OFFSET
0,1
COMMENTS
Smallest constant M such that the inequality
|a*b*(a^2 - b^2) + b*c*(b^2 - c^2) + c*a*(c^2 - a^2)| <= M * (a^2 + b^2 + c^2)^2
holds for all real numbers a, b, c.
Equality stands for any triple (a, b, c) proportional to (1 - 3*sqrt(2)/2, 1, 1 + 3*sqrt(2)/2), up to permutation.
This constant is the answer to the 3rd problem, proposed by Ireland during the 47th International Mathematical Olympiad in 2006 at Ljubljana, Slovenia (see links).
Equivalently |(a - b)(b - c)(c - a)(a + b + c)| / (a^2 + b^2 + c^2)^2 <= M with (a,b,c) != (0,0,0).
LINKS
Evan Chen, IMO 2006/3, IMO 2006 Solution Notes.
The IMO compendium, Problem 3, 47th IMO 2006.
EXAMPLE
0.3977475644174329824...
MAPLE
evalf(9*sqrt(2)/32), 100);
MATHEMATICA
RealDigits[9*Sqrt[2]/32, 10, 120][[1]] (* Amiram Eldar, Dec 05 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Bernard Schott, Dec 05 2022
STATUS
approved