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Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset.

The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are

generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.

Abstract

Recent studies have shown remarkable success in image-

to-image translation for two domains. However, existing

approaches have limited scalability and robustness in han-

dling more than two domains, since different models should

be built independently for every pair of image domains. To

address this limitation, we propose StarGAN, a novel and

scalable approach that can perform image-to-image trans-

lations for multiple domains using only a single model.

Such a unified model architecture of StarGAN allows simul-

taneous training of multiple datasets with different domains

within a single network. This leads to StarGAN’s superior

quality of translated images compared to existing models as

well as the novel capability of flexibly translating an input

image to any desired target domain. We empirically demon-

strate the effectiveness of our approach on a facial attribute

transfer and a facial expression synthesis tasks.

1. Introduction

The task of image-to-image translation is to change a

particular aspect of a given image to another, e.g., changing

the facial expression of a person from smiling to frowning

(see Fig. 1). This task has experienced significant improve-

ments following the introduction of generative adversarial

networks (GANs), with results ranging from changing hair

color [8], reconstructing photos from edge maps [7], and

changing the seasons of scenery images [32].

Given training data from two different domains, these

models learn to translate images from one domain to the

other. We denote the terms attribute as a meaningful fea-

ture inherent in an image such as hair color, gender or age,

and attribute value as a particular value of an attribute, e.g.,

black/blond/brown for hair color or male/female for gender.

We further denote domain as a set of images sharing the

same attribute value. For example, images of women can
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represent one domain while those of men represent another.

Several image datasets come with a number of labeled

attributes. For instance, the CelebA[18] dataset contains 40

labels related to facial attributes such as hair color, gender,

and age, and the RaFD [12] dataset has 8 labels for facial

expressions such as ‘happy’, ‘angry’ and ‘sad’. These set-

tings enable us to perform more interesting tasks, namely

multi-domain image-to-image translation, where we change

images according to attributes from multiple domains. The

first five columns in Fig. 1 show how a CelebA image can

be translated according to any of the four domains, ‘blond

hair’, ‘gender’, ‘aged’, and ‘pale skin’. We can further ex-

tend to training multiple domains from different datasets,

such as jointly training CelebA and RaFD images to change

a CelebA image’s facial expression using features learned

by training on RaFD, as in the rightmost columns of Fig. 1.

However, existing models are both inefficient and inef-

fective in such multi-domain image translation tasks. Their

inefficiency results from the fact that in order to learn all

mappings among k domains, k(k−1) generators have to

be trained. Fig. 2 illustrates how twelve distinct genera-

tor networks have to be trained to translate images among

four different domains. Meanwhile, they are ineffective that

even though there exist global features that can be learned

from images of all domains such as face shapes, each gen-

erator cannot fully utilize the entire training data and only

can learn from two domains out of k. Failure to fully uti-

lize training data is likely to limit the quality of generated

images. Furthermore, they are incapable of jointly train-

ing domains from different datasets because each dataset is

partially labeled, which we further discuss in Section 3.2

As a solution to such problems we propose StarGAN,

a generative adversarial network capable of learning map-

pings among multiple domains. As demonstrated in

Fig. 2(b), our model takes in training data of multiple do-

mains, and learns the mappings between all available do-

mains using only one generator. The idea is simple. Instead

of learning a fixed translation (e.g., black-to-blond hair), our

model takes in as inputs both image and domain informa-

tion, and learns to flexibly translate the input image into the

corresponding domain. We use a label (e.g., binary or one-

hot vector) to represent domain information. During train-

ing, we randomly generate a target domain label and train

the model to flexibly translate an input image into the target

domain. By doing so, we can control the domain label and

translate the image into any desired domain at testing phase.

We also introduce a simple but effective approach that

enables joint training between domains of different datasets

by adding a mask vector to the domain label. Our proposed

method ensures that the model can ignore unknown labels

and focus on the label provided by a particular dataset. In

this manner, our model can perform well on tasks such

as synthesizing facial expressions of CelebA images us-
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Figure 2. Comparison between cross-domain models and our pro-

posed model, StarGAN. (a) To handle multiple domains, cross-

domain models should be built for every pair of image domains.

(b) StarGAN is capable of learning mappings among multiple do-

mains using a single generator. The figure represents a star topol-

ogy connecting multi-domains.

ing features learned from RaFD, as shown in the right-

most columns of Fig. 1. As far as our knowledge goes, our

work is the first to successfully perform multi-domain im-

age translation across different datasets.

