the sake of simplicity, we
have omitted attributes and recursive types.



Types T:= bt Basic type (bt € BT)

| T Top

| L Bottom

[ f(T) Tag(fedF)
LT List

| T+T  Union

| (T)Abs Abstraction

List types LT ::= [] Empty
| «T Star
| T-LT Concatenation

Table 4. Syntax of types.

Message types and subtyping We assume an unspecified set of basic types BT bt, bt',... that
might include int, string, boolean, or even Java classes. We assume that B7 contains a countable
set of sort names in one-to-one correspondence with the sorts §,.5’,... of A’; by slight abuse of
notation, we denote sort names by the corresponding sorts.

Definition 4 (types). The set T of types, ranged over by T, S, ..., is defined by the syntazx
i Table 4.

Note the presence of the union type T+T', that is the type of all messages of type T or T,
and of the star type *T, that is the type of all lists of elements of type T. (T)Abs is the type
of all abtractions that can consume messages of type T. Finally, note the presence of T and L
types. T is simply the type of all messages. On the contrary, no message has type L, but this
type is extremely useful for the purpose of defining channel types, as we shall see below.

Notation The following abbreviations for types are used: [T, To,..., Tk_1, Tk] stands for Ty - (T -
(oe(Tke1 - (Tk-1D) - --)), while f[T1,To,..., Tk1, Tk] stands for f([T1,To,..., Tke1, Ti])-

Ezample 3. A type for address books, on the left (see message M in Example 1), and a type
for all SOAP messages, consisting of an optional header and a body, enclosed in an envelope,
on the right:

addrbook[ *person[ name(string), envelope[ [] + header(T),
tel(int), body (T)
emailaddrs (*email (string))]] ].

Next, we associate types with channels, or more precisely with sorts. This is done by introducing
a “capacity” function.

Definition 5. A capacity function is a surjective map from the set of sorts to the set of types.

In the sequel, we fix a generic capacity function. We shall denote by ch(T) a generic sort that
is mapped to T. Note that, by surjectivity of the capacity function, for each type T there is a
sort ch(T). In particular, ch(T) is the sort of channels that can transport anything. In practice,
determining capacity T of a given channel a, i.e. that a belongs to ch(T), might be implemented
with a variety of mechanisms, such as attaching to a an explicit reference to T’s definition. We
abstract away from these details.

List and star types and the presence of T and I naturally induce a subtyping relation.
For example, a service capable of processing messages of type T = f(x int) must be capable of



(SUB-SORT) m
(SuB-TopP) T=T (SuB-BoTTOM) I<T
(SuB-BasIc) % (SuB-TAq) %
(SUB-STARj) JooT (SUB-STAR2) %
(SuB-STAR3) % (SuB-Li1sT) T%'1< :—_Il_l’< _::-I; <L_l|:T
(SuB-UNION1) % (SuB-UNION?) %

Table 5. Rules for subtyping.

processing messages of type T' = f[int, int], i.e. T' is a subtype of T. Subtyping also serves to
lift a generic subtyping preorder on basic types, <, to all types.

Definition 6 (subtyping). The subtyping relation <C 7T x T is the least reflexive and tran-
sitive relation closed under the rules of Table 5.

Note that we disallow subtyping on abstractions. The reason for this limitation will be discussed
shortly after presenting the type checking system (see Remark 1). Also note that subtyping
is contravariant on sorts capacities (rule (SUB-SORT)): this is natural if one thinks of a name
of capacity T as, roughly, a function that can take arguments of type T. As a consequence of
contravariance, for any T, we have ch(T) < ch(L), that is, ch(L) is the type of all channels.

Type checking A basic typing relation Vv : bt on basic values and basic types is presupposed,
which is required to respect subtyping, i.e. whenever bt < bt’ and v: bt then v: bt'. We further
require that for each bt there is at least one v: bt, and that for each v the set of bt’s s.t. v: bt
has a minimal element. On names and sort names the basic typing relation is the following:
a:Siffae S for some S’ < S.

