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Abstract

It will be briefly exposed how the application of an alternative
treatment for generating a particular sequence, might be “understood”
in terms of known information about a concept frequently and daily
used like the modern calendar.

Why?, why a triangular matrix might be used as re-
placement of an arithmetic division for the generation
of A215940?.

The question is... given for example,

P24 = (4, 3, 2, 1) (1)

And

P1 = (1, 2, 3, 4) (2)

Respectively the 1st and the 24th permutations in lexical order expressed
as vectors, and the difference between them:

∆P24 = (3, 1,−1,−3) (3)

Why the strictly lower uni-triangular matrix 4 × 4 operating over ∆P24

transposed, yields the 24th term of A215940?. This is:
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0




3
1
−1
−1

 =


0
3
4
3

 (4)

And also: Why this same behavior is extensible to A217626, given P(k+1)

and replacing P1 with Pk there in the difference?...
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Well. In order to get an idea about what is actually happening there be-
hind such kind of calculations, we might guess to apply a similar treatment
to known information about another concept familiar to us.

Let us think about how it might be defined a year of thirteen months.
We can get it done trivially by saying that the 13th month is defined to have
zero days. A year having thirteen months with zero days occupied by its last
month seems to be a reasonable definition. If for one of those years February
has 28 days, then a vector representing the number of days in each month is:

Υ =
(

31 28 31 30 31 30 31 31 30 31 30 31 0
)

(5)

And now given additionally the strictly lower uni-triangular matrix 13× 13
operating over Υ transposed:

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0





31
28
31
30
31
30
31
31
30
31
30
31
0



=



0
31
59
90
120
151
181
212
243
273
304
334
365



(6)

We can realize that such operator transform a column vector Υ giving as
result another vector Ψ consisting in the partial sums of the components in
Υ starting with zero[1]. For the present context: The count of days elapsed
after each month with a shift of (+1) place there in the offsets.

Then an arithmetic division might be replaced with the operation of the
mentioned matrix for those cases where the same result to be obtained with
both methods is built from partial sums in a similar way like in the given
example for the calendar.

1Clearly zero since for the first component in Ψ, nothing has been added yet to the
partial sum carried among the components for Ψ. By context: Because as a side effect
due the shift in the offsets, at the first component of the result Ψ, none month had elapsed
yet.
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Now according to the previous observation, A215940 can be defined as:
The vector built from the partial sums of the components in the difference be-
tween some permutation and the first, when the permutations are represented
by vectors and listed in lexical order.

Also A217626 can be defined as: First differences of A215940: The vector
built from the partial sums of the components in the difference between two
consecutive permutations when they are represented by vectors and listed in
lexical order.

It is noteworthy that these definitions are base-independent. However if
the described vectors are all of them such that each one of their components
is an integer number ranging between 0 and 9, those vectors can be written
directly as integers in the decimal base. This condition is satisfied at least
by the first 720 and 719 terms of A215940 and A217626 respectively.

The proper base where whole larger sets of those vectors are writable di-
rectly as integer numbers can be known by looking for bn2

4
c+1 (A033638). As

an example, precisely for the first 6! or 720 permutations, A033638 (6)= 10,
meaning this decimal or base 10. Additional information can be read from
the links at A211869.

Another way of treating this matter, indeed the approach already used
there in the description of A215940 and A217626 is the interpretation of
those vectors described above, as representations for polynomials in x, being
x=10 the base mostly used by OEIS. So, each one of those vectors would
have an infinity number of possible integer representations depending on the
choice for x. By being extreme for example, nothing forbids to pick x = 2
and write each one of the first 13! permutations as a power series evaluated
for such choice of the base. The last one of those permutations would be
written as follows[2]:

(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
13∑

j=1

(
jx(j−1)

)
13x12+12x11+11x10+10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x1+1x0

98305

2Notice here that we can always know immediately which is the last term from the first
n! of A215940 due the way it was defined.
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The first permutation would be:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
13∑

j=1

(
[13− j + 1] x(j−1)