Overall, our contributions are as follows:

• We propose StarGAN, a novel generative adversarial

network that learns the mappings among multiple do-

mains using only a single generator and a discrimina-

tor, training effectively from images of all domains.

• We demonstrate how we can successfully learn multi-

domain image translation between multiple datasets by

utilizing a mask vector method that enables StarGAN

to control all available domain labels.

• We provide both qualitative and quantitative results on

facial attribute transfer and facial expression synthe-

sis tasks using StarGAN, showing its superiority over

baseline models.

2. Related Work

Generative Adversarial Networks. Generative adversar-

ial networks (GANs) [3] have shown remarkable results

in various computer vision tasks such as image generation

[1, 6, 23, 31], image translation [7, 8, 32], super-resolution

imaging [13], and face image synthesis [9, 15, 25, 30]. A

typical GAN model consists of two modules: a discrimina-

tor and a generator. The discriminator learns to distinguish

between real and fake samples, while the generator learns to

generate fake samples that are indistinguishable from real

samples. Our approach also leverages the adversarial loss

to make the generated images as realistic as possible.

Conditional GANs. GAN-based conditional image gener-

ation has also been actively studied. Prior studies have pro-

vided both the discriminator and generator with class infor-

mation in order to generate samples conditioned on the class
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Figure 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator G. (a) D learns to distinguish between

real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain

label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (c) G tries to

reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from

real images and classifiable as target domain by D.

[19, 20, 21]. Other recent approaches focused on generating

particular images highly relevant to a given text description

[24, 29]. The idea of conditional image generation has also

been successfully applied to domain transfer [8, 27], super-

resolution imaging[13], and photo editing [2, 26]. In this

paper, we propose a scalable GAN framework that can flex-

ibly steer the image translation to various target domains,

by providing conditional domain information.

Image-to-Image Translation. Recent work have achieved

impressive results in image-to-image translation [7, 8, 16,

32]. For instance, pix2pix [7] learns this task in a super-

vised manner using cGANs[19]. It combines an adver-

sarial loss with a L1 loss, thus requires paired data sam-

ples. To alleviate the problem of obtaining data pairs, un-

paired image-to-image translation frameworks [8, 16, 32]

have been proposed. UNIT [16] combines variational au-

toencoders (VAEs) [11] with CoGAN [17], a GAN frame-

work where two generators share weights to learn the joint

distribution of images in cross domains. CycleGAN [32]

and DiscoGAN [8] preserve key attributes between the in-

put and the translated image by utilizing a cycle consistency

loss. However, all these frameworks are only capable of

learning the relations between two different domains at a

time. Their approaches have limited scalability in handling

multiple domains since different models should be trained

for each pair of domains. Unlike the aforementioned ap-

proaches, our framework can learn the relations among mul-

tiple domains using only a single model.

3. Star Generative Adversarial Networks

We first describe our proposed StarGAN, a framework to

address multi-domain image-to-image translation within a

single dataset. Then, we discuss how StarGAN incorporates

multiple datasets containing different label sets to flexibly

perform image translations using any of these labels.

3.1. Multi­Domain Image­to­Image Translation

Our goal is to train a single generator G that learns map-

pings among multiple domains. To achieve this, we train G

to translate an input image x into an output image y condi-

tioned on the target domain label c, G(x, c) → y. We ran-

domly generate the target domain label c so that G learns

to flexibly translate the input image. We also introduce an

auxiliary classifier [21] that allows a single discriminator to

control multiple domains. That is, our discriminator pro-

duces probability distributions over both sources and do-

main labels, D : x → {Dsrc(x), Dcls(x)}. Fig. 3 illustrates

the training process of our proposed approach.

Adversarial Loss. To make the generated images indistin-

guishable from real images, we adopt an adversarial loss

Ladv =Ex [logDsrc(x)] +

Ex,c[log (1−Dsrc(G(x, c))],
(1)

where G generates an image G(x, c) conditioned on both

the input image x and the target domain label c, while D

tries to distinguish between real and fake images. In this

paper, we refer to the term Dsrc(x) as a probability distri-

bution over sources given by D. The generator G tries to
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minimize this objective, while the discriminator D tries to

maximize it.