Contexts I',T"',... are finite partial maps from variables ¥ to types 7, sometimes denoted as
sets of variable bindings {X; : T }iel (Xi’s distinct). We denote the empty context by 0. Assume X a
set of variables; we denote by I _g the context obtained from ' by removing the bindings for the
variables in X, and by I'\g the context obtained by restricting I to the bindings for the variables
in X. The subtyping relation is extended to contexts by letting 1 < 'y iff dom(I"1) = dom(I"2)
and Vx € dom(1) it holds that 1(X) < I'2(X). Union of contexts 1 and 'y having disjoint
domains is written as N1 Ul 2 or as ['1, 2 if no ambiguity arises. Sum of contexts 1 and 2
is written as 1+ T2 and is defined as (M1 +2)(X) = M1(x) +M2(x) if x € dom{1) Ndom(I"2),
otherwise (MF1+T2)(x) =Ti(x) if xe dom(l;) for i =1,2.

Type checking relies on a type-pattern matching predicate, tpm(T,Q,I"), whose role is
twofold: (1) it extracts from T the types expected for variables in Q after matching against
messages of type T, yielding the context I', (2) it checks that Q is consistent with type T, i.e.
that the type of Q is of a subtype of T under I'.

Definition 7 (type-pattern match). The predicate tpm(T,Q,I") is defined by the rules in
Table 6.

As expected, type checking works on an annotated syntax, where each Qg is decorated by a
context I for its binding variables X, written Qg : ', with X=dom(I"), or simply Q: I, where it is
understood that the binding variables of Q are dom(I"). For notational simplicity, we shall use



(tPa-Tor) —QFX__ uxefu(Q): F(x) =T

tpm(T,Q,I")
(TPM-EMPTY) Pm(L,[,0) (TPM-VAR) BT X T
(TPM-VALUE) v: bt (TPM-TAG) tpm(T,Q.T")

tpm(bt, v, 0) tom(f(T), £(Q),1)

tpm(T,Q,M1), tpm(xT,LQ,2)
tpm(*T, Q-LQ,Mu rz)

tpm(T,Q, M), tpm(LT,LQ, )
tom(T -LT,Q-LQ,T1 Ul )

(TPM-STAR)

PpmGT,[,0) (TPM-STARD)

(TPM-LIST)

tpm(TO7 Q7 rO) or tpm(TL Q7 rl) .
(TPM-UNION) PM(To+ TLO.1) ,  where:
r— J To+T1if tpm(To,Q,lo) and tpm(T1,Q.T1) ,
I if tpm(T;,Q,T) and for no I’ tpM(Ti 1 mod2,Q,I’), i =0,1

Table 6. Matching types and patterns.

(TM-EMPTY) T (rM-TOP) T
(TM-VALUE) % (TM-VAR) rr(i)%
(Tv-TAG) Frf}_(MM) I(T) (Tn-LisT) rFFFNEI\:/ITi_MI)_:FE-"M L'II:)T
(TM-STAR7) TET (TM-STAR2) r '}M'_: JMJVB L'\:!T*T
(rw-Uston) TEMIT or LEM:T
(TM-ABS) tpm(T,Q,T 1), (l'lf)f(z:rgQ)P(:r(l_)r‘g;bDy, ITrokFP:ok
where X=dom(Tq), ¥=1v(Q)\Xand (I'1)yis abstraction-free

Table 7. Type system for messages.

such abbreviations as a.(f[?: T,?y: T'])P instead of a.(f[x,y] : {x: T,y: T'})P, and assume don’t
care variables ‘_’ are always annotated with T. Reduction semantics carries over to annotated
closed processes formally unchanged.

In what follows, we shall use the following additional notation and terminology. We say
that a type T is abstraction-free if T contains no subterms of the form (T')Abs. A context I
is abstraction-free if for each x € dom(I"), [(x) is abstraction-free. We use I' Fu € ch(T) as an
abbreviation for: either u=a€ ch(T) or u=x¢€ ¥ and I'(x) = ch(T).