)
1x12+2x11+3x10+4x9+5x8+6x7+7x6+8x5+9x4+10x3+11x2+12x1+13x0

16369

The difference between both representations is (98305− 16369) = 81936;
Since (x− 1) = 1, none division is necessary and 81936 represents in some
sense, the (13!)th term of A215940. To verify this it will be applied the alter-
native treatment based on the identified behavior for the triangular matrix
operating over the differences as it was shown previously:

(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

(−1) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

= (12, 10, 8, 6, 4, 2, 0,−2,−4,−6,−8,−10,−12)

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0





12
10
8
6
4
2
0
−2
−4
−6
−8
−10
−12



=



0
12
22
30
36
40
42
42
40
36
30
22
12


−→u = (0, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12)

Now by applying
∑13

j=1

(
ujx

(j−1)
)

= 81936 the same result is found. By
simple inspection it is observed that such vector cannot be written directly
as integer number in decimal[3]. It is necessary at least 42 digits, therefore
it can be done from base 43 onwards.

3These sequences can be verified with the aid of computer techniques like the MD5
checksum comparisons applied to the output data generated using the current definitions
against the output data obtained from the alternative methods. For both A215940 and
A217626 it was found that all the methods described here always generate the same results.

4



The partial sums of the first prime numbers and A1013014

The partial sum of the first n prime numbers or
∑n

j=1 prime(j) minus n
might be also interpreted as follows:

Let be Ω (n) the strictly lower uni-triangular matrix n × n. Let be
a (n)= A101301 (n), and P (n) a polynomial in x built from the first n primes
as coefficients. It is assumed for such combinations that the powers of x are
there in descending order while the primes coefficients are in ascending order.
Let us call V (n) or simply V to the vector representation of P . There exists
for each n some polynomial Q (n) divisible by (x− 1) such that the difference
minus n between P and Q is a (n).

Q can be found from V because transposing V and operating it with Ω
we obtain an associated vector W such that its polynomial representation
multiplied by (x− 1) is Q.

In other words, a (n) is the difference minus n between the constant term
in P and the value that such term should have in order to make P divisible
by (x− 1). Examples:

P (3)= 2x2 + 3x + 5

V (3)= (2, 3, 5)

W (3)= (0, 2, 5)

(2x + 5) (x− 1)= 2x2 + 3x− 5

+ 5− (−5)− 3= 7

a (3)= 7

It was the third therm of A101301. Now the 8th,

P (8)= 2x7 + 3x6 + 5x5 + 7x4 + 11x3 + 13x2 + 17x + 19

V (8)= (2, 3, 5, 7, 11, 13, 17, 19)

W (8)= (0, 2, 5, 10, 17, 28, 41, 58)(
2x6 + 5x5 + 10x4 + 17x3 + 28x2 + 41x + 58

)
(x− 1)=

2x7 + 3x6 + 5x5 + 7x4 + 11x3 + 13x2 + 17x− 58

+ 19− (−58)− 8= 69

a (8)= 69

4A PARI script for this section is available at [http://oeis.org/w/images/8/81/
Polyvecpri A101301.gp.txt]. Dear reader please consider this: Might it be used this
interpretation there in the search for prime numbers?.
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Additional applications: Alternative method for getting
the binomial coefficients.

Let be Ω (n) the strictly lower uni-triangular matrix n× n.
Let be I (n) the identity matrix n× n.
Let be Φ (n)= Ω (n) + I (n) the non-strict lower uni-triangular matrix.
And finally let be V (n) a column vector with n components all of them de-
fined to be the unit.

The first n non-zero binomial coefficients can be computed as:

C (n, k) = [Φ (n)]k V (n) (7)

Example: Find the first 9 non-zero coefficients of the form
(

x
3

)
;



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1





3 

1
1
1
1
1
1
1
1
1


=



1
4
10
20
35
56
84
120
165


The components in the result are the 9 binomial coefficients between

(
3
3

)
and

(
11
3

)
.

In fact, by using this method it will be found always the n binomial co-
efficients between

(
k
k

)
and

(
n+k−1

k

)
.
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