Domain Classification Loss. For a given input image x

and a target domain label c, our goal is to translate x into

an output image y, which is properly classified to the target

domain c. To achieve this condition, we add an auxiliary

classifier on top of D and impose the domain classification

loss when optimizing both D and G. That is, we decompose

the objective into two terms: a domain classification loss of

real images used to optimize D, and a domain classification

loss of fake images used to optimize G. In detail, the former

is defined as

Lr
cls = Ex,c′ [− logDcls(c

′|x)], (2)

where the term Dcls(c
′|x) represents a probability distribu-

tion over domain labels computed by D. By minimizing

this objective, D learns to classify a real image x to its cor-

responding original domain c′. We assume that the input

image and domain label pair (x, c′) is given by the training

data. On the other hand, the loss function for the domain

classification of fake images is defined as

Lf
cls = Ex,c[− logDcls(c|G(x, c))]. (3)

In other words, G tries to minimize this objective to gener-

ate images that can be classified as the target domain c.

Reconstruction Loss. By minimizing the adversarial and

classification losses, G is trained to generate images that

are realistic and classified to its correct target domain. How-

ever, minimizing the losses (Eqs. (1) and (3)) does not guar-

antee that translated images preserve the content of its input

images while changing only the domain-related part of the

inputs. To alleviate this problem, we apply a cycle consis-

tency loss [8, 32] to the generator, defined as

Lrec = Ex,c,c′ [||x−G(G(x, c), c′)||
1
], (4)

where G takes in the translated image G(x, c) and the origi-

nal domain label c′ as input and tries to reconstruct the orig-

inal image x. We adopt the L1 norm as our reconstruction

loss. Note that we use a single generator twice, first to trans-

late an original image into an image in the target domain

and then to reconstruct the original image from the trans-

lated image.

Full Objective. Finally, the objective functions to optimize

G and D are written, respectively, as

LD = −Ladv + λcls L
r
cls, (5)

LG = Ladv + λcls L
f
cls + λrec Lrec, (6)

where λcls and λrec are hyper-parameters that control the

relative importance of domain classification and reconstruc-

tion losses, respectively, compared to the adversarial loss.

We use λcls = 1 and λrec = 10 in all of our experiments.

3.2. Training with Multiple Datasets

An important advantage of StarGAN is that it simulta-

neously incorporates multiple datasets containing different

types of labels, so that StarGAN can control all the labels

at the test phase. An issue when learning from multiple

datasets, however, is that the label information is only par-

tially known to each dataset. In the case of CelebA [18] and

RaFD [12], while the former contains labels for attributes

such as hair color and gender, it does not have any labels

for facial expressions such as ‘happy’ and ‘angry’, and vice

versa for the latter. This is problematic because the com-

plete information on the label vector c′ is required when

reconstructing the input image x from the translated image

G(x, c) (See Eq. (4)).

Mask Vector. To alleviate this problem, we introduce a

mask vector m that allows StarGAN to ignore unspecified

labels and focus on the explicitly known label provided by

a particular dataset. In StarGAN, we use an n-dimensional

one-hot vector to represent m, with n being the number of

datasets. In addition, we define a unified version of the label

as a vector

c̃ = [c1, ..., cn,m], (7)

where [·] refers to concatenation, and ci represents a vector

for the labels of the i-th dataset. The vector of the known

label ci can be represented as either a binary vector for bi-

nary attributes or a one-hot vector for categorical attributes.

For the remaining n−1 unknown labels we simply assign

zero values. In our experiments, we utilize the CelebA and

RaFD datasets, where n is two.

Training Strategy. When training StarGAN with multiple

datasets, we use the domain label c̃ defined in Eq. (7) as in-

put to the generator. By doing so, the generator learns to

ignore the unspecified labels, which are zero vectors, and

focus on the explicitly given label. The structure of the gen-

erator is exactly the same as in training with a single dataset,

except for the dimension of the input label c̃. On the other

hand, we extend the auxiliary classifier of the discrimina-

tor to generate probability distributions over labels for all

datasets. Then, we train the model in a multi-task learning

setting, where the discriminator tries to minimize only the

classification error associated to the known label. For ex-

ample, when training with images in CelebA, the discrimi-

nator minimizes only classification errors for labels related

to CelebA attributes, and not facial expressions related to

RaFD. Under these settings, by alternating between CelebA

and RaFD the discriminator learns all of the discriminative

features for both datasets, and the generator learns to con-

trol all the labels in both datasets.
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Figure 4. Facial attribute transfer results on the CelebA dataset. The first column shows the input image, next four columns show the single

attribute transfer results, and rightmost columns show the multi-attribute transfer results. H: Hair color, G: Gender, A: Aged.