The type checking system, defined on open terms, consists of two sets of inference rules, one
for messages and one for processes, displayed in Table 7 and 8, respectively. These two systems
are mutually dependent, since abstractions may contain processes, and processes may contain
abstractions. Note that the system is entirely syntax driven, i.e. the process P (resp. the pair
(M, T)) determines the rule that should be applied to check '+ P (resp. TFM:T).

The most interesting of these rules is (TM-ABS). Informally, I - A: (T)Abs ensures that
under I the following is true: (1) abstraction A= (Qx: q)P behaves safely upon consuming
messages of type T (because the type at which the actual parameters will be received is a
subtype of the type declared for formal parameters, (I'1)x < I'q, and because of I',['q - P: 0k);



acch(T), TFA:(T)Abs

(T-In) rFaA:ok
) FTFuech(™), Fr=™M:T viel, TrHa.A:ok |I]#1
(T-OuT) P QMY oK (T-SuM) r"ZaLAi oK
le

: FFP:ok [ FR:ok
(1-REP) {pe%% (T-PAR) = I?P|R) Tok

M-P:ok TIFR:ok
'F Pelse R: ok

(T-ELSE)

Table 8. Type system for processes.

(2) the pattern Q is consistent with type T, i.e. essentially the run-time type of Q is a subtype of
T (because of type-pattern match and of I'\g < (I'1)|y). This guarantees existence of a message of
type T that matches the pattern. Moreover, no ill-formed pattern will arise from Q (abstraction-
freeness).

Rule (T-IN) checks that an abstraction A residing at channel a € ch(T) can safely consume
messages of type T, and that there do exist messages of type T that match the pattern of
A. Conversely (T-OUT) checks that messages sent at U be of type T. Input and summation
(rule (T-SUM)) are dealt with separately only for notational convenience. Finally, it is worth
to notice that, by definition of a: S, rule (TM-VALUE) entails subsumption on channels (i.e.
N-a:$ and §<S implies I -a:S’). The remaining rules should be self-explanatory.

In the sequel, for closed annotated processes P, we shall write P: ok for @+ P: ok, and say
that P is well-typed. Similarly for M : T, for closed annotated M.

Ezample 4. Assume a € ch(xint) and b € ch(f[int,*int]). Then P: ok, where:
P=a.(?%:«int)b.(f[X:int,y))a(x-y) | a([4,5]) | a([4,5,6]).

Note that, if we change the sort of b into ch(f[int,[int,int]]), then P is not well-typed, as rule
(TM-ABS) fails on A= (f[?X:int,y])a(X-y). This is intuitively correct, because a possible run-
time type of A is (f[int, [int,int,int]])Abs, which is not consistent with the capacity associated to
b, that is f[int, [int,int]].

To illustrate the use of ch(T) and ch(L), and contravariance on sort names, consider a “link
process” ([7]) that constantly receives any name on a and sends it along b. This can be written
as !a.(?: ch(L))b(x). This process is well-typed provided a € ch(ch(T)), for some T, and that
b € ch(ch(L)).

Remark 1 (on abstractions and subtyping). To see why we disallow subtyping on abstrac-
tions, consider the types T = [f(int), f(int)] and *f(int) = T'. Clearly T < T'. Assume we
had defined subtyping covariant on abstractions, so that (T)Abs < (T')Abs. Now, clearly
A= (%:T)0:(T)Abs, but not A:(T')Abs (the condition (F1)g < Tq of (TM-ABS) fails). In
other words, a crucial subtyping property would be violated.

On the other hand, assume we had defined subtyping contravariant on abstractions, so
that (T')Abs < (T)Abs. Consider A' = (Q:Tq)0, where Q: g = [f(?:int), f(?:int), f(?z:int)];
clearly A’ : (T")Abs, but not A’ : (T)Abs (simply because there is no type-pattern match between
T and Q). This would violate again the subtyping property.

