[go: up one dir, main page]

login
A367526
The number of ways of tiling the n X n grid up to diagonal and antidiagonal reflections by two tiles that are each fixed under both of these reflections.
6
2, 9, 168, 16960, 8407040, 17180983296, 140737630961664, 4611686053860868096, 604462909825456529211392, 316912650057075646247661993984, 664613997892457973921852429862699008, 5575186299632655785536225887234636434636800, 187072209578355573530072906199130068813267662274560
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-6, A-9.
FORMULA
a(2m-1) = 2^(2m^2 - 4m - 1)(4^m + 4^m^2 + 8^m).
a(2m) = 4^(m^2 - 1)(1 + 2^(1 + m) + 4^m^2).
MATHEMATICA
Table[{2^(2 m^2 - 4 m - 1) (4^m + 4^m^2 + 8^m), 4^(m^2 - 1) (1 + 2^(1 + m) + 4^m^2)}, {m, 1, 5}] // Flatten
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 10 2023
STATUS
approved