4. Implementation

Improved GAN Training. To stabilize the training process

and generate higher quality images, we replace Eq. (1) with

Wasserstein GAN objective with gradient penalty [1, 4] de-

fined as

Ladv =Ex[Dsrc(x)]− Ex,c[Dsrc(G(x, c))]

− λgp Ex̂[(||▽x̂Dsrc(x̂)||2 − 1)
2
] ,

(8)

where x̂ is sampled uniformly along a straight line between

a pair of a real and a generated images. We use λgp = 10
for all experiments.

Network Architecture. Adapted from [32], StarGAN has

the generator network composed of two convolutional lay-

ers with the stride size of two for downsampling, six resid-

ual blocks [5], and two transposed convolutional layers with

the stride size of two for upsampling. We use instance nor-

malization [28] for the generator but no normalization for

the discriminator. We leverage PatchGANs [7, 14, 32] for

the discriminator network, which classifies whether local

image patches are real or fake. See the appendix (Section

??) for more details about the network architecture.

5. Experiments

In this section, we first compare StarGAN against recent

methods on facial attribute transfer by conducting user stud-

ies. Next, we perform a classification experiment on fa-

cial expression synthesis. Lastly, we demonstrate empirical

results that StarGAN can learn image-to-image translation

from multiple datasets. All our experiments were conducted

by using the model output from unseen images during the

training phase.

5.1. Baseline Models

As our baseline models, we adopt DIAT [15] and Cycle-

GAN [32], both of which performs image-to-image trans-

lation between two different domains. For comparison, we

trained these models multiple times for every pair of two

different domains. We also adopt IcGAN [22] as a baseline

which can perform attribute transfer using a cGAN [21].

DIAT uses an adversarial loss to learn the mapping from

x ∈ X to y ∈ Y , where x and y are face images in two

different domains X and Y , respectively. This method has

a regularization term on the mapping as ||x− F (G(x))||
1

to preserve identity features of the source image, where F

is a feature extractor pretrained on a face recognition task.

CycleGAN also uses an adversarial loss to learn the map-

ping between two different domains X and Y . This method

regularizes the mapping via cycle consistency losses,

||x− (GY X(GXY (x)))||1 and ||y − (GXY (GY X(y)))||
1
.

This method requires two generators and discriminators for

each pair of two different domains.

IcGAN combines an encoder with a cGAN [21] model.

cGAN learns the mapping G : {z, c} → x that generates

an image x conditioned on both the latent vector z and the

conditional vector c. In addition, IcGAN introduces an en-

coder to learn the inverse mappings of cGAN, Ez : x → z

and Ec : x → c. This allows IcGAN to synthesis images

by only changing the conditional vector and preserving the

latent vector.
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Figure 5. Facial expression synthesis results on the RaFD dataset.

5.2. Datasets

CelebA. The CelebFaces Attributes (CelebA) dataset [18]

contains 202,599 face images of celebrities, each annotated

with 40 binary attributes. We crop the initial 178× 218 size

images to 178×178, then resize them as 128×128. We ran-

domly select 2,000 images as test set and use all remaining

images for training data. We construct seven domains using

the following attributes: hair color (black, blond, brown),

gender (male/female), and age (young/old).

RaFD. The Radboud Faces Database (RaFD) [12] consists

of 4,824 images collected from 67 participants. Each partic-

ipant makes eight facial expressions in three different gaze

directions, which are captured from three different angles.

We crop the images to 256 × 256, where the faces are cen-

tered, and then resize them to 128× 128.

5.3. Training

All models are trained using Adam [10] with β1 = 0.5
and β2 = 0.999. For data augmentation we flip the im-

ages horizontally with a probability of 0.5. We perform one

generator update after five discriminator updates as in [4].

The batch size is set to 16 for all experiments. For experi-

ments on CelebA, we train all models with a learning rate of

0.0001 for the first 10 epochs and linearly decay the learn-

ing rate to 0 over the next 10 epochs. To compensate for the

lack of data, when training with RaFD we train all models

for 100 epochs with a learning rate of 0.0001 and apply the

same decaying strategy over the next 100 epochs. Training

takes about one day on a single NVIDIA Tesla M40 GPU.