Typing rules for Application and Case The rules below can be easily derived from the trans-
lation of derived constructs application and case to the base syntax. In the following, we let
Twmr denote the ezact type of M under I, obtained from M by replacing each X by I'(X), each
name a € ch(T) by ch(T), each other v by the least type bt s.t. v: bt, and, recursively, each
abstraction subterm (Q:Fq)P by (Tq,rurg)Abs. The rule for application is:



[EA: (Twr)Abs
(T-APPL) FI—A(oM:)o :

that is easily proven sound recalling that Ae M = (vc)(c.At(M)) (c fresh), and assuming that
C is chosen s.t. ce ch(Tm ).

Concerning Case, first note that the typed version of this construct contemplates annotated
patterns, thus: Case Mof Q1 : g, = Pi,..., Qk: g, = P : 0k Then, relying on the rule for
application, the typing rule for case can be written as:

Vi=1,...k: TH(Q:Tg)ReM: ok
M CaseMofQr:Tg, = Pr1,...,Qc: T = R ok’

(T-CASE)

Ezample 5 (a web service, continued). Consider the service defined in Example 2. Assume
a basic type mp3 of all mp3 files, such that viow, Vhigh : mp3, and a basic type l-mp3 of
low quality mp3 files, s.t. viow : I-mp3, but not vhign: I-mp3. Assume I-mp3 < mp3; note that
this implies that ch(mp3) < ch(l-mp3), i.e. if a channel can be used for streaming generic
files, it can also be used for streaming low-quality files, which fits intuition. Let T be
req_stream[bandwidth(string) ,channel (ch(mp3))] and fix the following capacities for chan-
nels streamand download streame ch(T) and downloade ch(req_down(ch((T)Abs))). An an-
notated version of WS which permits in principle a static optimization of channels (assuming
allocation of low-quality channels is less expensive than generic channels’):

WS=!( stream(req_stream[bandwidth("low"),channel (?Xx:ch(l-mp3))1)X(viow)
+ stream(req_stream[bandwidth("high") , channel (?y: ch(mp3))1)¥(vhigh)
+ download(req_down[?7z: ch((T)Abs)]1)z(Player )

where Player is the obvious annotated version of the player of Example 2. It is easy to check
that Player: (T)Abs and that W S: ok.

4 Run-Time Safety

The safety property of our interest can be defined in terms of channel capacities, message types,
and consistency. First, a formal definition of pattern consistency.

Definition 8 (T-consistency). A type T is counsistent if I does not occur in T. A pattern Q
1s T-consistent if there is a message M . T that matches Q.

Note that all sort names, including ch(L), are consistent types by definition. A safe process is
one whose output and input actions are in agreement with channel capacities, as stated by the
definition below. Of course, for input actions it makes sense to require consistency (condition 2)
only if the input channel has in turn a consistent capacity.

Definition 9 (safety). Let P be an annotated closed process. P is safe if and only if for each
name a € ch(T):

1. whenever P= (vh)(@a(M)|R) then M : T; .
2. suppose T is consistent. Whenever P = (Vh)(S|R), where Sis a guarded summation, a.A a
summand of S and Q is A’s pattern, then Q is T-consistent.

Theorem 1 (run-time safety). Let P be a closed annotated process. If P: ok and P —* P/
then P is safe.



5 Dynamic abstractions

Although satisfactory in most situations, a static typing scenario does not seem appropriate in
those cases where little is known in advance on actual types of data that will be received from
the network.

Ezample 6 (a directory of services). Suppose one has to program an online directory of (refer-
ences to) services. Upon request of a service of type T, for any T, the directory should lookup
its catalog and respond by sending a channel of type ch(T) along a reply channel. If the reply
channel is fixed statically, it must be given capacity ch(L), that is, any channel. Then, a client
that receives a name at this channel must have some mechanism to cast at runtime this generic
type to the subtype ch(T), which means going beyond static typing. If the reply channel is
provided by clients the situation does not get any better. E.g. consider the following service
(here we use some syntactic sugar for the sake of readability):

I'request(req[?t : Td, ?Xep: ch(Tr)1)lety = lookup(t) in Xep(y)

where lookupis a function from some type Td of type-descriptors to the type of all channels,
ch(L). It is not clear what capacity Tr the return channel variable Xrep should be assigned.
The only choice that makes the above process well typed is to set Tr = ch(€L), that is, Xep can
transport any channel. But then, a client’s call to this service like requestreq[viq,r]), where
r has capacity ch(T), is not well typed (because r € ch(ch(T)) and ch(ch(T)) is not a subtype
of ch(Tr) = ch(ch(L))).

Even ignoring the static vs. dynamic issue, the schemas sketched above would imply some
form encoding of type and subtyping into XML, which is undesirable if one wishes to reason
at an abstract level. As we shall see below, dynamic abstractions can solve these difficulties.

The scenario illustrated in the above example motivates the extension of the calculus pre-
sented in the preceding sections with a form of dynamic abstraction. The main difference from
ordinary abstractions is that type checking for pattern variables is moved to run-time. This
is reflected into an additional communication rule, that explicitly invokes type checking. We
describe below the necessary extensions to syntax and semantics. We extend the syntactic
category of Abstractions thus:

A= ---|(Qg: T)P Dynamic abstraction

with X=dom(I"). We let D range over dynamic abstractions and A over all abstractions. We
add a new reduction rule:

jel, aj=a, Aj=(Qz:T)P, matchM,Q,0), Vyedom(o): a(y):l(y)
le

(coM-D)

We finally add a new type checking rule. For this, we need the following additional notation.
Given N1 and Iy, we write 1 <2 if dom(l"'1) = dom(I"2) and ¥x € dom(I"1) there is a consistent
type T s.t. T<T1(X) and T < (X).

tpm(T>Q7 rl)7 (rl)li § rQ7 (rl)‘y’ > r‘y, r, rQ FP:ok

(TM-ABS-D) T (Qz:Tg)P:(T)Abs

where y=fv(Q)\X and (I'1))y is abstraction free. The existence of a common consistent subtype
for F'q and (I'1)jx ensures a form of dynamic consistency for Q, detailed below.

We discuss now the extension of run-time safety. The safety property needs to be extended
to inputs formed with dynamic abstractions. A stronger form of pattern consistency is needed.



Definition 10 (dynamic T-consistency). An annotated pattern Q: T (fv(Q) =dom(I")) is
dynamically T-consistent if there is a message M : T s.t. matcHQ,M,0) and Vx € dom(a) we
have a(x) : T (x).

Definition 11 (dynamic safety). Let P an annotated closed process. P is dynamically safe
if for each name a € ch(T) conditions 1 and 2 of Definition 9 hold, and moreover the following
condition is true: Suppose T is consistent. Whenever P = (Vh)(S|R), where S is a guarded
summation, a.D is a summand of S and Q:T is D’s annotated pattern, then Q:T is dynamically
T-consistent.

Theorem 2 (run-time dynamic safety). Let P be an annotated closed process in the ex-
tended language. If P: ok and P —* P’ then P’ is dynamically safe.

Ezample 7 (a directory of services, continued). Consider again the directory of services. Clients
can either request a (reference to a) service of a given type, by sending a message to channel
discovery or request the directory to update its catalog with a new service, using the channel
publish Each request to discoveryshould contain some type information, which would allow the
directory to select a (reference to a) service of that type, taking subtyping into account. Types
cannot be passed around explicitly. However one can pass a dynamic abstraction that will do
the selection on behalf of the client and return the result back to the client at a private channel.
The catalog is maintained on a channel cat local to the directory. Thus the directory process
can be defined as follows, where [i¢! Cat(ci) stands for !cat(c1)|---|!cat(cy) (for | =1,...,n)
and the following capacities are assumed: discoverye ch((ch(L))Abs, publishcat € ch(ch(L)).

Directoryﬁ (veat)(Mie ! cat(ci) | ! publish(?y: ch(L))! cat(y)
| Idiscovery(?x: (ch(L))Abs)cat.x )

Note that (ch(dL))Abs is the type of all abstractions that can consume some channel. A client
that wants to publish a new service S that accepts messages of some type T at a new channel
acch(T) is:

C1 2 (va)(publisha) |S).
A client that wants to retrieve a reference to a service of type T, or any subtype of it, is:
C 2 (vr)(discovery(?z: ch(T))r(2))|r.(?y: ch(T))C').