5.4. Experimental Results on CelebA

We first compare our proposed method to the baseline

models on a single and multi-attribute transfer tasks. We

train the cross-domain models such as DIAT and Cycle-

GAN multiple times considering all possible attribute value

pairs. In the case of DIAT and CycleGAN, we perform

multi-step translations to synthesize multiple attributes (e.g.

transferring a gender attribute after changing a hair color).

Qualitative evaluation. Fig. 4 shows the facial attribute

transfer results on CelebA. We observed that our method

provides a higher visual quality of translation results on test

data compared to the cross-domain models. One possible

reason is the regularization effect of StarGAN through a

multi-task learning framework. In other words, rather than

training a model to perform a fixed translation (e.g., brown-

to-blond hair), which is prone to overfitting, we train our

model to flexibly translate images according to the labels

of the target domain. This allows our model to learn reli-

able features universally applicable to multiple domains of

images with different facial attribute values.

Furthermore, compared to IcGAN, our model demon-

strates an advantage in preserving the facial identity feature

of an input. We conjecture that this is because our method

maintains the spatial information by using activation maps

from the convolutional layer as latent representation, rather

than just a low-dimensional latent vector as in IcGAN.

Quantitative evaluation protocol. For quantitative evalu-

ations, we performed two user studies in a survey format

using Amazon Mechanical Turk (AMT) to assess single

and multiple attribute transfer tasks. Given an input im-
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Figure 6. Facial expression synthesis results of StarGAN-SNG and StarGAN-JNT on CelebA dataset.

age, the Turkers were instructed to choose the best gener-

ated image based on perceptual realism, quality of transfer

in attribute(s), and preservation of a figure’s original iden-

tity. The options were four randomly shuffled images gen-

erated from four different methods. The generated images

in one study have a single attribute transfer in either hair

color (black, blond, brown), gender, or age. In another

study, the generated images involve a combination of at-

tribute transfers. Each Turker was asked 30 to 40 questions

with a few simple yet logical questions for validating hu-

man effort. The number of validated Turkers in each user

study is 146 and 100 in single and multiple transfer tasks,

respectively.

Method Hair color Gender Aged

DIAT 9.3% 31.4% 6.9%

CycleGAN 20.0% 16.6% 13.3%

IcGAN 4.5% 12.9% 9.2%

StarGAN 66.2% 39.1% 70.6%

Table 1. AMT perceptual evaluation for ranking different models

on a single attribute transfer task. Each column sums to 100%.

Method H+G H+A G+A H+G+A

DIAT 20.4% 15.6% 18.7% 15.6%

CycleGAN 14.0% 12.0% 11.2% 11.9%

IcGAN 18.2% 10.9% 20.3% 20.3%

StarGAN 47.4% 61.5% 49.8% 52.2%

a

Table 2. AMT perceptual evaluation for ranking different models

on a multi-attribute transfer task. H: Hair color; G: Gender; A:

Aged.

Quantitative results. Tables 1 and 2 show the results of

our AMT experiment on single- and multi-attribute trans-

fer tasks, respectively. StarGAN obtained the majority of

votes for best transferring attributes in all cases. In the case

of gender changes in Table 1, the voting difference between

our model and other models was marginal, e.g., 39.1% for

StarGAN vs. 31.4% for DIAT. However, in multi-attribute

changes, e.g., the ‘G+A’ case in Table 2, the performance

difference becomes significant, e.g., 49.8% for StarGAN vs.

20.3% for IcGAN), clearly showing the advantages of Star-

GAN in more complicated, multi-attribute transfer tasks.

This is because unlike the other methods, StarGAN can han-

dle image translation involving multiple attribute changes

by randomly generating a target domain label in the train-

ing phase.

5.5. Experimental Results on RaFD

We next train our model on the RaFD dataset to learn the

task of synthesizing facial expressions. To compare Star-

GAN and baseline models, we fix the input domain as the

‘neutral’ expression, but the target domain varies among the

seven remaining expressions.

Qualitative evaluation. As seen in Fig. 5, StarGAN clearly

generates the most natural-looking expressions while prop-

erly maintaining the personal identity and facial features of

the input. While DIAT and CycleGAN mostly preserve the

identity of the input, many of their results are shown blurry

and do not maintain the degree of sharpness as seen in the

input. IcGAN even fails to preserve the personal identity in

the image by generating male images.

We believe that the superiority of StarGAN in the image

quality is due to its implicit data augmentation effect from

a multi-task learning setting. RaFD images contain a rela-

tively small size of samples, e.g., 500 images per domain.