Suppose r € ch(ch(T)). Assuming S and C' are well typed (the latter under {y: ch(T)}), it is
easily checked that the global system

pa Directory|Cy |Cy

is well typed too.

In reality, the above solution would run into security problems, as the directory executes
blindly any abstraction received from clients (cat.x). Moreover, services originating from unau-
thorized clients should not be published. We can avoid these problems using encryption so to
authenticate both abstractions and published services. We rely on the encoding of encryption
primitives? described in Section 2. Assume that every client Cj shares a secret key kj with the
directory. A table associating clients identifiers and keys is maintained on a channel tablelocal
to the directory (hence secure). Assume that identifiers idj,... are of a basic type identifier,
that keys kKj,... are names of a sort Key and let enc(T) be the type of messages {M}x where
M : T. Fix the following capacities: cat € ch(ch(.L)), table € ch([id (identifier) ,key (Key)]),
publish € ch(service_p[id(identifier) ,channel (enc(ch(L)))]1), and discovery €
ch(service_d[id(identifier) ,abstr (enc((ch(XL))Abs))1). The process Directorys is:

A
2 For the purpose of the present example, we extend the encoding to the typed calculus by [{M}] =

([k, 2x: ch(T)])X([M]), and {case M of {x: T}xin P) 2 (vr) ([M] ¢ [k r]|.(?: T) (P}), with r € ch(T).



Directorys = (veat, table)(|‘|i€| Icat(ci) | [jey! table([id(id) ,key (kj)T)
|! publish(service_p[id(?x: identifier) ,channel (?z; : enc(ch(XL)))])
table ([1d(X) ,key (?X, : Key)]) case z; of {y : ch(XL) }x, in !Cat(y)
|!discovery(service_d[id(?X: identifier) ,abstr (?Z; : enc((ch(L))Abs))])
table ([1d(X) ,key (7% : Key)1)case zs of {y: (ch(dL))Abs}y, in cat.y)

The client C; may be rewritten as:
4 2 (va)( publishiservice_p[id(idy) ,channel({a},,)1)|S)

and Cy as:
A 2 (vr)(discoveryservice_d[id(idp) ,abstr ({(?z: ch(T))r(2) },)1)|r.(?y: ch(T))C').

Suppose a € ch(T’), r € ch(ch(T)) and assume S and C’ are well typed under the appropriate
contexts. The global system

Py £ (vky, kp)(Directorys|C, |C})

is well typed too. An attacker may intercept messages on publishor discoveryand may learn
the identifiers of the clients, but not the secret shared keys. As a consequence, it cannot have
Directorys publish unauthorized services or run unauthorized abstractions.

6 Conclusions and related work

XPi’s type system can be extended into several directions. We are presently considering types
that would guarantee “responsiveness” of services. A responsive service would be one that,
when invoked at a given a, eventually responds at a given return address r, possibly after
collaborating with other services that are equally responsive. This extension would be along
the lines of Sangiorgi’s uniform receptiveness [21]. Such a system might be augmented with
primitives for managing quality of service in terms of response time.

A number of proposals aim at integrating XML processing primitives in the context of
traditional, statically typed languages and logics. The most related to our work are XDuce
[16] and CDuce, [3], two typed (functional) languages for XML document processing. XPi’s
list-like representation of documents draws its inspiration from them. TQL [9] is both a logic
and a query language for XML, based on a spatial logic for the Ambient calculus [10]. All these
languages support query primitives more sophisticated than XPi’s patterns, but issues raised
by communication and code/name mobility, which are our main focus, are of course absent.

Early works aiming at integration of XML into process calculi, or vice-versa, are [14] and [4].
Xdrt [14] is a calculus for describing interaction between data and processes across distributed
locations; it is focused on process migration rather than communication. A type system is not
provided. Tota [4] is a concurrent XML scripting language for home-area networking. It relies
on syntactic subtyping, like XP1i, but is characterized by a different approach to XML typing.
In particular, Iota’s type system just ensures well-formedness of XML documents, rather than
the stronger validity, which we consider here.

Roughly contemporary to ours, and with similar goals, are [8] and [11]. The language TDuce
of [8] features asynchronous communication and code/name mobility. Similarly to XDuce’s,
TDuce’s pattern matching embodies built-in type checks, which may be expensive at run-time.
The language in [11] is basically a Tecalculus enriched with a rich form of “semantic” subtyping
and pattern matching. Code mobility is not addressed. Pattern matching, similarly to TDuce’s,
performs type checks on messages. By contrast, in XPi static type checks and plain pattern



matching suffice, as types of pattern variables are checked statically against channel capacities.
We confine dynamic type checking to dynamic abstractions, which can be used whenever no
refined typing information on incoming messages is available (e.g. at channels of capacity T).
Both [11] and [8] type systems also guarantee a form of absence of deadlock, which however
presupposes that basic values do not appear in patterns. In XPi, we thought it was important to
allow basic values in patterns for expressiveness reasons (e.g., they are crucial in the encoding
of the spi-calculus presented in Section 2).

References

1. M. Abadi and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Informa-
tion and Computation, 148(1):1-70, Academic Press, 1999.

2. T. Andrews, F. Curbera, and S. Thatte. Business Process Execution Language for Web Wervices,
v1.1, 2003. http://ifr.sap.com/bpeldus.

3. V. Benzaken, G. Castagna, and A. Frisch. Cduce: An XML-Centric General-Purpose Language.
In Proceedings of the ACM International Conference on Functional Programming, 2003.

4. G.M. Bierman and P. Sewell. Iota: A concurrent XML scripting language with applications to
Home Area Networking. Technical Report 577, University of Cambridge Computer Laboratory,
2003.

5. Biztalk Server Home. http://www.microsoft.com/biztalk/.

6. S. Bjorg and L.G. Meredith. Contracts and Types. Communication of the ACM, 46(10), October
2003.

7. M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoretical
Computer Science, 195, 1998.

8. A. Brown, C. Laneve, and L.G. Meredith. TdDuce: A process calculus with native XML datatypes.
Manuscript. 2004.

9. L. Cardelli and G. Ghelli. TQL: A Query Language Semistruictured Data Based on the Ambient
Logic. Mathematical Structures in Computer Science, 14:285-327, 2004.

10. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1), 2000.

11. G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the Tecalculus. To appaear
in Proc. of LICS’05.

12. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
1.1. W3C Note, 2001. http://www.w3.org/TR/2001/NOTE-wsd1-20010315.

13. D.C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, 2001.
http://www.w3.o0rg/TR/2001/REC-xmlschema-0-20010502.

14. P. Gardner and S. Maffeis. Modeling Dynamic Web Data. In Proceedings of DBPL 2003, volume
2921 of LNCS. Springer, 2003.

15. H. Hosoya and B. Pierce. Regular Expression Pattern Matching for XML. Journal of Functional
Programming, 2002.

16. H. Hosoya and B. Pierce. Xduce: A Statically Typed XML Processing Language. In Proceedings
of ACM Transaction on Internet Technology, 2003.

17. M. Merro. Locality and polyadicity in asynchronous name-passing calculi. In Proceedings of
FoSSaCS 2000, volume 1784 of LNCS, pages 238-251. Springer, 2000.

18. R. Milner. The Polyadic TeCalculus: a Tutorial. Technical Report ECS-LFCS-91-180, LFCS, Dept.
of Computer Science, Edinburgh University, 1991.

19. R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, part I and II. Information
and Computation, 100:1-41 and 42-78, 1992.

20. B. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Process. Mathematical Structures
in Computer Science, 6(5), 1996.

21. D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer Science, 221,
1999.

22. D. Sangiorgi and R. Milner. Barbed bisimulation. Proc. of Concur’92, LNCS, Springer, 1992.

23. Web services activity web site, 2002. http://wuw.w3.0rg/2002/ws.