When trained on two domains, DIAT and CycleGAN can

only use 1,000 training images at a time, but StarGAN can

use 4,000 images in total from all the available domains for

its training. This allows StarGAN to properly learn how to

maintain the quality and sharpness of the generated output.

Quantitative evaluation. For a quantitative evaluation, we

compute the classification error of a facial expression on

synthesized images. We trained a facial expression clas-

sifier on the RaFD dataset (90%/10% splitting for training

and test sets) using a ResNet-18 architecture [5], resulting

in a near-perfect accuracy of 99.55%. We then trained each

of image translation models using the same training set and
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performed image translation on the same, unseen test set.

Finally, we classified the expression of these translated im-

ages using the above-mentioned classifier. As can be seen in

Table 3, our model achieves the lowest classification error,

indicating that our model produces the most realistic facial

expressions among all the methods compared.

Method Classification error # of parameters

DIAT 4.10 52.6M × 7

CycleGAN 5.99 52.6M × 14

IcGAN 8.07 67.8M × 1

StarGAN 2.12 53.2M × 1

Real images 0.45 -

Table 3. Classification errors [%] and the number of parameters on

the RaFD dataset.

Another important advantage of our model is the scala-

bility in terms of the number of parameters required. The

last column in Table 3 shows that the number of parameters

required to learn all translations by StarGAN is seven times

smaller than that of DIAT and fourteen times smaller than

that of CycleGAN. This is because StarGAN requires only

a single generator and discriminator pair, regardless of the

number of domains, while in the case of cross-domain mod-

els such as CycleGAN, a completely different model should

be trained for each source-target domain pair.

5.6. Experimental Results on CelebA+RaFD

Finally, we empirically demonstrate that our model can

learn not only from multiple domains within a single

dataset, but also from multiple datasets. We train our model

jointly on the CelebA and RaFD datasets using the mask

vector (see Section 3.2). To distinguish between the model

trained only on RaFD and the model trained on both CelebA

and RaFD, we denote the former as StarGAN-SNG (single)

and the latter as StarGAN-JNT (joint).

Effects of joint training. Fig. 6 shows qualitative com-

parisons between StarGAN-SNG and StarGAN-JNT, where

the task is to synthesize facial expressions of images in

CelebA. StarGAN-JNT exhibits emotional expressions with

high visual quality, while StarGAN-SNG generates reason-

able but blurry images with gray backgrounds. This differ-

ence is due to the fact that StarGAN-JNT learns to translate

CelebA images during training but not StarGAN-SNG. In

other words, StarGAN-JNT can leverage both datasets to

improve shared low-level tasks such facial keypoint detec-

tion and segmentation. By utilizing both CelebA and RaFD,

StarGAN-JNT can improve these low-level tasks, which is

beneficial to learning facial expression synthesis.

Learned role of mask vector. In this experiment, we gave a

one-hot vector c by setting the dimension of a particular fa-

cial expression (available from the second dataset, RaFD) to

Figure 7. Learned role of the mask vector. All images are gener-

ated by StarGAN-JNT. The first row shows the result of applying

the proper mask vector, and the last row shows the result of apply-

ing the wrong mask vector.

one. In this case, since the label associated with the second

data set is explicitly given, the proper mask vector would be

[0, 1]. Fig. 7 shows the case where this proper mask vector

was given and the opposite case where a wrong mask vector

of [1, 0] was given. When the wrong mask vector was used,

StarGAN-JNT fails to synthesize facial expressions, and it

manipulates the age of the input image. This is because the

model ignores the facial expression label as unknown and

treats the facial attribute label as valid by the mask vector.

Note that since one of the facial attributes is ‘young’, the

model translates the image from young to old when it takes

in a zero vector as input. From this behavior, we can con-

firm that StarGAN properly learned the intended role of a

mask vector in image-to-image translations when involving

all the labels from multiple datasets altogether.

6. Conclusion

In this paper, we proposed StarGAN, a scalable image-

to-image translation model among multiple domains using

a single generator and a discriminator. Besides the advan-

tages in scalability, StarGAN generated images of higher

visual quality compared to existing methods [15, 22, 32],

owing to the generalization capability behind the multi-task

learning setting. In addition, the use of the proposed simple

mask vector enables StarGAN to utilize multiple datasets

with different sets of domain labels, thus handling all avail-

able labels from them. We hope our work to enable users

to develop interesting image translation applications across

multiple domains.
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